QUASISYMMETRIC EMBEDDINGS OF SLIT SIERPINSKI CARPETS

HRANT HAKOBYAN AND WEN-BO LI

ABSTRACT. We study the problem of quasisymmetrically embedding spaces homeomorphic
to the Sierpiriski carpet into the plane. A complete characterization in the case of so called
dyadic slit carpets is given. Every such slit carpet X can be embedded into a “pillowcase
sphere” X which is a metric space homeomorphic to the sphere S?. We show that X can be
quasisymmetrically embedded into the plane if and only if X is quasisymmetric to S? if and
only if X is Ahlfors 2-regular. The main tools used are Schramm’s transboundary modulus
and the quasisymmetric uniformization theorem of Bonk-Kleiner [BK02].
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1. INTRODUCTION

A metric space is said to be a metric carpet if it is homeomorphic to the classical Sierpinsksi
carpet Sy/3, see Fig. 1.1. The study of quasiconformal geometry of metric carpets has
received much attention recently, see e.g., [Bonll, BKM09, BM13, Kle06, Hail5, Merl0,
MW11, MTW13]. This is partly because of problems arising in geometric group theory. One
such problem, the Kapovich-Kleiner conjecture, suggests that if the boundary at infinity
O0sG of a Gromov hyperbolic group G is homeomorphic to the Sierpinski carpet then it is
quasisymmetrically equivalent to a round carpet in the plane R?. Here X C R? is a round
carpet if X is homeomorphic to S;/3 and every complimentary component of X is a round
disk. A recent breakthrough work of Bonk [Bonll] implies that a planar metric carpet
X C R? is quasisymmetric to a round carpet provided some mild natural conditions are
satisfied. In light of Bonk’s theorem, Kapovich-Kleiner conjecture reduces to the question of
quasisymmetrically embedding every carpet boundary 0, G into the plane. This motivates
the main problem considered in this work, which is to understand when a metric carpet can
be quasisymmetrically embedded into the plane.
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1.1. Main results. We study a class of metric carpets called
slit carpets, which are obtained as (Gromov-Hausdorff) limits ‘H--H--H-

of finitely connected slit domains as the number of boundary S oo0oo00 o
components approaches infinity. The quasisymmetric geome- 000 s a =
try of slit carpets was previously studied in [Mer10, MW11, ol o ol |0
MTW13, Hak17]. Specifically, we define the class of dyadic slit S S

Sierpinski carpets, and study the problem of quasisymmetric o[ Jo o[ Jo o[ Jo

embeddability in this class. Our main result completely char- S mE E s EE E
acterizes dyadic slit carpets which can be quasisymmetrically
embedded into the plane. Ficure 1.1. First three

One way of obtaining sufficient conditions for a topologically = steps in the construction of
planar metric space X to admit a quasisymmetric embedding the Sierpinski carpet S; /3-
into the plane is by means of the celebrated uniformization
theorem of Bonk and Kleiner [BK02]. The latter states that a metric space that is home-
omorphic to the 2-sphere S? is in fact quasisymmetric to S? (equipped with the spherical
metric) provided it is Ahlfors 2-regular and is linearly locally connected. Here, linear local
connectivity (or LLC) is a quasisymmetrically invariant condition that is necessary for a
space to be quasisymmetric to S?, see Section 7. Also, a metric measure space (X, d, ) is
Ahlfors @Q-regular if there is a constant C' > 1 such that for every ball B(z,r) C X the
following inequalities hold:

(1.1) C™ @ < u(B(x,r)) < Cre.

In view of Bonk and Kleiner’s theorem, a metric carpet X can be quasisymmetrically em-
bedded into R? if it is possible to construct a metric sphere X containing X which is LLC
and Ahlfors 2-regular. This approach has been often used, see e.g., [Hail5, MW11, CE-B19],
to obtain quasisymmetric embeddings into R? for various classes of carpets and other topo-
logically planar spaces.

For a slit carpet X there is a natural way of constructing a metric sphere XoX by
gluing in topological disks, or “pillowcases”, to the slits of X, see Figure 1.2 and Section 7.2
and then “doubling” the resulting topological disk along the boundary square. The resulting
“pillowcase sphere” X is always linearly locally connected. Therefore, by the discussion
above X can be quasisymmetrically embedded into the plane if X is Ahlfors 2-regular. One
of the main results in this paper is that X is quasisymmetric to S? if and only if it is Ahlfors
2-regular.

Theorem 1.1. Let X be a dyadic slit carpet and X a “pillowcase sphere” corresponding to
X. Then the following conditions are equivalent.

(1) X is quasisymmetric to a subset of R?.
(2) X is quasisymmetric to S*.
(3) X is Ahlfors 2-regular.

As explained above the implication (3) = (2) follows from the theorem of Bonk and
Kleiner. (2) = (1) follows from the construction of X in Section 7.2. Thus, the main
content of Theorem 1.1 is the implication (1) = (3). Equivalently, we will show that X

cannot be quasisymmetrically embedded into the plane if X is not Ahlfors 2-regular.
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FIGURE 1.2. Slit domain D (left) corresponding to the sequence
(1/2,1/2,1/2,1/2) and the corresponding “pillowcase surface” D (right). Every
point of a slit s C D which is not an endpoint gives rise to two points in the closure
D in the inner length metric and therefore topologically is a circle in D. Similarly
every square in D attached to a slit of D can be thought of as a disk obtained from
two copies of a square identified along three edges (hence, a “pillowcase”) that is
glued to D along the other two edges. A “pillowcase sphere” is obtained by gluing
two copies of D along the “outer square” boundary.

Next we define the dyadic slit carpets precisely. Let r = {r;}3°, be a sequence of real
numbers such that r; € (0,1),7 > 0. Construct a nested sequence of domains D; in the
plane corresponding to r as follows. Let Dy denote the domain obtained by removing the
closed vertical slit (interval) of length 7o centered at (1/2,1/2) from (0,1)%. Similarly D; is
obtained by removing from Dy the 4 vertical slits of length r1/2, which are located in the
dyadic squares of generation 1 and whose centers are at the centers of the corresponding
squares. Continuing by induction we obtain a sequence of domains D;,; C D; in the unit
square (0,1)?. Next, consider the sequence of metric spaces S;, where S; is the completion
of the domain D; in its inner path metric dp,. It turns out that the spaces S; converge (in
an appropriate sense) to a metric carpet, which we denote by . = ., and call the dyadic
slit carpet corresponding to r. The following is the main result of this paper.

Theorem 1.2. Suppose ., is a dyadic slit carpet corresponding to a sequence v = {r;}52,.
There is a quasisymmetric embedding of %, into the plane if and only if r € (2.

Theorem 1.2 implies Theorem 1.1. Indeed, as explained above, one only needs to prove
the implication (1) = (3). However, if (1) in Theorem 1.1 holds then by Theorem 1.2 r € 2

On the other hand, in Section 7 it will be shown that if r € ¢2 then X = Yr is Ahlfors
2-regular, which is condltlon (3) in Theorem 1.1. Therefore, (1) = (3) in Theorem 1.1 holds.

1.2. Quasisymmetric embedding and weak tangents. One consequence of Theorem
1.2 is that a metric carpet may not admit a quasisymmetric embedding into the plane even
if locally it “looks” like R2.

Corollary 1.3. There is a metric carpet X such that every weak tangent of X is bi-Lipschitz
to a subset of R? but which cannot be quasisymmetrically embedded into R2.

We refer the reader to [BBIO1] for the definition and the properties of weak tangents and
Gromov-Hausdorff convergence.
To obtain an example as in the statement above, one may pick a sequence r; which

converges to 0 but such that > .77 = oo. Then, since r; — 0, every weak tangent of
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“; is bi-Lipschitz to a subset of the plane, see [Li19]. On the other hand, .. does not
quasisymmetrically embed in R? by Theorem 1.2.

Note that the self-similar slit carpet considered in [Merl0] looks very “non-Euclidean”
on all scales and in fact its weak tangents do not admit bi-Lipschitz embeddings into any
uniformly convex Banach space, see [DE-B19].

1.3. Round carpets. A metric carpet X C C is called a round carpet if every comple-
mentary component of X is a round disk. In [Bonll] Bonk showed that a planar carpet is
quasisymmetric to a round carpet if some natural conditions are satisfied.

A family of sets {K;}3°, in a metric space is said to be uniformly relatively separated if
the relative distances between them are uniformly bounded from below, i.e., if there is a
constant s > 0 such that for ¢ # j the following holds:

dlSt(KZ, KJ)
min{diam(X;), diam(K;)}

A family of Jordan curves {7;}32, in C is said to be a family of uniform quasicircles if
there is a k > 1, such that ~; is a k-quasicircle for every i > 1 (see (2.2) in Section 2 for the
definition of a k-quasicircle).

Bonk’s uniformization theorem [Bonll] states that if the peripheral circles of X C C are
uniformly relatively separated uniform quasicircles then there is quasisymmetric mapping
f: C — C such that f(X) is a round carpet. Combining Theorem 1.2 with Bonk’s theorem
we obtain the following.

Corollary 1.4. Suppose % is a dyadic slit carpet whose peripheral circles are uniformly
relatively separated. Then .7, is quasisymmetric to a round carpet if and only if v € (2.

All the quasisymmetric images of slit carpets have positive H? measure, cf., [Merl0,
Hak17]. Therefore all the round carpets which are quasisymmetric to slit carpets are of
positive area. By [BKMO09, Theorem 1.2], for every positive area round carpet in S? there
are uncountably many conformally distinct round carpets which are all quasisymmetrically
equivalent to it. In particular, for every slit carpet .% such that r € ¢? there are uncount-
ably many round carpets which are not Mobius images of each other, but which are all
quasisymmetrically equivalent to .%;.

It would be interesting to know if there are quasisymmetric self maps of ., which are not
isometries. More generally, what can be said about the group of quasisymmetric automor-
phism of .7 Is it finite, infinite, uncountable? In [Merl10] it was shown that every qua-
sisymmetric self map of the slit carpet .#; corresponding to the constant sequence r; = 1/2
is in fact an isometry.

1.4. Quasisymmetric embeddings and Loewner carpets. From Theorem 1.2 and re-
sults in [Hak17] it follows that property of being quasisymmetrically embeddable into the
plane is related to the Loewner property of Heinonen and Koskela, which we recall next.

Suppose (X,d, ) is an Ahlfors Q-regular metric measure space for some @ > 1. X is
Q-Loewner if there is a function ¢ : (0,00) — (0,00) such that for every pair of continua E
and F' in X the following holds:

modg (T'(E, F; X)) > ¢(A(E, F)),
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where T'(E, F'; X) is the family of curves connecting F and F in X and A(E,F) is the
relative distance between FE and F.

Loewner spaces have been introduced by Heinonen and Koskela in [HK98] and since then
have been studied extensively. We will say a metric space is a Loewner carpet if it is home-
omorphic to the Sierpinski carpet and is @)-Loewner for some ) > 1.

Recently, Cheeger and Eriksson-Bique [CE-B19], using the work of Haisinski [Hail5],
showed that every )-Loewner carpet can be quasisymmetrically embedded into the plane,
provided 1 < @ < 2.

On the other hand, a ()-Loewner space cannot be quasisymmetrically mapped to a space
of Hausdorff dimension less than @) by a theorem of Tyson, see [Hei0l, Theorem, 15.10].
Therefore, a )-Loewner carpet cannot be embedded into the plane if Q) > 2.

The borderline case of 2-Loewner carpets is not yet understood completely. However, in
the case of dyadic slit carpets we have the following.

Corollary 1.5. Every 2-Loewner dyadic slit carpet ., admits a quasisymmetric embedding
into R2.

Proof. Suppose .7, cannot be quasisymmetrically embedded in the plane. By Theorem 1.2 it
follows that r ¢ ¢2. In [Hak17, Theorem 12.3] it was shown that if r ¢ ¢ then the 2-modulus
of curves connecting the right and left “vertical edges” in .7, vanishes. Hence, .#; is not
2-Loewner. 0

In view of Corollary 1.5 and the results in [MTW13] on non-self-similar square carpets,
it is natural to expect that .7 can be quasisymmetrically embedded in R? if and only if
it is 2-Loewner (or even admits a p-Poincaré inequality for all p > 1). To prove this one
needs to show that if r € ¢2 then .7, is 2-Loewner, i.e., there are uniform lower bounds on
mods (I'(E, F; X)) for all compact connected subsets £ and F' in ... We do not establish
such bounds in this paper.

1.5. General slit carpets. General slit carpets corresponding to a sequence of slits {v; }2,
in a rectangle R = [0,a] x [0, b] can be constructed the same way as the dyadic slit carpets.
Namely, if the closures of the slit domains D; = R\ Ué-zlvi in the inner metric converge to
a metric space X that is homeomorphic to the Sierpiriski carpet we call X a (general) slit
carpet.

It is natural to ask what can be said about quasisymmetric embeddability of general slit
carpets. Theorem 1.1 suggests that one may answer this in terms of the “pillowcase” surface
X , which can be constructed for every slit carpet X just like in Section 7.2. Furthermore,
the conditions of being quasisymmetric to round carpets or having Loewner property also
can be formulated for any slit carpet. However, it is not hard to see that the slits need to
be uniformly relatively separated in order for either of these conditions to hold. Therefore,
we believe the following is true.

Conjecture 1.6. If X is a general slit carpet then the following conditions are equivalent:
(1) X is quasisymmetric to a subset of R?.
(2) X is quasisymmetric to S?.
(3) X is Ahlfors 2-regular.

Moreover, if the peripheral circles of X are uniformly relatively separated, the conditions

above are equivalent to the following
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(4) X is quasisymmetric to a round carpet.
(5) X is 2-Loewner.

By Theorem 1.1 and results in [Bonll, Hakl17] the following implications are known to
hold in the case of dyadic slit carpets (relative separation is assumed for (4) and (5).)

(Dyadic) (1)< (2) < (3) < (4) < (5).
On the other hand, for general slit carpets only the implications below are known,

(General) (1) = (2) <= (3), (1)< (4).

1.6. Outline of the proof. To prove the necessity in Theorem 1.2 we show that if r ¢ ¢2
then .7 cannot be quasisymmetrically embedded into the plane. Previously, Merenkov
and Wildrick [MW11] showed that Merenkov’s self-similar carpet .7} 5, which corresponds
to the constant sequence (1/2,1/2,...), cannot be quasisymmetrically embedded into the
plane. This was mainly due to the fact that every quasisymmetric image f(.#,2) C R?
would have to be a porous subset of the plane and thus would have to have zero area.
This would contradict the fact that a quasisymmetric image of .}/, has to be Ahlfors 2-
regular, cf. [Mer10]. However, in the more general case when r ¢ ¢* the image of .%; is not
necessarily porous and thus the argument which applied to .}/, does not work. Instead,
we use Schramm’s transboundary modulus. A key point in our proof is an estimate of
the transboundary modulus which is inspired by similar estimates for the classical modulus
in [Hak17]. Specifically, we show (see Lemma 6.1) that if r ¢ ¢* then the transboundary
modulus of the family of curves connecting the vertical sides of [0,1]? with respect to the
collection of boundary components of the domains D; converges to 0. On the other hand,
we show (see Lemma 5.1) that if there is a quasisymmetric embedding of .#;, into R? then
these transboundary moduli are uniformly bounded from below by a positive constant.
The proof of sufficiency in Theorem 1.2 follows the outline described before Theorem
1.1. The idea is to glue in topological disks along the peripheral circles (or slits) of the slit

carpet and obtain a metric space . = .#, homeomorphic to the 2-sphere S?, see Section
7.2. The construction of . follows the approach in [Hail5]. Since the slits in .%, are
uniformly relatively separated, the metric sphere . can be shown to be linearly locally

connected (see Section 2 for the definitions). Moreover, if r € £2 then 7is Ahlfors 2-regular
and by the uniformization theorem of Bonk and Klemer [BKO2] the “pillowcase sphere”

7 is quasisymmetric to S?. Finally, since .#; is bi-Lipschitz to a subset of 5/ it can be
quasisymmetrically embedded into the sphere (or the plane).

This paper is organized as follows: In Section 2 we provide the necessary background ma-
terial. In Section 3 we define transboundary modulus and study some of its basic properties.
In Section 4 we define the dyadic slit carpets and list some of their basic properties. In par-
ticular we show that transboundary modulus is a quasiconformal quasi-invariant. Sections
5 and 6 are devoted to the proof of necessity in Theorem 1.2, i.e., if r ¢ ¢? then .%, does not
qll\asisymmetrically embed into the plane. In Section 7 we construct the “pillowcase surface”

. and prove the sufficiency in Theorem 1.2.
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2. BACKGROUND

2.1. Notations and Definitions. Given a metric space (X, d), apoint x € X and r > 0, we
denote by B(z, ) the open ball of radius r centered at z, i.e., B(x,r) = {y € X : d(z,y) <r}.
For a ball B = B(z,r) C X and A > 0 we let AB = B(z, Ar).

The closed unit disk and its boundary circle in the Euclidean plane R? will be denoted by
D and JD, respectively.

If £ C X, then the closure, interior and topological boundary of E will be denoted by E,
int(F), and OF, respectively. The diameter of E in X and the distance between subsets E
and I of X are defined as follows:

diam(FE) = sup{d(z,y) : x,y € E},
dist(E, F) = inf{d(z,y) :x € E,y € F}.

Sometimes we will write diamx(F) and distx(F, F') to emphasize the metric with respect
to which these quantities are being calculated.

If diam(FE) > 0 and diam(F') > 0, the relative distance between E and F is

dist(A, B)

min{diam(A), diam(B)}

Let I be a finite or countable indexing set. A family K = { K };c; of subsets of X is called
s-relatively separated for s > 0 if A(K;, K;) > s for every i,j € I,i # j. The sets in K are
said to be uniformly relatively separated if they are s-relatively separated for some s > 0.

Everywhere in this paper we will denote by H? the normalized Hausdorff 2-measure on
X. More specifically, H*(E) = lim._,o H?(E), where

(2.1) A(A,B) =

H2(E) = inf {g;rf EC HB(ar,n), r < 6}
This choice is made so that H? coincides with the 2 dimensional Lebesgue measure £? for
subsets of the plane and for spaces isometric to these.
A metric space (X, d) is said to be Ahlfors 2-reqular, if there is a constant C' > 1 such that

(2.2) r?/C < H*(B(p,7)) < C -7?

for any p € X and 0 < r < diam(X). The constant C' in (2.2) will be called the Ahlfors
reqularity constant of X. Sometimes, when the constants are not important, the upper and
lower estimates of H?(B(z,r)) in (2.2) will be written as

H:(B(z,7)) < r* and H*(B(x,7)) = r?,
respectively, while if both inequalities hold we may write H?(B(xz,7)) < r?, instead of (2.2).

2.2. Quasiconformal and quasisymmetric mappings. Here we define the various classes
of mappings we are going to work with and refer to [Ahl06], [Hei01] and [Vai71] for further
details and properties of these maps.

Let f: X — Y be a homeomorphism between two metric spaces (X, dx) and (Y, dy). For
a point x € X and r > 0, we define the linear dilatation of f at x as

_ Ly(z,7)
(2.3) Hy(w) = Tim sup o)
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where

Ly(z,r) = Sl;p{dy(f(:v% FW)dx(x,y) <rj,
(e, r) = inf{dy (f (), f(y) [ dx (z,y) = 7}

We say that a homeomorphism f : X — Y is (metrically) H-quasiconformal (or H-qc) if

sup He(z) < H
rzeX
for some 1 < H < 0o. A map is quasiconformal if it is H-quasiconformal for some H.
A homeomorphism f : X — Y is called n-quasisymmetric, where n : [0,00) — [0,00) is a
given homeomorphism, if
LI (4l
dy (f(), f(2)) = " \dx(z,2)
for all z,y, 2 € X with x # z. The map f is called quasisymmetric if it is n-quasisymmetric
for some distortion function 7.

Here are some useful properties of quasisymmetric maps, which will be used repeatedly in
the paper, see [Hei01].

Lemma 2.1. Suppose f: X =Y and g : Y — Z are n and n'-quasisymmetric mappings,
respectively.

(1). The composition fog: X — Z is an ' o n-quasisymmetric map.

(2). The inverse f~1:Y — X is a 0-quasisymmetric map, where 6(t) = 1/n(1/t).

(3). If A and B are subsets of X and A C B, then

1 diam(f(A)) 2diam(A)
o (S = diam(7(B) =" (o )

(2.4)
diam(A)

2.3. Finitely connected domains bounded by quasicircles. A quasicircle is a qua-
sisymmetric image of the unit circle 9. The following well-known result of Tukia and
Visala [TV80] provides a complete characterization of quasicircles.

Proposition 2.2. A simple closed curve v C X is a quasicircle if and only if it is doubling
and there is a constant k > 1 such that for every x,y € v we have

(2.5) min{diam(y;), diam(v,)} < k - dx(z,y),
where 1 and 7 are the two subarcs of v with endpoints x and y.

Here, a metric space (X, d) is doubling, if there exists N € N such that every ball of radius
r > 01in X can be covered by at most N balls of radius r/2 in X.

A quasicircle is a k-quasicircle for some k > 1 if it satisfies (2.5). If v is a k-quasicircle and
is also doubling with doubling constant N, then there exists a quasisymmetry f mapping
JdD to 7, where the distortion function of f depends only on £ and N. On the other hand,
if f: 0D — ~ is n-quasisymmetric then ~ satisfies (2.5) with k£ = 2n(1).

A family {v; : ¢ € I} of quasicircles in X is said to consist of uniform quasicircles if there

exists k > 1 such that v, is a k-quasicircle for each i € I.
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2.4. Lengths of curves. A curve in a metric space X is a continuous function v : J — X
where J is an interval in R, i.e., there are real numbers a < b such that J has one of the
following forms [a, b], (a, b), [a,b) or (a,b]. We will often denote the image v(.J) simply by 7.
We say the curve + is rectifiable if it has finite length: () < oco. If every compact subcurve
of v is rectifiable, we say that v is locally rectifiable.

If " is a family of curves in X and f : X — Y is a homeomorphism, we denote by
f)={foy:vel}.

Let E, F' be subsets of X. We say that a curve 7 in X connects E and F if there is a closed
interval [a,b] C R and a continuous path 7 : [a,b] — X such that v(a) € E and y(b) € F.
We will denote by I'(E, F'; X) the family of curves v in X connecting F and F'.

For a rectifiable curve v : J — X, the associated length function, s, : J — [0,1(v)] is
defined by s,(t) = [(v([0,t))). The arclength parametrization of v is the unique 1-Lipschitz
function 7, : [0,1(7)] — X that satisfies the equation v =~ o s,,.

Given a Borel function p : X — [0, 00| we define the p-length of a rectifiable curve v as
follows

2.0 o) = [ots= | v

For f: X — Y and v € X let Ly(z) := limsup,_,, (Ls(x,r)/r), where L¢(x,r) is the
distortion of f at x at scale r defined in Section 2.2. The following result, see [Vai71, Theorem
5.3], will be crucial in the proof of quasi-invariance of transboundary modulus below.

Theorem 2.3. Suppose D C R"™ and f: D — R" is a continuous map. If v € D is a locally
rectifiable curve and f is absolutely continuous on every closed subcurve of «y, then f(v) is
locally rectifiable, and for every Borel function p:Y — [0, 00] we have

(2.7) /M pds < fy(po ) Ly ds.

2.5. Classical Modulus. Let (X, d, 1) be a metric space equipped with a Borel measure p,
and I" be a family of curves in X. A Borel function p : X — [0,00) is called admissible for
I', denoted by p AT, if f,7 pds>1, ¥y €T, where, as in (2.6), ds is the arclength measure
of v. For p > 1, the p-modulus of T" is defined as

mod,,( mf/ pPdu.

pA

When (X, d, ) is locally Ahlfors 2-regular, i.e., if (2.2) is satisfied near every p but only
for r > 0 small enough, and in particular for domains in the plane, we write mod(I") instead
of mody(I).

The following lemma summarizes some of the most important properties of modulus which
will be used in this paper. We say 'y minorizes 'y and write 'y < I's, if every curve v € T'y
contains a subcurve 6 C v which belongs to I';.

Lemma 2.4. Suppose (X,d, ) is a metric measure spaces, p > 1 and I';;i = 1,2,... are
curve families in X. Then
(1) (MonNoToNICITY) mod,(I') < mod
(2) (SUBADDITIVITY) mod (F) <>,m
(3) (OVERFLOWING) mod (Fl) > mod

L), ifT T,
ody(Ty), if T = U5, Ty,
(F ) if Ty < T



3. TRANSBOUNDARY MODULUS

In this section we define the transboundary modulus introduced by Schramm [Sch95], and
further developed and used by Bonk and Merenkov [Bonll, Mer12]. Our definition slightly
differs from those in [Sch95, Bonll, Merl2], and we explain the reasons for this after the
definition. We also prove some properties of the transboundary modulus used below.

3.1. Definition. Let Q be a domain in the plane C and let = { K}, be a finite collection
of compact connected sets in 2.

On the domain 2 we consider the equivalence relation ~y, where x ~g y if and only if
x =y or x and y belong to K; for some i € {1,...,m}.

We denote the corresponding quotient space by

Qe = Q) ~ .

The space Q¢ is equipped with the quotient topology. Let ¢ : €2 — Qx be the quotient map.
Let K = U", K;. The elements of Qx are the points in Q\ K and the points corresponding
to the subsets K;, denoted by k;. Therefore,

Since ¢ is injective on Q \ K, we will think of Q\ K as a subset of Qx and ¢ restricted to
Q\ K as the identity map.

We equip Qx with a measure px, which is equal to the 2-dimensional Hausdorff measure H?
on 2\ K (or area, as per our convention) and to the counting measure on ¢(K) = Qx\ (2\ K),

e = H o+ Z O, -
i—1

A transboundary mass distribution on Qi is an (m + 1)-tuple

0= (PQPI;---va);

where p: Q\ K — [0,00) is a Borel function and p; is a non-negative weight corresponding
to K;. Thus p can also be thought of as a Borel function p : Qx — [0, 00).
The mass of the transboundary mass distribution p is defined by

AQ) = [ ddue= [ pant 4y
(0) £ Jo ;

Let v : J — Qx be a curve where J C R is an interval. Since Qx \ ¢(K) = Q\ K is open
in Q, the set y"1(Q\ K) C R is a relatively open subset of J. Therefore, each connected
component of 712\ K) is an interval J' C J. We say that v is locally rectifiable in Qy if
vy : J = Q\ K is locally rectifiable for every component J' C v 1(Q\ K).

Given a locally rectifiable curve « in ) and a transboundary mass distribution p, the
o-length of v relative IC is

If T is a family of curves in Qx we say that a mass distribution ¢ is admissible for I" relative

IC, and write o A I, if [,(y) > 1 for all v € T".
10



Let I" be a family of curves in Q. The transboundary modulus of T" is

(3.1) Modg x(I') = inf A(p) = inf /gzdu,g.

oAl oAkl

If T is a curve family in {2 then we let
(32) MOdQ’]C(F) = MOdQJC(Q(F))

Our definition of transboundary modulus is slightly more general than those in [Bonll,
Mer10], since we work in the quotient space {x like in [Sch95]. One reason for this is that
unlike [Bon11, Mer10] the mappings we consider cannot be extended to €2, even continuously
(think of the conformal map ¢ : C\ [—i,i] — C\ D). Nevertheless, using the notation
above, for curve families in ) our definition coincides with the definitions of Bonk and
Merenkov. Also, we do not use the ends compactification notation used in [Sch95], since it
is more convenient for our applications (see, e.g., Lemma 6.1) to use the notation similar to
[Bonll, Mer10] where the domain 2 stays fixed, while the families of continua I, change
with n.

Note that with our convention I' may denote either a family of curves in {2 or in ) since
transboundary modulus is defined in both cases.

3.2. Properties of the transboundary modulus. Some of the properties of transbound-
ary modulus can be proved exactly the same way as for the regular modulus of curve families.
However the property of overflowing can be somewhat strengthened. Indeed, we say that
'y minorizes 'y relative IC, and write I'y < I'y, if for every v € I’y there is a curve § € T’y
such that for the images of the curves ¢ and v under the quotient map ¢ : Q — Qx we have

q(0) C q(7) € Q.

Proposition 3.1. Let Q C C be a domain, and K = {K;}™, be a finite collection of pairwise
disjoint compact connected subsets of ). Then the following properties are satisfied:

(1) (MonNoToONICITY) Modg (I") < Modg «(I7), of T C IV,

(2) (SuBADDITIVITY) Modgq ic(I') < 3772, Modo x(T'y), if I'= U2, T

(3) (OVERFLOWING) Modg (I'y) > MOdQ’]C(Fg) if T'y <x Ts.
Proof. To prove the properties of overflowing (and therefore of monotonicity) note that if
I’y <x Iy, then any mass distribution (p, {p;}) admissible for I'; is also admissible for I'y.
So MOdQ K(F1> > MOdQ [C(FQ)

To prove subadditivity assume without loss of generality that »_; Modg x(I';) < co. Fix

€ > 0. Then for every j > 1 there is a mass distribution (p;, {p; }Zil) Ak; T so that

€
AlpsApis}) < Moda(ly) + 5.

Let p = (32; p?)% and p; = (3 pi %)z for 1 <i < m. Then (p,{p:}) is admissible for I
since p > p;, and p; > p;; for every i € {1,...,n} and every j > 1. Therefore,

Moda k(') < A(p, {pi}) Z Modgq i (I

Letting € — 0 finishes the proof. O
11



One of the most important properties of transboundary modulus is that it is a conformal
invariant, cf. [Bonll] [Sch95]. Next we show that transboundary modulus is distorted by at
most a multiplicative constant under a quasiconformal map. This fact is crucial in the proof
of Theorem 1.2.

Theorem 3.2 (Quasiconformal quasi-invariance of transboundary modulus). Suppose Q and

Y are planar domains and K = {K;}™, and K' = { K[}, are finite collections of compact

connected subsets of Q and ', respectively. Let f: (Q)x — (V) be a homeomorphism s.t.
o flo:Q — Q is an H-quasiconformal mapping, H > 1.

Then for every curve family I' C Qx we have

(33) H_IMOdQ’]C(F) S MOdQ/’]C/(f(F>> S HMOde]C(F),
where f(T) ={fo~vy:veT}.

Proof. Since the inverse of an H - quasiconformal map between planar domains is H-
quasiconformal, it is enough to show only the left inequality in (3.3). We first note that
we may assume that for every v € I' the mapping f is absolutely continuous on every closed
subcurve of YN Q \ K, where K = U", K;. For this, let I" be an arbitrary curve family in
Qi and let

'y = {y €T : f is absolutely continuous on every closed subcurve of v N Q\K}.

For every v € I'\I'; there exists a closed (connected) subcurve v, C €2 so that f is not
absolutely continuous on it. Let I'y = {7y C Q : v € T'}, then I'y <x I'\I';. Since f is
quasiconformal we obtain that mod(I'g) = 0 cf., [Vai7l, page 95].

By Proposition 3.1 we have Modg c(I'\I'}) < Modgx(I'y) = mod(I'y) and therefore
Modg (I \ T';) = 0. By subadditivity of transboundary modulus we have Modg (T") =
Modg x(I'1). In particular, since Modg o/ (f(I'1)) < Modg x(f(I')), in order to obtain the
right inequality in (3.3) it is enough to show it for I' = I';. Thus, below we assume that f
is absolutely continuous on every closed subcurve of y N Q\ K for each v € T'.

Suppose ¢ = (p';{p}}) is a mass distribution on 2}, admissible for f(I'). Define o =
(p; {pi}) on Qi as follows,

p(z) = p'(f(z)) - Ly(z), for z € Q,
pi=p,1<i<m.

Since f is absolutely continuous on every subcurve of yNQ\ K we have L,(y) > Ly (fo7y) >
1, see Theorem 2.3. Thus o Ax I' and we have

Modg (') < / PPAH? + Y p} = / (0 0 [’ LT dH> + ) (o))"

Q i—1 Q i=1
<H (/Q(p’ o [Tl dH® + Z(/W)
<H (/Ql(p’)Qd’z'ﬂl2 + Z(p§)2> :

12



The second to last inequality above holds because a quasiconformal map is differentiable
almost every point and for such a point x € Q we have |Df(z)|? = Ly(x)* < H|Js(z)|.
Taking infimum over all ¢ admissible for f(I') we obtain the left inequality in (3.3). O

3.3. Transboundary modulus in finitely connected domains. In general, transbound-
ary modulus cannot be bounded in terms of the classical modulus. The next result however
shows that if Modg «(I") is small enough and K;’s are uniform quasidisks then transboundary
modulus may be bounded from below by the classical modulus. Here we say that a Jordan
domain K C C is a k-quasidisk if OK satisfies (2.5).

Lemma 3.3. Suppose @ C C is a domain and K = {K;}[*, is a collection of (closed)
k-quasidisks in Q. If I' is a family of curves in €} then

(3.4) Modg (') > min{¢;, comod(I")}
where the constants ¢y and co depend only on k.

For the proof of Lemma 3.3 we need the following auxiliary results. The first is the
well-known Bojarski’s Lemma, see, e.g., [Boj88, Lemma 4.2] or [Merl2, Lemma 5.1].

Lemma 3.4 (Bojarski’s Lemma). Let By,...,B,, be any collection of open balls in the
plane, ay,...,a, be non-negative numbers, and A > 1. Then there is a constant Cy > 1
which depends only on X\ such that

/ (Z aiXABi> dxdy < C’,\/ (Z az-XBl) dxdy.
c C \i=1

i=1

The second lemma gives an upper bound for the number of “sufficiently large” quasidisks
intersecting a given set. Similar results appeared previously for disks, cf. [Merl12, Lemma
5.2], or for uniformly relatively separated quasi-round sets [Bonll, Lemma 8.2]. We will
need a version which works for quasidisks which are not necessarily uniformly separated. To
state the next result we need the notion of fat sets due to Schramm [Sch95].

Let 7 > 0. A set K C C is said to be 7-fat if for every x € K and r > 0 such that B(z, )
does not contain K we have

(3.5) H*(B(z,7) N K) > 7H*(B(x,1)).

Lemma 3.5. Suppose E is a planar continuum, and 7 > 0. Let {K;}ic; be a collection of
disjoint T-fat sets in the plane, such that

(3.6) K;NE#( and MdiamK; > diamF,
for some A > 1. Then card(l) < N, where N = N(7,\) depends only on T and \.

Proof. Without loss of generality assume 0 € E. Denote d = diamFE. Since K; intersects F
we have that K; intersects the ball B = B(0,d).

Denote § = A~! and let I; be the collection of i € I such that K; intersects the circle
{I21 = (1 + 9)a).

For i € I pick x; € K;N{|z| = d}. Since K;N{|z] = (1+0)d} # 0 we have that B(z;,dd)
does not contain K; and therefore

13



Since K;’s are disjoint we have

< HBO.A+0D)\BO.(1=0)d) _1(1+8)°—(1=67 4\
e = TH2(B(x:,0d)) T 52 B

To estimate card(I \ 1), observe that since diam(K;) > d /), there is a point y; € K; such
that B(y;,d/)\) does not contain K;. Hence, H*(B(y;, d/)\) N K;) > 7H*(B(y;,d/))). Since
K; C B(0,(1+0)d) for i € I\ I it follows that

H2(B(0,(1+6)d)) (1+N)?

adlND) < By T

Thus card(I) < N(1,A) = 774X+ (1 + 2)?) < (34 N)?/7. O

By [Sch95, Corollary 2.3] every k-quasidisk is 7-fat with 7 depending only on k. Therefore,
by Lemma 3.5 we obtain the following.

Corollary 3.6. Suppose E is a planar continuum. Let k > 1 and {K,;}icr be a collection
of disjoint k-quasidisks in the plane, such that (3.6) holds. Then card(I) < Nj, where
Ny = Ny(k, \) depends only on k and A.

Proof of Lemma 3.3. Since every K; is a k-quasidisk, it follows (see e.g., [Bon11, Proposition
4.3]) that there is a A > 1, which depends only on k, such that K;’s are A-quasi-round, i.e.,
for every i = 1,...,m, there is a ball B; = B(x;, R;) C C such that A™'B; C K; C B;.

Let C = Ny(k,2X), where Ny is the constant from Corollary 3.6. Assume that Modg (') <
1/(8C?). Let € < 1/(8C?), and choose a mass distribution o = (p; p1, ..., p,) that is admis-
sible for T" relative K and such that

Define g : 2 — [0, 00) as follows

DY A e
g (p ; & X2Bm>

To show that g is admissible for I', pick a curve v € T" and let

L ={iel:yNK;#0 and 2\diam(K;) > diam(v)}.
Then

Pi
gds =2 / pds + — / ds
/’\/ N Z RZ YN2B;

1:yN2B;#0

> 2 / pds + Z L ds
N2

R; .
i€I\Ly:ANE 20 - V2B
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For i € I'\ I, we have diamy > 2\diam(K;) > 2\diam(A ™' B;) = 2diamB;. Hence, 7 is not
contained in 2B; and if, additionally, v N K; # () we have that fm2 5. ds > R;. Thus,

(3.7) /gds > 2 / pds + Z i
Y Y&

1E€I\Ly: YyNK; #0

To estimate the right hand side from below observe that p; < \/A(p) < 1/(2C). Moreover,
by Corollary 3.6 we have card(l,) < C. Thus >, p; < : and

1 1
d z>l -5 25
/mpw > azLm)-iz.

i€I\Iy :yNK;#0

since g is admissible for I" relative K. Hence by (3.7) f7 gds > 1 and g is admissible for T'.
Thus we can estimate the modulus as follows,

m 2
2dady + / Pison dzd
1Y Yy o ; RiX2Bm Yy

By Bojarski’s Lemma and because the balls {\7!B;}™, are pairwise disjoint, we have

Pi Pi
E — _ drdy < § — | dzd
/Q<Z RjXQBmQ) Tay >~ /<c <i1 RszBy) ray

1

(3.8) mod(T) < /Q g*drdy < 8 /

Q

Therefore, by (3.8) we obtain

mod(I") < 8 max (1, %) Modg (D). O

4. DyADIC SLIT CARPETS

4.1. Metric carpets. The classical Sierpinski carpet S 3 is the subset of the plane obtained
as follows: Divide the unit square [0, 1]? into nine congruent squares of side-length 1/3 with
disjoint interiors, and let F4 be the closed set obtained by removing the interior of the middle
square from [0, 1]%. Assume that for ¢ > 1 the set FE; has been constructed and is a union
of finitely many closed squares with sidelength 1/3" (and disjoint interiors). Dividing each
such square in F; into 9 subsquares and removing the interiors of middle squares produces
the set F;;; C Ej. The classical Sierpiniski carpet S; /3 is NierF;.

The following theorem of Whyburn [Why58| characterizes the subsets of the plane which

are homeomorphic to S'/3.
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Theorem 4.1 (Whyburn). Suppose D; C S?, i > 0, is a sequence of topological disks
satisfying the conditions:

(1) D;ND; =0, fori# j,

(2) diam(D;) — 0, as i — oo,

(3) (U; Di) = §*.

Then the compact set S*\ U, Di is homeomorphic to the standard Sierpinski carpet Sy 3.

If X is a metric carpet then a topological circle v C X is called a peripheral circle if X \
is connected, i.e., 7y is a non-separating curve in X. From Whyburn’s theorem it follows that
7 C X is a non-separating curve if and only if there is a homeomorphism mapping X to S;/3
and v to the boundary of one of the complementary domains of S;/3 in the plane.

In this section we construct a class of metric carpets called dyadic slit carpets which are
the main object of study in this paper. Dyadic slit carpets include the slit carpet considered
by Merenkov in [Mer10] and were also considered by the first author in [Hak17].

4.2. Dyadic slit domains and the inner metric. Let U = (0,1) x (0,1) in R%. We say
that A C U is a dyadic square of generation n if there exist ,j € {0,1,2,...,2" — 1} such

that
A — L7Z+1 % L’]+1 .
2n° 2n 2n° 2n

We will denote by D,, be the collection of all dyadic squares of generation n and by D =
U D, the collection of all dyadic squares in [0,1]2. The sidelength of a dyadic square A
will be denote by I(A). Thus, A € D, if and only if [(A) = 1/2".

Given a sequence r = {r,}>°, such that r, € (0,1) for n =0,1,2,..., we next construct
the corresponding sequence of “slit” domains S,, = S, (r) in U. For every dyadic square A of

generation n we denote by s(A) the closed vertical slit in A of length 7,l(A), whose center
coincides with the center of A. More precisely, if (z,y) is the center of A € D,, then

T'n T'n
S(8) = {o} x [y = 52w+ o

We say that a slit s = s(A) C A is a slit of generation n if A € D,,, for some n > 0. For
n >0 let

K,=K,(r)={s(A): AeDyU...UD,} and
K,=|Js=J  s(8)
s€Kn i=0 A€D;

be the collection of all slits of generation at most n and their union, respectively. We will
also use the following convention: K_; = ().
Similarly, for the collection of all slits and their union let

K=K(r)={s(A): A eD}and

K:Us: US(A)

se A€eD
16



Finally, let Sy = U and for n > 1, let

(4.1) S, =U\K,_, =U\ U U s(a),

i=0 A€D;

where U is the open unit square as usual. We call .S, the dyadic slit domain of generation
n > 0.

To define the metric carpet .7}, we first let .7, be the completion of the domain .5, in its
path metric dg,. Recall that the path metric dg on a domain 2 C R” is defined by

do(z,y) = inf{l(y) : v C 2 s.t. v(0) = z,7(1) =y},

for all z,y € Q, where I(y) denotes the length of a rectifiable curve v in 2, and the infimum
is over all rectifiable curves in €2 connecting x and y. The metric on ., will be denoted by
dy,. Note that .% is isometric to [0, 1]* equipped with the Euclidean metric.

A boundary component of .#, corresponding to a slit of a dyadic square A € D,, of
generation m < n — 1 will be called a slit of ., of generation m. The slit of generation 0 in
7, will be called the the central slit of .#,,. The boundary component of .#,, corresponding
to 9([0,1]?) will be called the outer square of .7,.

4.3. Dyadic slit carpets. For every m,n € NU {0} with m < n there exists a natural
1-Lipschitz projection
T © I = Fm

obtained by identifying the points on the slits of .7, that correspond to the same point of
Zm- More precisely, if p, g € .7, then 7, ,(p) = Tm.n(q), whenever dy, (p,q) = 0. Note that
all the boundary components of .7, are topological circles. Moreover, every slit of diameter
d > 0 in ., is isometric to the square 9([0,d/2] x [0,d/2]) C R? equipped with the metric
induced from the ¢! norm on R2.

As a topological space, the dyadic slit Sierpinski carpet corresponding to r is defined as
the inverse limit of the system (7, T.), and is denoted by .#;. More explicitly,

(4-2) S = {(p07p17 .- ) :p; € S and p; = 7Ti,i+1(pi+1)} .

If the sequence r is understood from the context, we will denote .7, simply by .7.

The inverse limits of the slits and outer squares of .%, are topological circles and will be
called the slits and outer square of ., respectively. Clearly, the slits are dense in .7, i.e., for
every point p in . and every neighborhood U of p, there exists a slit of .% that intersects
U.

The diameter of each .7, is clearly bounded by 2. If x = (x¢, z1,...) and y = (yo,y1,- - .)
are points in ., we define a distance between them by

dy(z,y) = lim dg, (20, yn)

Since every my, , is 1-Lipschitz, (d, (pn,¢n)) is a non-decreasing bounded sequence, and thus
do(p,q) exists and defines a metric on ..
For each n > 0, there are natural projection maps

T L — S,
Tom I — Z0-
17



To simplify notations, we we will denote the projection 7y of .% onto the unit square by 7.
Thus, for every n > 1 we have

T =Tonom,: S —[0,1]

It was shown in [Hak17] (see also [Merl10]) that the metric space . corresponding to a
general collections of slits {s;}?2, C (0,1)? is homeomorphic to the Sierpinski carpet Sy,
provided the slits are uniformly relatively separated, dense in [0,1]* and diam(s;) — 0 as
i — oo. In fact, the proof of [Merl0, Lemma 2.1] easily generalizes to show that .7 is
homeomorphic to S;/3 even for an arbitrary sequence r = {r;}32,, where 0 < r; < 1.

When talking about a dyadic square of generation n in %/, we mean the subset of
7 Y(A), A € D, which can be thought of as a slit carpet with respect to {r;}32, constructed
in A instead of U. More precisely, we say that T C . is a dyadic square of generation n in
<, if there is a dyadic square A € D,, such that

(4.3) T =Tx =7 (int(A)).
We will also denote
8TA = TA \ Fﬁl(int(A)).

Thus 0T, is the “outer square” of Tx. For all m,n > 0 a dyadic square of generation m in
Y, is the image of a dyadic square of generation m in . under 7,. Note that for m > n
dyadic squares of generation m in .#,, do not contain slits in their interiors and therefore are
isometric to Euclidean squares.

Define a projection map proj(z,y) = z for V (z,y) € [0,1]>. A curve 7 : [a,b] = ¥ in a
slit carpet is called vertical if proj(m(([a,b])) is a point, i.e., the first coordinate of 7(7) is
a constant. A curve which is not vertical is called nonvertical.

The following properties are from [Mer10] and [Hak17]. We state them without proof.

Lemma 4.2. There exists a constant 0 < ¢ < 1, which does not depend of n, such that
Vp € . and 0 < r < diam(.Y) there exists a point ¢ € S, n > 0 such that

(4.4) B(q,cr) C mo(B(p,7)) C B(mu(p),r).

Lemma 4.3. There exists a constant C > 1, independent of n > 1, such that for any Borel
set B C . we have

SH () < HA(E) < OH ().

In addition, . and ., are Ahlfors 2-reqular with the same Ahlfors reqularity constant and
N -doubling with the same doubling constant for every n.

Lemma 4.4. The metric space . equipped with H? is a metric Sierpinski carpet which is
doubling and Ahlfors 2-reqular.

5. A NECESSARY CONDITION FOR A QUASISYMMETRIC EMBEDDING

In this section we provide a necessary condition for the existence of a quasisymmetric em-
bedding of the slit carpet ., into the plane. This condition is an estimate on the transbound-

ary modulus relative to the collection of slits IC,, . Below we use the notations introduced in
18



0,1)% Moreover, we let
L={(0,y):0<y <1} CaU,
(5.1) R={(1l,y):0<y <1} C U,
I = I(L, R; U).

Section 4. In particular, U = (

Thus, T' is the family of curves in U connecting the vertical sides of U.

Lemma 5.1. Suppose there is an n-quasisymmetric embedding f : ./, — R? of the slit carpet
S = S into the plane. Then there is a constant ¢ > 0 which depends only on n such that
for every n > 0 we have

(5.2) Mody k., (T) > c.

To prove Lemma 5.1 we will first show that a quasisymmetric embedding f : . — R?
descends to uniformly quasiconformal mappings f, : ., — R? which are quasisymmetric on
the “outer square”, see Lemma 5.3.

For n > 1, we will denote by II,, and II, the preimages of the dyadic grid of generation n
in U = [0, 1]> under the projections 7y, and 7 in .#, and .7, respectively. In other words
we have

Hn:wQ;< U em) C S, ﬁn:w(U m) c.s.

A€D, A€D,
From the definitions it follows that 7|7 is a homeomorphism. In fact more is true.
Lemma 5.2. For everyn > 0, the mapping ,|g , i.e., the restriction of the projection maps
Tn S — S to 11, is bi-Lipschitz. More precisely, if p,q € II,, then
(53) dﬁ”n (Wn(p)a Wn(Q)) < d,S’(p: Q) < 3d,7n (ﬂ'n(p)a 7Tn(q))

Proof. The left inequality in (5.3) follows from the fact that the sequence d, (7,(p), 7.(q))
is non-decreasing in n.

To obtain the right inequality in (5.3) we recall the following notation from Section 4.3.
Suppose n > 0 and A € D,, is a dyadic square. Let T'= Tx be the corresponding “dyadic
square” in ., i.e., Ta = 7~ 1(int(A)) where the closure is in d» metric.

First, assume that p, g € 0T for some A € D,,. If w(p) and 7(q) belong to the same edge
of the square 0A then

ds(p,q) = ds (7(p), 7(q)) = |7(p) — 7(q)].
On the other hand, if 7(p) and 7(q) belong to different edges of the Euclidean square 0A

then there are at most two corner points z1, 2z of A between 7(p) and 7(¢) on JA such
that

[m(p) — m(21)| + [7(21) — 7(22)| + [7(22) — 7(q)| < 3[m(p) — 7(q)].
Therefore,
do(p,q) < dy(p,21) + dy (21, 22) + do(22,q)
= [m(p) — m(z1)| + |7(21) — 7(22)] + |7(22) — 7(q)]|
< 3ds(m(p), 7(q))

S den (Wn(p), Wn(Q))‘
19



More generally, suppose p,q € II,. Consider a curve  connecting v(0) = m,(p) and
v(1) = m(q) in 7, of minimal length. It is easy to see that such a curve exists, and it
is, in fact, a preimage of a piecewise linear curve in U under Ton- Observe that there are
points (j,7 = 0,...,k+ 1, on v such that: (i) (o = mu(p), Ces1 = Tn(q), (ii) for every j the
two consecutive points ¢; and (j41 belong to the outer boundary of the same dyadic square
Tn(Ta) C S, for some A € D, and (iii) the following equality holds dy, (7,(p), m.(q)) =
Z?:o d,(Cj, Cj+1)- Indeed, this can be achieved by letting ¢; be the “last point of exit” of v
from the (closed) square Ta containing (y = v(0), and continuing by induction.

Finally, letting p; = 7, *({;),7 =0,...,k + 1, and using the estimate above, we obtain

ds(p,q) < Zdy(Pjaij) < Z3dyn(fj, Gi+1) = 3d., (ma(p), ™ (q)),

j=0 =0
which completes the proof. 0

Lemma 5.3. Suppose there is a n-quasisymmetric mapping f : . < R%. Then there are
constants H = H(n), C = C(n) and embeddings f, : /, — R? such that the following
conditions hold:

(a). For every n > 1 the mapping f, is H-quasiconformal.
(b). fulm, s an n'-quasisymmetric mapping for every n, where ' depends only on 7.

Remark 5.4. [t is possible to show that the mappings f, constructed below are in fact
uniformly quasisymmetric on .%,, however the details are not illuminating and we do not
use this fact in the proof of Lemma 5.1.

To prove Lemma 5.3 we will need an extension result of Bonk, cf. Proposition 5.3 in
[Bon11], which is a generalization of the classical Beurling-Ahlfors extension [AB56].

Theorem 5.5. Let D, D’ C C be Jordan domains and f : 0D — 0D’ be an n-quasisymmetric
mapping. Suppose that 0D s a k-quasicircle. If

min{diam(D), diam(D")} < o

for some 6 > 0, then f can be extended to an n'-quasisymmetric mapping F' : D — D’ where
1 only depends on 0,k and n.

The original theorem in [Bon11] deals with Jordan regions in C, however Theorem 5.5 is
easily obtained from Bonk’s result.

Proof of Lemma 5.3. To define the embeddings f, : .4, — R? we will first define them
locally on the lifts of (closed) dyadic squares A C [0, 1]? using Bonk’s extension result above.
The definition will be such that it will be consistent along the common parts of boundaries
of such lifts in .%,.

For n > 0 and a dyadic square A € D,, let T = Tx be the “dyadic square” in .¥ as before.

Observe that if A € D,, then A does not contain a slit of S,, in its interior and hence
the path metric on ., restricted to 7,(T") C .¥, coincides with the Euclidean metric on
A = mopn(m,(T)). Therefore m,(T") is isometric to a closed Jordan domain in C with the
boundary which is a v/2-quasicircle (since it is a square). On this boundary curve we define
the following mapping

foT = flor o (mplor) ™ : Oma(T) — R2.
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Since f is n-quasisymmetric and by Lemma 5.2 7Tn|5% is bi-Lipschitz, it follows that fo7 is
an n;-quasisymmetric map, where 7, (¢) only depends on 7, but not on the particular choice
of the dyadic square (in fact n;(t) = n(3t), but this is not important for us). It follows that
all the conditions of Theorem 5.5 are satisfied and applying it to fo7 and m,(T) we obtain
that for every A € D, there is a quasisymmetric map fI = 12 : 7,(T) — R? which extents
foT. Moreover, fI is ny-quasisymmetric, where 1, depends only on 7;, the quasiconformal
constant of the boundary curves (i.e., v/2 in this case), and diameters of these circles, which
are bounded by diam(.%). Thus, 7, is independent of n as well as of the particular dyadic
square A C Dy, (or T'=Tp).

Combining the functions fI produces a homeomorphism f, : .%, — R?. More precisely,
if € € ., is such that £ € 7,(Ta) for some A € D,, we let

(5.4) &) = f22(8).

Note that f, is well defined since the squares {m,(Ta)}aep, cover .#, and the maps fIa
coincide at points which are common to different dyadic squares of generation n in .%,.

For part (a) note that f, is a homeomorphism, which is 75(1) - quasiconformal at every
point £ € .7, such that m,(§) € int(A) for some A € D,. Next, suppose ¢ € II,, and
0 <7 <27V Denote by (y; and (,, the points at which the quantity | f(¢) — f(¢)| on the
circle 0B(&,r) C ., is maximized and minimized, respectively. Since dg, coincides with
the Euclidean metric on B(§,r) and f,, is a homeomorphism, we have

Ly, (&) _ max{|f(Q) = SO : dy(C.E) < 7} _|f(Cu) — F(E)]
)~ min{fQ) — S dn (GO = 1) 1F(Gn) — F©)
1f(Gn) — FO 17~ FE] (&) ~ FE)
(G = FO] 1 Cn) — FOI 17— @

where (), ¢/, € I1,NOB(&, ) belong to the boundaries of same n-th generation dyadic squares
in ., as (yr and (,,. Therefore we have Hy, (£) < n2(1)*m1(1), and f,, is H-quasiconformal
with H = n3(1)*n,(1) independent of n.

To prove (b) note that f,|m, = f o (m,|m,). Since f is quasisymmetric and 7! is 3-bi-
Lipschitz by Lemma 5.2, it follows that f,|n, is 7’-quasisymmetric with 7" depending only
on 1. 0

Proof of Lemma 5.1. Assume there exists a quasisymmetric embedding f : . — R2. By
Lemma 5.3 there exists an H-quasiconformal map f,, : .4, — R? such that

fn(yn) = ng\ <m0 K;U> C R?
=0

where m,, = 14+4+...44""!, and {int(K], ;)} are pairwise disjoint Jordan domains compactly
contained in the Jordan domain €. Moreover, since f,|m, is 1’-quasisymmetric, with 7’
depending on 7, we have that ), and KJ, ;’s are all k-quasidisks, with & depending only on
n. We denote K}, = {K},q,..., K}, . 1} and K| = U; K], ;.

Observe that we may assume that the image of the “outer square” of .7, under f, is
the “outermost” boundary component v/, of 0, i.e., 7, = fu(my,(0U)) is the boundary of
the unbounded component of R? \ €/,. This can be achieved by post-composing f,, with an

appropriate Mobius transformation of the plane and denoting the resulting mapping by f,
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again. Indeed, we may first post-compose f, with a scaling so that diam( f, (7, Lou))) = 1.
Then, one can compose the result with a reflection in the boundary of a largest disk, of
radius say ay,, inscribed in the domain bounded by f, (., (9U)). Since f(my,(0U)) is a
k’-quasicircle, and therefore is quasi-round, the radius «,, of the disk is bounded from below
by a constant depending only on k’. Therefore, the resulting mapping will be uniformly
quasisymmetric on f,(.#,), since by (2.4) we have

diam (f,(#)) < 17/(2) - diam(fu(mg,,(OU))) = 77'(2).

Let L, = my (L) and R, = my,(R) be the “vertical sides” of .%,. Denote

n

Ly o= (fa(Ln), fu(Rn); 2,).

Thus, I',, is the family of curves in ) connecting the images of lifts of the vertical sides of
the unit square U under f,,. Next we observe that for all n > 1 we have

(55) MOdU,ICn (F) > H_IMOdQ;“;ql (Pn)

Indeed, the identity map id,, from S, = U\ K, equipped with the Euclidean metric to S,
with the inner metric dg, is a local isometry and therefore is 1-quasiconformal. Hence, by
letting ¢,, := f, o id,, we have that ¢, : U\ K,, — Q \ K] is an H-quasiconformal map
between domains in JR2. Moreover, the mapping ¢,, descends to a homeomorphism between
the quotient spaces @, : (U)x, — (?,)ir, and if T' and T, are the images of I and T',, under

the quotient maps, then ¢,(I') = I',. Therefore, by (3.2) and Lemma 3.3 we have that
Mody,x, (I) = Moduy, (I) = H™'Moday i, (6n()) = H™"Moda, i (T).
Since K;LJ’S are k-quasidisks, by Lemma 3.3 we have that
(5.6) Modg: k7 (I'y) > min{eq, comod(I',)}.

Moreover, since ) is a k-quasidisk it is then Loewner (see, e.g., [Bonll, Proposition 7.3])
and therefore

(5.7) mOd(Fn) > ¢(A(fn(Ln)afn(Rn)))7

where 1 depends only on k (and therefore on ). However, if z,, € L, and y,, € R,, are such
that dist(fn(zn), fu(yn)) = dist(fa(Ln), fo(Ry)) then

58 A ) 2 g f (L U R © 5 (") EE)
18t (Tn,Yn

since dist(z,,y,) > 1 and diam(L, U R,) < diam.¥, < 2.
From (5.5),(5.6), (5.7), and (5.8) it follows that for all n > 1 we have

MOdU,ICn (F) > H_l min {017 02’¢ (%) } )

where H, ¢y, co and ¥ depend only on 7. 0]
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6. THE MAIN ESTIMATE

In this section we prove the “only if” direction of Theorem 1.2. For this we estimate the
transboundary modulus of curve families connecting the vertical sides of the unit square in
dyadic slit domains. In particular we show that if the sequence of relative sizes r; of slits is
not square summable then the transboundary modulus approaches 0. Combining with the
results of Section 5 we show that if r ¢ ¢? then there is no QS embedding of .%, into the
plane, cf. Theorem 6.2.

6.1. Estimates for Transboundary Modulus in slit domains. The following lemma is
the main result of this section. Below we use the same notation as in Section 5.

Lemma 6.1. Let T be the collection of all the curves in the unit square [0,1]* connecting
the vertical edges of the square. Suppose r = {r;}32, is a sequence of numbers in (0,1) such
that v ¢ (*. Then for every 0 < € < 1 we have

& 1
(6.1) Moduy ., (T) < JJ(1 — cer?) + 3,
’ 8
1=0
for every n > 0. In particular, if {r;}22, & (* then
n—o0

Before proceeding to the proof we observe that by combining Lemma 6.1 with Lemma 5.1
we obtain the necessity in Theorem 1.2.

Theorem 6.2. If r & (* then there is no quasisymmetric embedding of . = % into the
plane R?.

Proof of Lemma 6.1. The proof below is similar to proofs in [Hak17], where estimates for
the classical modulus in slit domains were obtained. However, transboundary modulus in
general can be larger than the classical modulus and therefore the results in this section do
not follow directly from [Hak17].

6.1.1. Constructing mass distribution of,. We will first prove the estimate (6.1) assuming
that the sequence r; is such that for every ¢ > 0 we have r; = 277 for some j; > 1, and
e = 27 for some m > 1. The estimate is obtained by defining a particular mass distribution
for the pair (U, XC,,). In order to do that, new notations are introduced below.

Let s = s(A) = {z} x [a,b] C U be a slit of length I(s) = b — a. For € € (0,1) the e-collar
of s is the rectangle s¢ = (x,x + €l(s)) x s. Equivalently,

s=s+(0,el(s) ={t+xz:te€sxzec(0es))}

Let t(s), b(s%), £(s%), r(s) be the top, bottom, left, and right sides of s, respectively. Note
that (s¢) = s.

Lemma 6.3. Assume that r, = 1/2" n > 1, and € = 27™ for some natural numbers
{jn}2, and m > 1. Then the e-collars of any two slits s and s' are either disjoint, or one
1s completely contained in the other.

Proof. If s = s(A) = {z} x [a,b] with A € D,,, r, =279 and € = 27™ then s is a rectangle
that can be written as a union of e~! = 2™ dyadic squares of generation N = n + j, + m.

Therefore, if A’ is a dyadic subsquare of A of generation & > N then it is either disjoint
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F1GURE 6.1. Choosing a subset K. from the family of slits IC so that the

e-collars v§ (darker grey rectangles) are disjoint. Note that the slits within

the collars are discarded (not included in ;). In this example ¢ = 1/4 and
ri=1/2fori=0,1,2,3.

from s¢ or is completely contained in it and the same is true for s’ = s(A’). On the other
hand, if A’ is a dyadic square of generation k < N — 1 in A, and s’ = s(A") = {2} x [d/, V],
then the distance between x and 2’ is at least a half of the sidelength of A’ and therefore

|$ _ 1:/| Z %2—]6 Z 2—1—(N—1) — 2—N.

Since the width of s is exactly 27 and (s')¢ is located to the right of the slit s', it follows
that the e collars of s and §' are disjoint if 2/ > x. In the case ' < x there is nothing to
prove since any dyadic square A’ contained in the left half of A does not intersect s¢. O

From the above it follows that it is possible to select an infinite subsequence K, = {s;, }
in IC for which the e-collars are disjoint (i.e., the “smaller” collars which are contained in
“larger” ones are not enumerated). Indeed, we may first enumerate K = {s;}°, so that
the lengths of the slits are non-increasing, i.e., l(s;) > I(s;41) for every i > 0. Then, we
choose the sequence v, := s; by induction. Let vy = s¢. Suppose for n > 1 the sequence
Vo, - - -, Un—1 has been defined, and let v,, = s; , where

n—1
in—min{j:sjﬂ (va> —@}.

Since the set [0, 1]%\ (U?_1 vf) always contains a dyadic square (it has a nonempty interior),

the process never ends and the collars {vf}°, are disjoint by construction. Let
Ke={vi}iZo
denote this subsequence. Moreover, for n > 0 let
Ken=KN K, = {0},

where N, = |[K. N KC,| is the cardinality of KC.,.
For e as above, we denote by B, the e-buffer of the slit v;, the union of the top and bottom
squares in v§. More precisely,

B = {x € v : dist(z, t(vf)) < el(v;) or dist(z, b(v5)) < €l(v;)}.
The sets Of = vf\Bf and RS = U\vf = U\ (B UO5%) will be called the e-omitted and residual

regions of v;, respectively.
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FIGURE 6.2. The white, dark grey and light grey regions in the picture on
the left are the e-omitted, buffer, and residual subsets corresponding to a slit
v; in the unit square U. The second and third pictures show the sets O, B,
and R (in white, dark grey and light grey, respectively) for the ”standard”
collection of slits corresponding to the sequence r; = 1/2,7 > 0. Here e = 1/4,
and n =1, 2.

We also define the e-buffer, omitted and residual sets in U, denoting them by Bf, Of, RS,
respectively, as follows:

(6.3) B,= |J B,

UjEK:Em

o,= J 05, R,=U\(B,UOy).

Ujelce,n

Note that the Of and O, are both open sets, while U\ O is a compact set for every n > 1.
Finally, we define a Borel function pf, : U\K,, — [0, 00] and weights {p, ;} = {pn(s;)} on
IC,, as follows:

€
0, on O,

P 1= XBsURs = XU\Og = {17 on B,i U R;

(6.4)
el(sj), 85 € Kepn,
Pnj = Pn(Sj) = { (s3): 3,

07 8] e ’Cn \ ICE,TL‘
where y g denotes the characteristic function of the set E, and let

0n = (PRi Pty PuN),
where N =14 ...+ 4" is the number of slits of generation at most n. In other words, pf,
vanishes on the omitted set and is equal to 1 otherwise, while p, ; is equal to the width of
the e-collar for each slit s; € K¢, and is 0 otherwise.

6.1.2. Admussibility of of, relative KC,,. Next, we show that g, is admissible for I" relative ,,,
i.e., the estimate

(6.5) i) = [ drds+ 3 puiz .
v YN8 70
holds for every v € T'.
In [Hak17] it was shown that if v € I' does not intersect any of the slits of IC,, then
pS-length of v (i.e., f7 p) is at least 1. The idea and the reason for defining the discrete
weights p,; as in (6.4), is to ensure that when a curve v € I' intersects a slit s; € I, its

“horizontal-length” does not decrease too much. Indeed, if v intersects a slit s; the integral
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f7 p5ds may decrease by the amount equal to the width of the corresponding collar (or more),
but the second term in [, (y) would increase by p,; = €l(s;), which is the “width” of the
collar of s;. This balance implies that the gf-lengths of the curves stays bounded below by
1. Next we provide the details of this argument.

To prove (6.5) we will show that for every v € I' there is a subset 4/ C U, which is not
necessarily a curve, such that

loe (7) > lge (') and Iye (7) > 1.

Pick a curve v € I'. Without loss of generality, we may assume that - is oriented so that it
starts at the left and ends at the right vertical edge of the unit square U. Given two disjoint
subsets F and F in U, we say that v meets E before F if there exists ¢t € (0,1) so that
v(t) € E and v(s) ¢ F for any s < t and v meets E after F if v meet F before E. Before
constructing 7/, we modify 7 inductively around every slit v; € K., as described next.

Denote v_; := . For 0 <1 < N, suppose the subsets 7, ...,v;—1 of U have been defined
and define ~; as follows:

(a) If y Nv; =0, then

Yi-1 if yNO; =0,
Yi =& (o1 \vf) U (t(v) \ v;) if v meets O before r(vf),
Yi—1\Of if v meets Of after r(vf).

(b) If v Nv; # O then
%= (i \ (v Uw)) U (#(0]) \ i),

where t(vf) and r(vf) as before denote the top and the right sides of the collar v, respectively.
This is a finite induction. Thus, we only construct +; for i =0,..., N, and let
/y/ = ’YNG

Note that v C B, URS,. Moreover, at every step of the construction above the curves are
modified so that the projection of v; to the z-axis is equal to the interval [0, 1] except for
possibly finitely many dyadic points. Thus, we have H!(proj,(y;)) = 1, where proj, denotes
the projection onto the z axis in the plane. By induction, we also have H!(proj,(7')) = 1.
Therefore

1 () = [ pids =) = 1) proi, () = HH(0.1) = L

and it would be sufficient to prove that l,c (7) > o (7). Since v = 1 and 7' = yy,, it is
enough to show that for every 0 < i < N, we have

(6.6) Los (Vie1) = lge (7i)-
By the definition of mass distribution ¢, in (6.4), we have

L, (vie) = H'(uaNRY) +H' (i NBY+ Y puy
{7 vic1nv;#0}

Ne
= W R+ H (i nBY+ S pay
J=0 {7 171N #0}
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FIGURE 6.3. A curve 7 = 7_; and its modifications. Since v meets the slit
vy, we have v = 7\ v U (t(v§) \ vo). Since v does not intersect the collars
of v; and w9, we have 75 = 73 = 9. Since v, meets O3 before r3, we have

Y3 =72 \ v§ U (t(v5) \ v3).

Therefore, letting

0, otherwise,

{1, if’yiﬂvj#@,
5@']':

we have
Ne

(6.7) los (Vi1) = H' (v NRE) + Z (7'[1(%‘—1 N B5) +0i1 - ,On,j) .
j=1

Since +; is obtained by modifying 7;-1 only within (v$), we have that the two curves
coincide on the residual set R (note that ¢(vf) is in the complement of R), and therefore

(6.8) H' (i1 NRY) = H (%N R;),
and for every j € {0,..., N} with j # i we have
(6.9) H (it N BS) + iy - g = H% NV BS) + 655+ .

Therefore, by (6.7) and since ¢;; = 0, to prove (6.6) we only need to show the following
estimate

(610) H1<’}/i_1 N Bf) + 57;_1#' * Py Z 7‘[1(’71 N Bf)
Corresponding to the definition of ¢, in (6.4), there are several cases to consider:
(a) If v Nw; =0, ie., 6;—1, = 0, then three possibilities can occur:
- IfyNO; = 0 then v;_1 N BS = ;N BE. In particular H!(v;_1 N Bf) = H(v; N BY).
- If v meets Of before r(v§) then 7;_; connects the top and bottom of one com-
ponent of an e-buffer and therefore H'(y;_1 N BY) > el(v;) = H' (v N BY).
- If v meets Of after r(s¢) then H!(~,_1 N Bf) = H'(v; N BY).
(b) If ;—1 Nv; # () then

H' (i1 N BS) + pri > pri = €l(s;) = H' (H(vf)) = H' (v; N BY).

Thus (6.10) holds in all the cases. Combining (6.7),(6.8),(6.9) and (6.10) we obtain (6.6).

Therefore [, () > 1 and ¢f, is admissible for I" relative IC,,.
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6.1.3. Estimating the mass of of,. To estimate A(of,) note that

Algs) = / 2aH + 3 42,
R, UB, 536k
=H(Ry) + H(By) + D (el(v)))™.

'Ujelce,n
Since €l(v;) is the side length of each of the buffer squares, we have that
H?(BS) = 2(el(vy))? = 2eH(vS)

and therefore

oy A= HRD+G2HE) = HR) et | U

UjEICE;n,
< HA(RE) + 3¢,

where the last inequality holds since v§’s are pairwise disjoint and U;v; C U,

To estimate H?(R¢), we first note that H?(Rg) = 1 —€l(sg) = 1 — erg. Next, assume that
for some n > 1 we have H2(RS,_,) < [[1= (1 — er?). From the definition of R, and the
disjointness properties of the collars we have that

Ry =017\ J =017\ J s

v;eK, si€kn
Next, we observe that if A € D,,, n > 1, then
(6.12) R NA=(R;_;NA)\s(A),

where s(A) is the slit corresponding to A. Indeed, as noted above either s¢(A) is contained
in a previously removed collar, or it does not intersect any such collar. If s¢(A) is contained
in a previously removed collar then by (the proof of) Lemma 6.3, the dyadic square A is
also in the complement of R¢_, and both sides of (6.12) are empty. On the other hand if
sY(A)NRE_; # () then s(A) C RE_; (again by Lemma 6.3) and (6.12) follows from the
definition of R,.

From (6.12) we have that if A € D,, is such that R¢_; N A # () then

H*(RENA) = HA (RS, NA) — H(s(A)).

But
2( € 2 n)? 29,2 292 (e
H2(s(A)) = el(s(A)) = ¢ (52 ) = erZH3(A) = e HA(R;_, N D),
and therefore if s(A), or equivalently A, intersects R,_, then we have
(6.13) HARENA) < (1 —er?)HA(RE_ NA).

Moreover, if ANRE_; = 0 then both sides in (6.12) are empty and (6.13) still holds with
both sides being 0. Summing (6.13) over all dyadic cubes of generation n we obtain

HA(Ry) < (1= erp)H?(Ry, ).
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By induction hypothesis we have H?(R§,) < []-_,(1 —er?), and therefore by (6.11) we obtain
AgS) < H(l —er?) + 3e.
i=0

Since ¢S, is admissible for I relative KC,, we obtain (a stronger version of) inequality (6.1) in
the case when r;’s and € are powers of 2.

To prove (6.1) in general, assume r;,7 > 0, and € are arbitrary numbers in (0,1). Then
there are integers ji > 1 and m > 1 such that 277 < r; < 277+ and 27™ < e < 27+,
Let € =27™ ¢/ =27 and let K/ ,n =0,1,..., be the families of dyadic slits {s'(A)}aep,
correspondmg to the sequence {r 20, cf. Section 4. Defining the omitted, residual and
buffer sets for K, as before, we let (o,)" = ((05,)"; Ph1,-- -, P ) be the mass distribution
corresponding to K/, defined as in (6.4). In particular, the weight corresponding to a slit
s’ = s'(A) € K, is either 0 or is given by p; ; = €'I(s').

Next, define a new mass distribution (f = (0&; {0y }) relative IC,, by setting o,,;, i.e., the
weight of s;, to be the same as the weight of s}, and by letting o¢ to be the restriction of (p5)’
to U\ K,. Just like above, one may see that (¢ is admissible for T" relative K,. Therefore,

Mody x, (I') < < J[—=€0)?) +3¢.
=0

Since er? < 2¢'(2r})? and € < ¢, the last inequality implies (6.1) in general.
Finally, if r ¢ ¢ then the first term in the right hand side of (6.1) approaches 0 as n — oo.
Therefore, for every € > 0 we have that

lim sup Mody ., (I') < 3,

n—o0

which implies (6.2) and completes the proof. O

7. EMBEDDINGS OF SLIT CARPETS
In this section, we prove the “if” direction in Theorem 1.2.

Theorem 7.1. Ifr = {r;}32, € (* then there is a quasisymmetric embedding F : ./ = S <
R2,
The idea is to show that there is a metric 2-sphere .7 which contains .# and is quasisym-

metric to the standard sphere S?. The surface .7 will be obtained by “gluing in” topological
disks along the peripheral circles of the slit carpet .. We will then use Bonk and Kleiner’s
uniformization theorem, cf. [BK02], to show that .# is quasisymmetric to S?.

7.1. Pillowcases. For [ € (0,1) consider the rectangle R = R(l) = [—1,1] x [0,1]. Define
an equivalence relation on dR by identifying (z,0) with (—z,0), and (z,1) with (—z,1) for
x € [0,1]. The quotient space

(7.1) P =2()=R(1)/ ~

can be thought of as a “square pillowcase” with an open “mouth”, which corresponds to

the vertical sides of the rectangle R. For this reason we will call & a square pillowcase of
29



sidelength [. The image of a point z € R in & under the quotient map will be denoted by
[z]. We will also use the following notations:

T(z) = {l0,n)]:0<t <1},
L(z) = {lt0)]:0<t <1},
U(‘@) = {[(t7l)]:0§t§l}v

and will call these sets the top, lower and upper edges of &2, respectively. Clearly, &2 is a
topological disk and 022 is a topological circle corresponding to the vertical sides of R.

As a metric space, & is equipped with the quotient of the Euclidean metric on R, cf.
[BBIO1, Section 3.1].

7.2. The “pillowcase” surface. Next we show how one can glue a pillowcase to a slit of
the slit carpet .. Suppose s C . is a slit such that 7(s) = {z} x [a,a+{] C int(U). Given
a point z = (x,a +t) € 7(s) we will denote by p or p; the preimages of z in . which
are closer to the right or left sides of the outer square of ., respectively. Note that for the
endpoints of the slit s, i.e., for z = (z,a) and z = (z,a + [) we have pI = p; .

Next, for a slit of length [ consider the mapping

g(s) : 02(l) — s
(72) (S
(=1, t)] — p(_x’ath)‘

Clearly g(s) is a homeomorphism and is an isometry when (1) is equipped with the quotient
metric and s with the restriction of the metric in ..

Given a slit carpet . we define the double D.¥ of .# by taking two copies of . and
identifying them along the outer square, i.e., denoting by . and .#5 the two copies of .%
we have

Dy:yluyg/f\l,

where p; € .7 is equivalent to p, € ¥ if they correspond to the same point on 0U. It
follows from Whyburn’s theorem that as a topological space D.¥ is homeomorphic to the
Sierpinski carpet. Moreover, the path metric d & naturally induces a quotient metric on D.7,
which we will denote by dp.».

Let DK denote the collection of all slits in D.#, and let DK = {s;}52, be an enumeration
of the slits. To each slit s; in DK we assign a pillowcase &; of sidelength equal to diam(s;) =
l(s;) and a gluing function g; = g(s;) : 0% — s; as defined in (7.2).

Thus, for every slit carpet we may define the topological space 7 as follows. Consider
the quotient space

(7.3) S = (DL U(UE2) |~

obtained by gluing the pillowcase &; to D.¥ via g;, i.e., for j > 0, if x € 02; then we have
that © ~ g;(x). Thus, we cover every slit with a square pillowcase by gluing its boundary
with the corres/Eonding slit isometrically.

Note that .# is homeomorphic to S? since every £; is a topological disk and D.7 is

homeomorphic to S;/3 by Whyburn’s Theorem 4.1.
30



The space 7 can be equipped with a natural metric studied by Haissinsky in [Hail5].
First, define a quasimetric 7 on .¥ by setting

dD:V(paq% 1fp>q€Dy7
(p,q) = di(p,q), if p,ge 2,i>1,
’ infgesi{dDy(p, C) + dl(<7Q)}7 1fp S Dy,q € gzﬁ

infees; ces, 1di(p, Q) +dpo(C, &) +d;i(€,q)}, ifp€ Piq€ Py i # j,

where d;,7 > 1, denotes the metric on ;. Furthermore, for p,q € 7 let

N-1
(74) dﬁ(]?? q) = inf Z T(C’m Ck-‘rl)a

k=0
where the infimum is taken over all finite chains (p,...,(y in .7 such that Co=p, (v =q.

By Theorem 2.2 in [Hail5], d ; is a metric provided the mappings g; are uniformly quasisym-
metric and diamg, & < Cdiamg,0%7;, for all ¢ > 1. Since in our case the mappings g; are
all isometries, and the inequality above holds with C' = v/2, it follows that d 7 1s indeed a

metric. Moreover, by [Hail5] the restriction of d; to the slit carpet . C . is comparable
to 7, or equivalently, is bi-Lipschitz to dy. Therefore, to show that (., d») quasisymmet-
rically embeds into the plane (or S?) it is enough to show that 7 is quasisymmetric to S2.
For this we will need the following well known uniformization result of Bonk and Kleiner.

Theorem 7.2 (Bonk, Kleiner, [BK02]). Let X be an Ahlfors 2-reqular compact connected
metric space homeomorphic to S*. Then X is quasisymmetric to S? if and only if X is
linearly locally connected.

Recall that a metric space (X, d) is called linearly locally connected (or LLC) if there exists
a constant A > 1 so that for every z € X and r > 0 the following conditions hold:
(LLCY) If 2,y € B(z,r), then there exists a continuum E C B(z, A\r) containing x and y.
(LLCy) If x,y ¢ B(z,7), then there exists a continuum E C X\B(z,7/)) containing = and

Y.

Thus, by Theorem 7.2, to complete the proof we need to show that .7 is LLC and Ahlfors
2-regular.

By [Hail5, Theorem 2.6.2] the metric sphere 7 is LLC provided D.¥ and all &;, i > 1

are uniformly LLC. Since &;’s are all uniformly LLC (with A = 1) it is enough to show that
D.7 is LLC.

Lemma 7.3. The double D. of the slit carpet ¥ = % is LLC.

Proof. Note that if x € B(z,r) and ~,, denotes a length minimizing curve connecting x
and z, then for every p € 7,. we have dpy(z,p) < dpw(z,z) and therefore v,, C B(z,7).
Therefore if x,y € B(z,r) then v,, U~,, C B(z,r) is a continuum connecting x and y.
Therefore D.¥ is LLCY with A = 1.

To show that D.& is LLCy let x,y € D. \ B(z,r), where 277! < < 27" Let

T = U Ta
AEDn+3
TANB (2,2~ (7 13))=£(
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where, as before Ta = 7~!(int(A)) denotes a “dyadic square” in . corresponding to some
dyadic square A C U. Note that, since diam oTx < 2-27"73 for A € D,,,3, we have that for
every p € T" the following inequalities hold:

dDy(p7 ) < 2” (n+3) + dlamTA < 3-27 (n+3) S

r 1 3
B<Z,§> CB( 2n+3) CT’CB(Z,Z’I").

Finally, since z,y € D.¥ \ 01" there is a continuum connecting = and y without intersecting
B(z,r/8). Indeed, if = and y belong to the same “dyadic” square Ta for some A € D, 3
then there is a curve 7,, C Ta connecting x and y, since T is path connected. On the
other hand, if x € Txh and y € Ta/, we can first connect x and y to the “outer squares”
of Ta and T/, respectively, and then we may connect these outer squares to each other
through the preimages of the grids II,,,3, cf. Section 5, without intersecting int(7"). This
gives a continuum ~,, C D.” \ int(7") connecting = and y in general. Therefore ~,, C
D7\ B(z,r/8) and D.¥ is LLCj. O

>I>IOJ

Therefore,

Lemma 7.4. Ifr € (2 then .7 is Ahlfors 2-reqular.

Proof. Note that it is enough to show that the space Z = . U (Uy,c.»P(s;))/ ~ is Ahlfors

regular. Indeed, .7 can be obtained by gluing two copies of Z along the ~outer square by the
identity, and therefore if Z is Ahlfors 2-regular with constant C' then . is Ahlfors regular
with constant 2C'.

Below we use the same notation 7" = Tho C . as above for the dyadic squares in ..

Moreover, for a dyadic square A € D,, in U we let T = T denote the portion of 2 “over”
T, ie.,

T := TA = (Ta U U P(s5))] ~,

where ~ is the same “gluing” equivalence relation as before.
Next, suppose A is a dyadic square of generation n > 1. Then, by Lemma 4.3, there is a
constant C' > 1 which does not depend on n, so that the following inequalities hold:

HYTa) =HA(Ta) + Y HA(P

5;CTA

TPy | DL 2As(A))

k>n | s(A)CTa
A’eDy,

(7.5)

The number of generation k > n slits (or equivalently dyadic subsquares) contained in A is
equal to 4", Therefore, since I(s(A’)) = 1,27% for A’ € Dy, the following equality holds
for every k > n:

(7.6) D U(s(A))? =4 (27,
S(A/)CTA
SjCDk
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Hence, combining (7.5) and (7.6) we obtain
HY(Ta) < CAT 4> 40 F)y =477(C+ Y ).

k>n k>n
Since 27" < diamTx < 27" we obtain that for every A € D the following inequalities hold:
1
4C

where C = C + Y 7~ r?, with C being the constant from Lemma 4.3.
Now, if x € . and 27! < r < 27" then considering a dyadic square T for some
A € D, 3 such that B(x,r/8) NTa # (), we have (like in Lemma 7.3) Tao C B(z,r) and

— (diamTp)? < H*(T) < Cy(diamT,)?,

2

9 9 1 rN? oo
(7.7) H2(B(z,7)) > HA(Ta) > E(ohanaTA) > = ( ) = 55

On the other hand, since w(B(z,r)) C B(n(z),r), there are at most 9 dyadic squares of
generation n intersecting B(w(x),r) such that their union is a Euclidean square in U. It
follows that there are at most 9 dyadic squares Ay, ..., Ag € D,, such that B(z,r) N TAi #+
0,i=1,...9. Let

T =U_Ta,.

Then, we have

78) H2(B(z,r)NT) < 27{2(@) < 9C, (diam(Ty,))? < 9C,(2-27™)?

<9.2*Cr?.

Next, if y € B(x,r) \ T then y belongs to a pillowcase Z(s;) over a slit s; of generation
< n—1, thus I(s;) > 27" > r. Note that if z € 0P(s;) is the closest point in L(s;) to
x € ., we have that Z(s;) N B(z,r) is contained in &(s;) N B(z,r). Therefore

H*(B(z,7) N P(s;)) < H}(B(z,7) N P(s;)) < 7r? /2,

since z € 0 (s;).

On the other hand, from the construction of T it follows that there are at most 8 such “large
pillowcases” Z(s;)’s intersecting T, (two for every “vertical curve” containing a vertical side
of some TAJ. C T). Therefore,

(7.9) H2(B(z,7)\T) < 4712

Combining (7.7), (7.8) and (7.9) we obtain that for every z € . and 0 < r < diam.% the
following holds:

(7.10) HA(B(z,7)) < r’.
Finally, for x € &2, there are three possibilities:

(1). If r < l(s;) then there is a point y € B(x,r) such that B(y,r/2) C &; and therefore
H2(B(z,r) = r?. To get the upper estimate, first note that if B(m ryNs; =10
then H?(B(x,7)) < 7r?. On the other hand, if there exists y € B(z,r) N s;, then
B(x,r) C B(y,2r) and therefore by (7.10) we have H*(B(x,7)) < r?.
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(2). If i(s;) <r < 2I(s;) then

r

H*(B(z,7)) > H*(B(x, 5)) > 2

~ Y

by part (1), since r/2 < [(s;). On the other hand, since 7 is easily seen to
be a metric doubling space, every ball B(z,r) can be covered by N balls B; =
B(z;,7/2) of radius r/2 < I(s;), with N independent of z:. Therefore, H*(B(z,r)) <
SN HA(B(xi,7/2)) < r? by (7.10) and part (1).

(3). If r > 2I(s;) > diam(2?;) then there is a point y € B(z,r) N s; such that

B(y, g) C B(z,r) C B(y,2r).

Therefore H?(B(z,r)) < r? by (7.10). O

Proof of Theorem 7.1. Combining Lemma 7.3 and Lemma 7.4 with Theorem 7.2 we obtain
a quasisymmetric mapping g : . — S?. By [Hail5| d; is comparable to the semi-metric

e~

7 (cf. Section 7.2) when restricted to . C .. Since 7 on . is equal to dy, it follows

that id :

(#,dy) = (£,d ;|~) is a bi-Lipschitz map. Therefore f = goid: ./ — S$* is a

quasisymmetric embedding. 0
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