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Abstract. It is an open question whether right-angled Coxeter groups
have unique group-equivariant visual boundaries. In [4], Croke and
Kleiner present a right-angled Artin group with more than one visual
boundary. In this paper we present a right-angled Coxeter group with
non-unique equivariant visual boundary. The main theorem is that if
right-angled Coxeter groups act geometrically on a Croke-Kleiner spaces
constructed in [4], then the local angles in those spaces all have to be
π/2. We present a specific right-angled Coxeter group with non-unique
equivariant visual boundary. However, we conjecture that the right an-
gled Coxeter groups that can act geometrically on a given CAT(0) space
are far from unique.

1. Introduction

The question that motivated this study is the uniqueness of visual bound-
aries for right-angled Coxeter groups. The open questions addressed are the
following:

(1) Are all CAT(0) visual boundaries of a given right-angled Coxeter
group (abstractly) homeomorphic?

(2) Are all CAT(0) visual boundaries of a given right-angled Coxeter
group equivariantly homeomorphic?

In this paper we answer the second question negatively. We show that the
first question is related to the larger question of whether a certain length
variation can change the homeomorphism type of the visual boundary of a
CAT(0) cube complex. In his thesis [8], O’Brien carefully studied the exis-
tence and uniqueness of strict fundamental domains of right-angled Coxeter
groups acting on CAT(0) spaces. A key lemma in this paper is largely an
application of his main result.

To investigate the question of unique boundary, we consider the action of
a right-angled Coxeter group on a family of spaces constructed by Croke-
Kleiner. The family is constructed from a fixed CAT(0) cube complex X by
varying certain geometric data while preserving the CAT(0) property. We
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2 YULAN QING

assume that a right-angled Coxeter group acts geometrically on the spaces
in the family. We want to know whether varying some or all of the geometric
data (θ1, θ2, θ3, a, b, c, d) changes the equivariant homeomorphism type of its
boundary. The main results imply two things. First, there are only certain
geometric data changes that are allowed if we insist on having a right-angled
Coxeter group acting on one of these spaces. Second, these allowed changes
do change the equivariant homeomorphism type of the boundary and we
can find a right-angled Coxeter group W that acts geometrically on this
space thus answering the question about the uniqueness of equivariant vi-
sual boundaries.

The key step is the first result. We prove that unlike in the case of right-
angled Artin groups, the Croke-Kleiner space does not support a geometric
action by a right-angled Coxeter group if the three angles on the tori θ1, θ2, θ3
are not fixed at π/2.

Take X as defined in Section 3. There are many embedded flats in X.
Among them are the flats that are universal covers of the tori Ti, which we
call special flats. In this paper we prove that:

Theorem 1.1. Suppose W is a right-angled Coxeter group acting geomet-
rically on the Croke-Kleiner complex while preserving the family of special
flats. Then the angles θ1, θ2, θ3 must all be right angles.

This implies that the ”right-angled” in the terminology ”right-angled Cox-
eter group” turns out to be literal and is consistent with the ”geometric”
property of the group. Furthermore, given the result from [3] that if we
fix the gluing angle of the Croke-Kleiner space at π/2 and change the side
lengths of the tori, the resulting boundaries are not equivariantly homeo-
morphic to each other, we conclude the following:

Corollary 1.2. There exists a right-angled Coxeter group that does not have
unique equivariant visual boundary.

Aside from answering the open question, this close examination of the
interplay between right-angled Coxeter actions and the CAT(0) geometry
of the Croke-Kleiner spaces shows that right-angled Coxeter groups can be
more ”geometrically rigid” than their counterparts in the class of right-
angled Artin groups.

The more general open questions we aim to contribute to is the following:

(1) Suppose X is a CAT(0) square complex. If we change the cubes to
rectangles, does the homeomorphism type of the boundary change?

(2) If one has a group acting geometrically on X, then does the equivari-
ant homeomorphism type of the boundary change when we change
cubes to rectangles?
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2. Preliminaries

In this section we give basic definitions and facts concerning CAT(0)
spaces, boundaries and quasi-isometries all of whose proofs can be found in
[1]. We also give the definitions and facts we need concerning right-angled
Artin and Coxeter groups.

2.1. CAT(0) Spaces and their boundaries. A metric spaceX is CAT(0)
if geodesic triangles in X are at least as thin as a triangle in Euclidean space
with the same side lengths. It follows immediately from the definition that
CAT(0) spaces are uniquely geodesic and thus contractible via geodesic re-
traction to a base point in the space.

Recall that a metric space X is proper if closed metric balls are compact.
In this case, X can be compactified via the visual boundary of X. The points
of this boundary are equivalence classes of geodesic rays defined as follows:

A geodesic ray in X is a geodesic c : [0,∞) → X. Consider the set of
geodesic rays in X. Two geodesic rays c1 and c2 are said to be asymptotic if
f(t) := d(c1(t), c2(t)) is a bounded function. The set of equivalence classes
is denoted by ∂X and called the visual boundary of X. If ξ ∈ ∂X and c is
a geodesic ray belonging to ξ, we write c(∞) = ξ.

The following is a basic lemma in CAT(0) geometry:

Lemma 2.1. For any ξ ∈ ∂X and any x ∈ X, there is a unique geodesic
ray cxξ : [0,∞) → X with cxξ(0) = x and cxξ(∞) = ξ. The image of cxξ is
denoted by xξ.

There are two topologies we can put on ∂X. Set X = X
⋃
∂X. The cone

topology on X has as a basis the open sets of X together with the sets

U(x, ξ,R, ε) = {z ∈ X|x /∈ B(x,R), d(cxz(R), cxξ(R)) < ε}
where x ∈ X, ξ ∈ ∂X and R > 0, ε > 0. The topology on X induced by the
cone topology coincides with the metric topology on X.

This topology looks as if it depends on the base-point x in the above de-
scription of open sets, however the previous lemma shows that there is a nat-
ural change of base-point homeomorphism when the base-point is changed.

The set ∂X together with the cone topology is called the visual boundary
of X, denoted ∂∞X.

There is another way to put a topology on ∂X using the Tits metric.
Let c1, c2 : [0,∞) → X be two geodesic rays with c1(0) = c2(0) = x which
belongs to two equivalent classes ξ, η. Let ∠x(ξ, η) denote the Alexandrov
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Figure 1. A basis for open sets

angle between the rays ξ and η. For t1, t2 ∈ (0,∞), ∠x(ξ, η) is defined to be

∠x(ξ, η) = lim
t1,t2→0

∠x(c1(t1), c2(t2)

Where ∠x(c1(t1), c2(t2) denotes the angle at the vertex x in a comparison
triangle ∆(x, c1(t1), c2(t2)) ⊂ E2.

If X is a complete CAT (0) space, then the angle ∠(ξ, η) between ξ, η is
defined to be

∠(ξ, η) = sup
x∈X
∠x(ξ, η)

It can be shown that the angle function is a metric on the equivalence classes
of all geodesic rays and we define the Tits metric to be the length metric
associated to the angular metric, denoted dT . The set ∂X together with the
topology arising from dT is called the Tits boundary of X, denoted ∂TX.

In general the visual boundary of the space is different from the Tits
boundary of the space. For example, consider X = H2. For any two points
ξ, η on the boundary, there is a geodesic line in H2 joining ξ and η. There-
fore ∠(ξ, η) = π for any two distinct points one the boundary, hence ∂TH2

is a discrete set yet ∂∞H2 is homeomorphic to S1 with the cone topology.

2.2. Quasi-Isometry and Quasi-Isometric Embeddings.

Definition 2.2. Let (X1, d1) and (X2, d2) be metric spaces. A (not necessar-
ily continuous) map f : X1 → X2 is called a (λ, ε)-quasi-isometric embedding
if there exist constants λ ≥ 1 and ε ≥ 0 such that for all x, y ∈ X1

1

λ
d1(x, y)− ε ≤ d2(f(x), f(y)) ≤ λd1(x, y) + ε

If, in addition, there exists a constant C ≥ 0 such that every point of X2

lies in the C-neighborhood of the image of f , then f is called a (λ, ε)-quasi-
isometry. When such a map exists, X1 and X2 are said to be quasi-isometric.

The following is often referred to as the Fundamental Theorem of Geo-
metric Group Theory:
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Theorem 2.3. (Švarc-Milnor lemma) If X is a complete, locally compact
geodesic metric space and G acts geometrically on X, then G is finitely
generated and X is quasi-isometric to every Cayley graph for G.

2.3. Right-angled Groups.

Definition 2.4. An Artin group A is a group with presentation of the form

A = 〈s1, s2.., sn|(sisj)mij = (sjsi)
mji for all i 6= j〉

where mij = mji ∈ {2, 3, ...∞}. (sisj)
mij denotes an alternating product of

si and sj of length mij , beginning with si. If mij = ∞ , then there is (by
convention) no relation for si and si.

A right-angled Artin group [2] is one in which mij ∈ {2,∞} for all
i, j. In other words, in the presentation for the Artin group, all relations are
commutator relations:

sisj = sjsi

The easiest way to specify a presentation for a right-angled Artin group
is by means of a defining graph. This is a graph whose vertices are labeled
by the generators S = {s1, ..., sn} and whose edges connect pairs of vertices
si, sj if and only if mij = 2. Note that any finite, simplicial graph Γ is the
defining graph for a right-angled Artin group.

Definition 2.5. Formally, a Coxeter group can be defined as a group with
a presentation of the following form:

〈s1, s2, ...sn|(si)2 = 1, (sisj)
mij = 1, where mij ∈ {2, 3, 4, ...∞}〉

A right-angled Coxeter Group [6] is where mij ∈ {2,∞}

Just as for right-angled Artin groups, the presentation for a right-angled
Coxeter group can be given by a finite simplicial graph with the understand-
ing that each vertex now represents a generator of order 2.

Here are more basic facts of right-angled Coxeter Groups [5]:

• If si is not adjacent to sj , then the order of sisj is infinite.
• A right-angled Coxeter group is abelian if and only if it is finite

which is true if and only if the defining graph is complete.
• If w has finite order, then w2 = 1. Right-angled Coxeter groups

are distinguished from other Coxeter groups by this fact. That is, if
every finite order element of a Coxeter group is two, then the Coxeter
group is right-angled.
• A right-angled Coxeter group W has a non-trivial center if and only

if it can be written as W ′×Z2 for a right-angled Coxeter group W ′.

2.4. Strict Fundamental Domain. In this section, we suppose that G is
a group acting on a metric space X by isometries.
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The group of all isometries from a metric space (X, d) to itself will be
denoted Isom(X). If G ⊂ Isom(X), then we say that G acts on X by
isometries.

Definition 2.6. A group G acts geometrically on a metric space X if G
acts properly discontinuously, cocompactly, and by isometries.

Definition 2.7. Suppose G is a group acting on a metric space X. The
fixed point set of S ⊂ G on the space X is the set

Fix(S) := {x ∈ X|g.x = x for all g ∈ S}

For each point x ∈ X, the orbit of x is the set

Ox := {y ∈ X|y = gx for some g ∈ G}

Definition 2.8. Let K be a closed subset of X. K is a strict fundamental
domain of G on X if every orbit meets K exactly once.

According to Bass-Serre Theory, in the case of a group acting on a tree, a
strict fundamental domain determines an amalgamated product decompo-
sition of the group. Conversely, if the original group has an amalgamated
product decomposition, then there is a tree (unique up to isomorphism) on
which G acts, with an edge as the strict fundamental domain. The critical
tools to our study come from the thesis of O’Brien.

Proposition 2.9. [8]
Suppose G acts geometrically on a uniquely geodesic space X with a strict

fundamental domain K whose translates are locally finite. Then

(1) K is convex, and
(2) the the quotient X/G is isometric to K

The full strength of O’Brien’s result generalizes the Bass-Serre theory
from trees to other spaces on which a strict fundamental domain can be
found. By O’Brien[8], the action of a Coxeter group W on a space X has
a strict fundamental domain if and only if for every x ∈ X and w ∈ W ,
every path from x to w.x meets the fixed point set of X. When the action
is on a tree, this condition(which is called generalized reflection) is satisfied.
Once we obtain a strict fundamental domain K, we can study the stabi-
lizer groups of the topological boundary of K and recover an amalgamated
product decomposition of the group.

Specific to our result, we let a right-angled Coxeter group act on the nerve
tree of a Croke-Kleiner space (terms to be defined in the next section) and
use the following theorem:

Theorem 2.10. [8] If a G acts geometrically on a tree, then there is a strict
fundamental domain that is a finite sub-tree.
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3. Croke-Kleiner Spaces

It is well-known that if A a right-angled Artin group, then A acts geo-
metrically on a CAT(0) cube complex X(A). The spaces constructed here
come from the cube complex for a specific right-angled Artin group whose
defining graph is:

Figure 2

The cubical space X(A) used by Croke and Kleiner in [4] is the universal
cover of a torus complex Y . Start with a flat torus T2 with the property
that a pair b, c of unoriented, π1-generating simple closed curves in T2 meets
at a single point at an angle α = π

2 . Let b, c have length 1. Let T1, T3 be
flat tori containing simple closed essential loops, a, b1 and c1, d, respectively,
such that length(b1) = length(b), length(c1) = length(c). Let a, d also have
length 1. Let Y be the union of T1, T2, T3 with b1 identified isometrically
with b and c1 with c. Let X be the universal cover of Y . Let Y1 = T1 ∪ T2,
and let Y2 = T3∪T2, Xi be the universal cover of Yi in X. That X is CAT(0)
cubical follows from the Equivariant Gluing theorem [1].

T1 T2 T3

Figure 3. Tori Complex

One obtains an uncountably infinite family of CAT(0) spaces by changing
the geometry of X(A) in such a way that it is no longer cubical yet it is
still CAT(0) and the group A still acts on the new spaces geometrically.
Specifically, one can change the angle α to be any real number 0 < α ≤ π

2 .
This particular change of geometry was studied in the original paper [4]
where they proved that changing the angle from π

2 to any other value changes
the homeomorphism type of ∂∞X(A). This was further investigated by J.
Wilson in [10] where it was shown that any two different angles give different
visual boundaries.

The geometric data associated with a Croke-Kleiner space consists of three
intersecting angles and four translation distances. The three intersection
angles are that of the intersecting angle of the three pairs of π1-generating,
simple closed curves on the three tori, which we denote θ1, θ2, θ3. The four
lengths are the translation distance of a, b, c, d.

In this paper we fix θ1 = θ2 = θ3 = π/2 unless otherwise specified. Since
the θi are right angles, we can use |a|, |b|, |c|, |d| to denote the translation
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distance, or by abuse of notation a, b, c, d. It can be easily checked that
length variation is a quasi-isometry but not an isometry on the space. This
motivates the following definition.

Definition 3.1. A CAT(0) X space obtained by a length change on the
cubical complex X(A) will be referred to as a Croke-Kleiner space.

We now describe the structure of any Croke-Kleiner space X.

Definition 3.2. A barrier is a maximal connected component of the uni-
versal cover of T2 in X. A block is a maximal, connected component of the
universal cover of Yi in X, which we denoted Xi.

Each block, as well as each barrier is a closed, connected and locally con-
vex subset of X(A). Let B and W denote respectively the collection of all
blocks and barriers. We will prove later that B and W are countably infinite
sets.

Let T4 be the regular 4-valence, infinite tree that is isomorphic as a graph
to the Cayley graph of F2 with two generators. A block is isometric to the
metric product of a T4 with appropriate edge lengths with the real line R.
The intersection of two blocks can be either an empty set or a barrier. Two
blocks are adjacent if and only if their intersection is a barrier.

Figure 4. A Block

The Croke-Kleiner space can be projected onto an infinite, locally infinite
tree via the following: let each block be projected onto a vertex; two vertices
are adjacent if and only if two blocks are adjacent. If a group acts on the
Croke-Kleiner space, it necessarily preserves blocks and block adjacencies.
Thus the group acts on the tree.

3.1. The boundaries of X. Let X be a Croke-Kleiner space and let ∂∞X
and ∂TX denote respectively the visual boundary and the Tits boundary of
the space X. ∂∞B is homeomorphic to the suspension of a Cantor set and
∂TB is the suspension of an uncountable discrete set with each suspension
arc having length π/2.
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Definition 3.3. The two suspension points of ∂∞B, called poles of the
block, are the equivalence classes of geodesics correspond with the pair
{bn(x), b−n(x)}, or the pair {cn(x), c−n(x)}, as n→∞.

Definition 3.4. A longitude of the block is an arc in ∂∞B joining the two
poles. It can also be thought of as the suspension of a point in the Cantor
set.

We say that a geodesic ray ξ enters a special flat V if there are values
r < R in the domain of ξ such that ξ([r,R]) ⊂ V . ξ enters a block if it
enters a non-barrier special flat of the block.

Definition 3.5. An itinerary of a geodesic ray, It(ξ), is the sequence of
blocks that the geodesic ray enters in order. An itinerary can be either
finite or infinite.

We say that ξ ∈ ∂∞X is a vertex if there is a neighborhood U of ξ such
that the path component of ξ in U is homeomorphic to the cone over a
Cantor set, with ξ corresponding to the vertex of the cone.

A path c : [0, 1]→ ∂∞X is safe if c(t) is a vertex for only finitely many t ∈
[0, 1]. Since the property of being join-able by a safe path is an equivalence
relation on pairs of points, and since ∂∞B1 ∪ ∂∞B2 is safe path connected
when B1 is adjacent to B2, it follows that

⋃
B∈B ∂∞B is safe path connected.

It is shown in [4] that
⋃
B∈B ∂∞B is a safe-path component of ∂∞X.

3.2. The Other Nerve. In the original paper [4], the term ”nerve” refers
to the tree associated with the block decomposition described in the previous
section. There is another Bass-Serre tree of the space that corresponds to
the following amalgamated product decomposition:

T2

T1

T1

T1

T3

T3

T3

T2

T2

T2

T2

T2

T2

...

...

...

...

Figure 5. The Nerve
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This Bass-Serre tree, which we call the ”nerve”, records the intersection
of special flats and gluing lines rather than blocks and barriers. The nerve
is a simplicial tree that records the intersections of special flats that are
lifts of the tori. Each vertex in the nerve represent a special flat that is
a lift of T1, T2 or T3, two vertices are adjacent if and only if two special
flats intersect along a line. The nerve is also a regular, infinite and locally
infinite tree. Each vertex is adjacent to countably many other vertices.
The vertices representing lifts of T1 (and respectively T3) are adjacent to
countably infinite copies of vertices representing lifts of T2, while the lifts of
T2 are adjacent to both countably many T1 and countably many T3.

4. Proof of Theorem 1.1

In this section we restate and proof the main result of this paper, Theorem
1.1.

Let W be the following right-angled Coxeter group:

W = {s1, s2, ...sn|s2i for all i, [si, sj ] for some pairs i, j}
The main theorem of this paper is the following:

Theorem 4.1. Suppose W acts geometrically on a Croke-Kleiner space and
preserve special flats, then the intersection angle on the middle torus must
be π

2 .

Recall a special flat is a flat that is a lift of Ti. We start with lemmas
about the action of the generators and the stabilizers of each special flat.

Lemma 4.2. For the given complex, each generator of the right-angled Cox-
eter group acts on the nerve tree without inversion.

Proof. In the nerve, we have vertices that are labeled by the torus of which
they denote the universal cover, by abuse of notation, the edges in the nerve
are also labeled by either of the following pairs:

{T2, T1}, {T2, T3}

Isometry in the space induces a homeomorphism on the boundary. The

boundary of the special flats T̃2 is a circle with four poles, the boundary of

the special flats T̃1 and T̃3 are circles with two poles. Since an isometry of
the space induces a homeomorphism on the boundary that takes circles to
circles and poles to poles, an isometry cannot invert edges. �

In the following definitions we lay out O’Brien’s construction [8] of a strict
fundamental domain:

Definition 4.3. For a group element w ∈ W , let Xw be the fixed point
set of w. Let Tw(Y ) be the set of components of X/Xw. If w = si is a
generator we simply write Ti.
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Let
T :=

⋃
i∈I

Ti

Let T denote a connected component of Ti, and let

T̃i := {T ∪Xsi |T ∈ T}
The elements of T̃i we denote as T̃ := T ∪Xsi .

We know that if si and sj does not commute, then Xsi ∩ Xxi = φ.
Moreover, since Xsj is connected, there exists a unique component in Ti that
contains Xsj , which we denote T yij , a yes-component, and a no-component

is defined as Tnij := si.T
y
ij .

Let

T̃ y :=
⋂
i∈I

⋃
j∈kl(i)

(T yij ∪X
si)

In the context of this paper, suppose a fixed-point set for a generator
contains two or more vertices, then it fixes point-wise a unique path in the
finite subtree(that is the strict fundamental domain) between them. Since s
is order two, the path is forced to extend infinitely which contradicts the as-
sumption that the action is cocompact and therefore the strict fundamental
domain is compact. So we have the following corollary:

Corollary 4.4. For each generator si, let vsi be the label of the fixed point of
si in the Bass-Serre tree. Then there is exactly a strict fundamental domain
where for each si, vsi appears as a label for some vertex.

Lemma 4.5. Suppose a right-angled Coxeter group W acts geometrically
on the Croke-Kleiner space and takes special flats to special flats. If a group

element w fixes a special flat T̃i set-wise, suppose w = sksk−1...s2s1, then

each si fixes T̃i set-wise.

Proof. Without loss of generality, suppose s1 does not fix the special flat Ti,
otherwise let w = sksk−1...s2. Let j be the smallest number such that the
sub-word sjsj−1...s2s1 fixes the Ti. Consider generators s1 and sj . In T0, sj
and s1 each label a vertex, vsj and vs1 . T0 also contains a lift of Ti, label it
v0. Since T0 is a tree, there are unique paths (v0, vsj ) and (v0, vs1). The word
sj−1sj−2...s2 takes the edges (v0, vsj ) to the edges (v0, vs1). This contradicts
the assumption that T2 is a strict fundamental domain. Therefore, each si
fixes T̃i set-wise. �

Now we can analyze the stabilizer subgroups of each Ti.

Proposition 4.6. Given the universal cover of Ti, denoted T̃i consider the

stabilizer subgroup Stab(T̃i), then Stab(T̃i) is generated by a (conjugate) of
a subset of the generating set {s1, s2, ...sn}, respectively.
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Proof. Each generator acts simplicially on the nerve tree of special flats.
Furthermore, let every edge has length 1, then each group element acts iso-
metrically on the tree. Each generator is of order two. Therefore the fixed
point set of each generator acting on the nerve tree is either an induced
subgraph or the midpoint of an edge. Lemma 4.2 rules out the latter case.
By Corollary 4.4, there exists a minimal finite tree that is the strict funda-
mental domain of W on the nerve, which we denote by T . This tree is the
fundamental domain of the group acting on this tree, therefore generators
of W does not take points of T to points of T . By Lemma 4.5, each group
element that stabilizes a vertex of T0 is generated by a subset of generators

that stabilizes the vertex. Thus Stab(T̃i) are special subgroups, i.e. they
are generated by a subset of generators.

�

We claim the group Stab(T̃i)acts on T̃iisometrically and cocompactly.

Proposition 4.7. Stab(T̃i)acts cocompactly and by isometries on the special
flat.

Proof. The group acts cocompactly on the the space. If K is a fundamental
domain for W y X, then

K ∩ T̃i
is the fundamental domain for the actions of Stab(T̃i). Therefore Stab(T̃i)
acts cocompactly on the special flat it stabilizes. �

Next we study a right-angled Coxeter group acting cocompactly and by
isometries on a 2-dimensional Euclidean special flat. For a presentation of
a right-angled Coxeter group

W = {s1, s2, ...sn|s2i for all i, [si, sj ] for some pairs i, j}
Consider the defining graph of the group. First one can rule out the

defining graphs on less than or equal to three vertices since they either have
0, 2, or infinitely many ends. Indeed, the number of ends of a group is
a quasi-isometry invariant and the plane has one end so a group with 0 or
more than one end cannot act geometrically on the plane by the Svarc-Milnor
Lemma.

Recall Gromov’s Theorem [1]:

Theorem 4.8. If a finitely generated group is quasi-isometric to Zn then it
contains Zn as a subgroup of finite index.

Lemma 4.9 (Key Lemma). Suppose W is a right-angled Coxeter group
acting cocompactly and by isometries on the special flat E2. Then we claim
that W must be the direct product of two copies of the infinite dihedral group.

Proof. We know that the group W has at least four generators. Since W
contains Z2 as a subgroup of finite index, it is not hyperbolic. By [7], if Γ is
the defining graph of W , then in Γ there exists induced subgraphs A,B such
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that 〈A〉, 〈B〉 are infinite and A ∗join B is a subgraph of Γ. In particular,
there exists two infinite order elements γ′1 = s1t1, γ

′
2 = s2t2 such that the

subgraph on the vertices s1, s2, t1, t2 is a join of two pairs of non-adjacent
vertices. The subgraph is a chord-less 4-cycle, where s1 is adjacent to s2
and t2, and t1 is adjacent to s2 and t2.

The actions of s1, t1, s2, t2 are order-2 isometries of the special flat, which
are either reflecting across a straight line l, or rotate around a point p by π.
Two such elements commute in the following cases:

• l1 and l2 intersecting at right angle
• l ∩ p 6= φ

An infinite order action must be a composition of these order-2 isometries
as one of the following cases:

(1) l ∩ p = φ
(2) l1 ∩ l2 = φ
(3) p1 ∩ p2 = φ

In the Z2 subgroup, there are two elements of infinite order, both gener-
ators in one of the three pairs of elements commutes with both generators
of another one, not necessarily different, of the three pairs.

(1) and (1), impossible since a point cannot simultaneously coincide with
another point off the line and be on the line, For the same reason, (1) and
(3) is also impossible.

(1) and (2), impossible since there is only one straight line that passes
perpendicularly through another line and a point off that line;

(2) and (3), impossible, since one point cannot be on two parallel lines;
(3) and (3), impossible since one point cannot coincides with two points.
Therefore the only possibility is (2) and (2): two pairs of parallel lines

intersecting at right angle. The defining of this group consists of four vertices
and four edges connecting up to a four-gon.

To have this group as a subgroup of finite index, by the Finite Index
Lemma [6] we must have in the defining graph a complete graph joined to
the chord-less 4-cycle. This is to say the generators not in the chord-less
4-cycle commutes with the four reflections. By the previous argument, there
cannot be order-2 symmetries of the special flat that commutes with all four
reflections. Therefore, if a right-angled Coxeter group acts geometrically
on a special flat, the actions of the group restricted to the special flat is
isomorphic to

G = D∞ ×D∞ =< a, b, c, d|a2, b2, c2, d2, [a, c], [a, d], [b, c], [b, d] >

�

A direct corollary is the following,

Corollary 4.10. If a right-angled Coxeter group acts geometrically on a
special flat, then it is isomorphic to D∞ ×D∞. The D∞ ×D∞ acts on the
special flat like two pairs reflections cross lines. Each pair consists of two
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reflections whose fixed-point sets are parallel axes, and the two pairs of axes
intersect at right angle.

Next we study how the stabilizer subgroups piece together and determine
the gluing angle of the complex.

Theorem 4.11. If a right-angled Coxeter group acts geometrically on the
Croke-Kleiner space and preserves special flats, then the angles θ1, θ2, θ3
must all be π/2.

Proof. Consider a special flat that is a lift of either T1 or T3, without loss
of generality, let it be T1. Each of these flats is adjacent to countably lifts
of T2. The intersections we can label l2,1. The l2,1s are cosets of Z and
therefore are parallel, bi-infinite geodesic rays. Since any nontrivial action,
when restricted to a special flat, is by reflection, there is necessarily an axis
of reflection. If an axis of reflection is at an angle θ 6= 0, π/2 with the l2,1s,
then the reflection takes a copy of l2,1 to its image, which is not a copy of
l2,1. Since the boundary of l2,1 is a pair of cone points, and isometry of the
space induces homeomorphisms on the boundary, we arrive at a contradic-
tion. therefore the axes of reflection is at angle 0 or π/2 with the l2,1s. By
Key Lemma, the reflection axes are two pairs of parallel lines, and one pair
is perpendicular to the other. therefore the reflection axes in a special flat
labeled by T1, T3 is either parallel or perpendicular to the l2,1s. Further-
more, since each reflection fixes a plane, by Lemma 4.5, each reflection is a
(conjugate of a) generator of the group W .

Now consider the special flats that are lifts of the middle torus T2. In
these flats, there are two sets of intersections with neighboring special flats,
labeled accordingly l2,1 and l2,3. All the l2,1s are parallel to one another; all
the l2,3s are parallel to one another. Consider the angle θ between l2,1 and
l2,3. Suppose θ 6= π/2, then the only possibility for a set of four reflection,
configured in the way specified in Key Lemma, can take intersections to
intersections is to have them reflect across the diagonals of the unit parallel-
ograms in the special flat, as shown in Figure 6. In Figure 6, the solid lines
are l2,1 and l2,3, the dashed lines are the axes of reflections.

In this case, it takes a two-letter word to reflect l2,1 onto itself across a
point. We argued in the first paragraph that there are generators that reflect
l2,1 to itself across a point. Since l2,1 is also in the flat that is a lift of T2, the
same generator then act as reflection on the corresponding T2 and its axis
intersects l2,1. However there are already reflection axes intersecting l2,1 as
established in the previous paragraph and neither of them reflect l2,1 onto
itself. Therefore we need to have a third reflection axis that is not parallel
to the two existing axes. This configuration contradicts the Key Lemma.
Therefore, it is not possible to have the intersection angle of l2,1 and l2,3 be
θ 6= π/2.

�
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Figure 6. Gluing Theorem

Remark. The main theorem states that if a right-angled Coxeter group
acts geometrically on a Croke-Kleiner space and preserves special flats, then
the angle must be fixed at π

2 , therefore, the only parameters for the group
action are the length data. We know that changing the length data changes
the G-equivariant homeomorphism type of the boundary [9], it suffices to
verify that changing the length data does not violates the requirement of a
isometric, properly discontinuous, and cocompact action.

Since we can vary the distances between two parallel reflecting axes on
each special flat, we can indeed obtain actions of varied ”translation lengths”
and the action is still geometric, therefore, we can conclude from this and
[9] the following result:

Proposition 4.12. If a right-angled Coxeter group acts geometrically on the

Croke-Kleiner space X̃, then changing the lengths data of the tori changes
the equivariant type of it visual boundary. There are uncountably many
equivariant visual boundaries of of the space.

5. A Concrete Action

As discussed in the introduction, we assumed without verifying that there
does exist a right-angled Coxeter group that acts geometrically on the Croke-
Kleiner space. In this section a specific right-angled Coxeter group is given.
In general there may be more than one right-angled Coxeter groups that
is quasi-isometric to the Croke-Kleiner space. Let W be the right-angled
Coxeter group defined by the following graph:

Consider the Cayley graph of W with respect to this generating set. There
are three ”diamonds”. Each ”diamond” in the defining graph corresponds
to an H = D∞ ×D∞ whose Caley graph is a Z × Z lattice with each edge
being replaced by a double-edge, i.e. a pair of edges that shares starting and
ending vertices. Three diamonds generates three types of such double-edged
lattices. These lattices are identified along double-edged Z−lines according
to the amalgamated product decomposition:

W = H ∗D∞ H ∗D∞ H
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Figure 7. Defining graph of a right-angled Coxeter group

We observe that the Caley graph embeds into the Croke-Kleiner space
as its dual: each vertex of the Cayley graph represent a unit square in the
Croke Kleiner space and two vertices of the Cayley graph are connected by a
pair of double-edges if and only if the corresponding two unit squares share
a common edge in the Croke-Kleiner space. We observe that group W acts
in its own Cayley graph by reflecting through the mid-point of the double
edges, and it is easy to check that the induced action on the Croke-Kleiner
space in which it embeds is indeed a geometric action.
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