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Abstract. We study the problem of quasisymmetrically embedding spaces homeomorphic
to the Sierpiński carpet into the plane. A complete characterization in the case of so called
dyadic slit carpets is given. Every such slit carpet X can be embedded into a “pillowcase

sphere” X̂ which is a metric space homeomorphic to the sphere S2. We show that X can be

quasisymmetrically embedded into the plane if and only if X̂ is quasisymmetric to S2 if and

only if X̂ is Ahlfors 2-regular. The main tools used are Schramm’s transboundary modulus
and the quasisymmetric uniformization theorem of Bonk-Kleiner [BK02].
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1. Introduction

A metric space is said to be a metric carpet if it is homeomorphic to the classical Sierpińsksi
carpet S1/3, see Fig. 1.1. The study of quasiconformal geometry of metric carpets has
received much attention recently, see e.g., [Bon11, BKM09, BM13, Kle06, Hai15, Mer10,
MW11, MTW13]. This is partly because of problems arising in geometric group theory. One
such problem, the Kapovich-Kleiner conjecture, suggests that if the boundary at infinity
∂∞G of a Gromov hyperbolic group G is homeomorphic to the Sierpiński carpet then it is
quasisymmetrically equivalent to a round carpet in the plane R2. Here X ⊂ R2 is a round
carpet if X is homeomorphic to S1/3 and every complimentary component of X is a round
disk. A recent breakthrough work of Bonk [Bon11] implies that a planar metric carpet
X ⊂ R2 is quasisymmetric to a round carpet provided some mild natural conditions are
satisfied. In light of Bonk’s theorem, Kapovich-Kleiner conjecture reduces to the question of
quasisymmetrically embedding every carpet boundary ∂∞G into the plane. This motivates
the main problem considered in this work, which is to understand when a metric carpet can
be quasisymmetrically embedded into the plane.
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Figure 1.1. First three
steps in the construction of
the Sierpiński carpet S1/3.

1.1. Main results. We study a class of metric carpets called
slit carpets, which are obtained as (Gromov-Hausdorff) limits
of finitely connected slit domains as the number of boundary
components approaches infinity. The quasisymmetric geome-
try of slit carpets was previously studied in [Mer10, MW11,
MTW13, Hak17]. Specifically, we define the class of dyadic slit
Sierpiński carpets, and study the problem of quasisymmetric
embeddability in this class. Our main result completely char-
acterizes dyadic slit carpets which can be quasisymmetrically
embedded into the plane.

One way of obtaining sufficient conditions for a topologically
planar metric space X to admit a quasisymmetric embedding
into the plane is by means of the celebrated uniformization
theorem of Bonk and Kleiner [BK02]. The latter states that a metric space that is home-
omorphic to the 2-sphere S2 is in fact quasisymmetric to S2 (equipped with the spherical
metric) provided it is Ahlfors 2-regular and is linearly locally connected. Here, linear local
connectivity (or LLC) is a quasisymmetrically invariant condition that is necessary for a
space to be quasisymmetric to S2, see Section 7. Also, a metric measure space (X, d, µ) is
Ahlfors Q-regular if there is a constant C ≥ 1 such that for every ball B(x, r) ⊂ X the
following inequalities hold:

C−1rQ ≤ µ(B(x, r)) ≤ CrQ.(1.1)

In view of Bonk and Kleiner’s theorem, a metric carpet X can be quasisymmetrically em-

bedded into R2 if it is possible to construct a metric sphere X̂ containing X which is LLC
and Ahlfors 2-regular. This approach has been often used, see e.g., [Hai15, MW11, CE-B19],
to obtain quasisymmetric embeddings into R2 for various classes of carpets and other topo-
logically planar spaces.

For a slit carpet X there is a natural way of constructing a metric sphere X̂ ⊃ X by
gluing in topological disks, or “pillowcases”, to the slits of X, see Figure 1.2 and Section 7.2
and then “doubling” the resulting topological disk along the boundary square. The resulting

“pillowcase sphere” X̂ is always linearly locally connected. Therefore, by the discussion

above X can be quasisymmetrically embedded into the plane if X̂ is Ahlfors 2-regular. One

of the main results in this paper is that X̂ is quasisymmetric to S2 if and only if it is Ahlfors
2-regular.

Theorem 1.1. Let X be a dyadic slit carpet and X̂ a “pillowcase sphere” corresponding to
X. Then the following conditions are equivalent.

(1) X is quasisymmetric to a subset of R2.

(2) X̂ is quasisymmetric to S2.

(3) X̂ is Ahlfors 2-regular.

As explained above the implication (3) ⇒ (2) follows from the theorem of Bonk and

Kleiner. (2) ⇒ (1) follows from the construction of X̂ in Section 7.2. Thus, the main
content of Theorem 1.1 is the implication (1) ⇒ (3). Equivalently, we will show that X

cannot be quasisymmetrically embedded into the plane if X̂ is not Ahlfors 2-regular.
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Figure 1.2. Slit domain D (left) corresponding to the sequence

(1/2, 1/2, 1/2, 1/2) and the corresponding “pillowcase surface” D̂ (right). Every
point of a slit s ⊂ ∂D which is not an endpoint gives rise to two points in the closure
D in the inner length metric and therefore topologically is a circle in D. Similarly

every square in D̂ attached to a slit of D can be thought of as a disk obtained from
two copies of a square identified along three edges (hence, a “pillowcase”) that is
glued to D along the other two edges. A “pillowcase sphere” is obtained by gluing
two copies of D̂ along the “outer square” boundary.

Next we define the dyadic slit carpets precisely. Let r = {ri}∞i=0 be a sequence of real
numbers such that ri ∈ (0, 1), i ≥ 0. Construct a nested sequence of domains Di in the
plane corresponding to r as follows. Let D0 denote the domain obtained by removing the
closed vertical slit (interval) of length r0 centered at (1/2, 1/2) from (0, 1)2. Similarly D1 is
obtained by removing from D0 the 4 vertical slits of length r1/2, which are located in the
dyadic squares of generation 1 and whose centers are at the centers of the corresponding
squares. Continuing by induction we obtain a sequence of domains Di+1 ⊂ Di in the unit
square (0, 1)2. Next, consider the sequence of metric spaces Si, where Si is the completion
of the domain Di in its inner path metric dDi . It turns out that the spaces Si converge (in
an appropriate sense) to a metric carpet, which we denote by S = Sr and call the dyadic
slit carpet corresponding to r. The following is the main result of this paper.

Theorem 1.2. Suppose Sr is a dyadic slit carpet corresponding to a sequence r = {ri}∞i=0.
There is a quasisymmetric embedding of Sr into the plane if and only if r ∈ `2.

Theorem 1.2 implies Theorem 1.1. Indeed, as explained above, one only needs to prove
the implication (1)⇒ (3). However, if (1) in Theorem 1.1 holds then by Theorem 1.2 r ∈ `2.

On the other hand, in Section 7 it will be shown that if r ∈ `2 then X̂ = Ŝr is Ahlfors
2-regular, which is condition (3) in Theorem 1.1. Therefore, (1)⇒ (3) in Theorem 1.1 holds.

1.2. Quasisymmetric embedding and weak tangents. One consequence of Theorem
1.2 is that a metric carpet may not admit a quasisymmetric embedding into the plane even
if locally it “looks” like R2.

Corollary 1.3. There is a metric carpet X such that every weak tangent of X is bi-Lipschitz
to a subset of R2 but which cannot be quasisymmetrically embedded into R2.

We refer the reader to [BBI01] for the definition and the properties of weak tangents and
Gromov-Hausdorff convergence.

To obtain an example as in the statement above, one may pick a sequence ri which
converges to 0 but such that

∑
i r

2
i = ∞. Then, since ri → 0, every weak tangent of
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Sr is bi-Lipschitz to a subset of the plane, see [Li19]. On the other hand, Sr does not
quasisymmetrically embed in R2 by Theorem 1.2.

Note that the self-similar slit carpet considered in [Mer10] looks very “non-Euclidean”
on all scales and in fact its weak tangents do not admit bi-Lipschitz embeddings into any
uniformly convex Banach space, see [DE-B19].

1.3. Round carpets. A metric carpet X ⊂ C is called a round carpet if every comple-
mentary component of X is a round disk. In [Bon11] Bonk showed that a planar carpet is
quasisymmetric to a round carpet if some natural conditions are satisfied.

A family of sets {Ki}∞i=1 in a metric space is said to be uniformly relatively separated if
the relative distances between them are uniformly bounded from below, i.e., if there is a
constant s > 0 such that for i 6= j the following holds:

∆(Ki, Kj) =
dist(Ki, Kj)

min{diam(Ki), diam(Kj)}
> s.(1.2)

A family of Jordan curves {γi}∞i=1 in C is said to be a family of uniform quasicircles if
there is a k ≥ 1, such that γi is a k-quasicircle for every i ≥ 1 (see (2.2) in Section 2 for the
definition of a k-quasicircle).

Bonk’s uniformization theorem [Bon11] states that if the peripheral circles of X ⊂ C are
uniformly relatively separated uniform quasicircles then there is quasisymmetric mapping
f : C→ C such that f(X) is a round carpet. Combining Theorem 1.2 with Bonk’s theorem
we obtain the following.

Corollary 1.4. Suppose Sr is a dyadic slit carpet whose peripheral circles are uniformly
relatively separated. Then Sr is quasisymmetric to a round carpet if and only if r ∈ `2.

All the quasisymmetric images of slit carpets have positive H2 measure, cf., [Mer10,
Hak17]. Therefore all the round carpets which are quasisymmetric to slit carpets are of
positive area. By [BKM09, Theorem 1.2], for every positive area round carpet in S2 there
are uncountably many conformally distinct round carpets which are all quasisymmetrically
equivalent to it. In particular, for every slit carpet Sr such that r ∈ `2 there are uncount-
ably many round carpets which are not Möbius images of each other, but which are all
quasisymmetrically equivalent to Sr.

It would be interesting to know if there are quasisymmetric self maps of Sr which are not
isometries. More generally, what can be said about the group of quasisymmetric automor-
phism of Sr? Is it finite, infinite, uncountable? In [Mer10] it was shown that every qua-
sisymmetric self map of the slit carpet Sr corresponding to the constant sequence ri = 1/2
is in fact an isometry.

1.4. Quasisymmetric embeddings and Loewner carpets. From Theorem 1.2 and re-
sults in [Hak17] it follows that property of being quasisymmetrically embeddable into the
plane is related to the Loewner property of Heinonen and Koskela, which we recall next.

Suppose (X, d, µ) is an Ahlfors Q-regular metric measure space for some Q > 1. X is
Q-Loewner if there is a function φ : (0,∞)→ (0,∞) such that for every pair of continua E
and F in X the following holds:

modQ (Γ(E,F ;X)) ≥ φ(∆(E,F )),
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where Γ(E,F ;X) is the family of curves connecting E and F in X and ∆(E,F ) is the
relative distance between E and F .

Loewner spaces have been introduced by Heinonen and Koskela in [HK98] and since then
have been studied extensively. We will say a metric space is a Loewner carpet if it is home-
omorphic to the Sierpiński carpet and is Q-Loewner for some Q ≥ 1.

Recently, Cheeger and Eriksson-Bique [CE-B19], using the work of Haisinski [Hai15],
showed that every Q-Loewner carpet can be quasisymmetrically embedded into the plane,
provided 1 < Q < 2.

On the other hand, a Q-Loewner space cannot be quasisymmetrically mapped to a space
of Hausdorff dimension less than Q by a theorem of Tyson, see [Hei01, Theorem, 15.10].
Therefore, a Q-Loewner carpet cannot be embedded into the plane if Q > 2.

The borderline case of 2-Loewner carpets is not yet understood completely. However, in
the case of dyadic slit carpets we have the following.

Corollary 1.5. Every 2-Loewner dyadic slit carpet Sr admits a quasisymmetric embedding
into R2.

Proof. Suppose Sr cannot be quasisymmetrically embedded in the plane. By Theorem 1.2 it
follows that r /∈ `2. In [Hak17, Theorem 12.3] it was shown that if r /∈ `2 then the 2-modulus
of curves connecting the right and left “vertical edges” in Sr vanishes. Hence, Sr is not
2-Loewner. �

In view of Corollary 1.5 and the results in [MTW13] on non-self-similar square carpets,
it is natural to expect that Sr can be quasisymmetrically embedded in R2 if and only if
it is 2-Loewner (or even admits a p-Poincaré inequality for all p > 1). To prove this one
needs to show that if r ∈ `2 then Sr is 2-Loewner, i.e., there are uniform lower bounds on
mod2 (Γ(E,F ;X)) for all compact connected subsets E and F in Sr. We do not establish
such bounds in this paper.

1.5. General slit carpets. General slit carpets corresponding to a sequence of slits {vi}∞i=1

in a rectangle R = [0, a]× [0, b] can be constructed the same way as the dyadic slit carpets.
Namely, if the closures of the slit domains Di = R \ ∪ij=1vi in the inner metric converge to
a metric space X that is homeomorphic to the Sierpiński carpet we call X a (general) slit
carpet.

It is natural to ask what can be said about quasisymmetric embeddability of general slit
carpets. Theorem 1.1 suggests that one may answer this in terms of the “pillowcase” surface

X̂, which can be constructed for every slit carpet X just like in Section 7.2. Furthermore,
the conditions of being quasisymmetric to round carpets or having Loewner property also
can be formulated for any slit carpet. However, it is not hard to see that the slits need to
be uniformly relatively separated in order for either of these conditions to hold. Therefore,
we believe the following is true.

Conjecture 1.6. If X is a general slit carpet then the following conditions are equivalent:

(1) X is quasisymmetric to a subset of R2.

(2) X̂ is quasisymmetric to S2.

(3) X̂ is Ahlfors 2-regular.

Moreover, if the peripheral circles of X are uniformly relatively separated, the conditions
above are equivalent to the following

5



(4) X is quasisymmetric to a round carpet.
(5) X is 2-Loewner.

By Theorem 1.1 and results in [Bon11, Hak17] the following implications are known to
hold in the case of dyadic slit carpets (relative separation is assumed for (4) and (5).)

(1)⇔ (2)⇔ (3)⇔ (4)⇐ (5).(Dyadic)

On the other hand, for general slit carpets only the implications below are known,

(1)⇐ (2)⇐ (3), (1)⇔ (4).(General)

1.6. Outline of the proof. To prove the necessity in Theorem 1.2 we show that if r /∈ `2

then Sr cannot be quasisymmetrically embedded into the plane. Previously, Merenkov
and Wildrick [MW11] showed that Merenkov’s self-similar carpet S1/2, which corresponds
to the constant sequence (1/2, 1/2, . . .), cannot be quasisymmetrically embedded into the
plane. This was mainly due to the fact that every quasisymmetric image f(S1/2) ⊂ R2

would have to be a porous subset of the plane and thus would have to have zero area.
This would contradict the fact that a quasisymmetric image of S1/2 has to be Ahlfors 2-
regular, cf. [Mer10]. However, in the more general case when r /∈ `2 the image of Sr is not
necessarily porous and thus the argument which applied to S1/2 does not work. Instead,
we use Schramm’s transboundary modulus. A key point in our proof is an estimate of
the transboundary modulus which is inspired by similar estimates for the classical modulus
in [Hak17]. Specifically, we show (see Lemma 6.1) that if r /∈ `2 then the transboundary
modulus of the family of curves connecting the vertical sides of [0, 1]2 with respect to the
collection of boundary components of the domains Di converges to 0. On the other hand,
we show (see Lemma 5.1) that if there is a quasisymmetric embedding of Sr into R2 then
these transboundary moduli are uniformly bounded from below by a positive constant.

The proof of sufficiency in Theorem 1.2 follows the outline described before Theorem
1.1. The idea is to glue in topological disks along the peripheral circles (or slits) of the slit

carpet and obtain a metric space Ŝ = Ŝr homeomorphic to the 2-sphere S2, see Section

7.2. The construction of Ŝ follows the approach in [Hai15]. Since the slits in Sr are

uniformly relatively separated, the metric sphere Ŝ can be shown to be linearly locally

connected (see Section 2 for the definitions). Moreover, if r ∈ `2 then Ŝ is Ahlfors 2-regular
and by the uniformization theorem of Bonk and Kleiner [BK02] the “pillowcase sphere”

Ŝ is quasisymmetric to S2. Finally, since Sr is bi-Lipschitz to a subset of Ŝ , it can be
quasisymmetrically embedded into the sphere (or the plane).

This paper is organized as follows: In Section 2 we provide the necessary background ma-
terial. In Section 3 we define transboundary modulus and study some of its basic properties.
In Section 4 we define the dyadic slit carpets and list some of their basic properties. In par-
ticular we show that transboundary modulus is a quasiconformal quasi-invariant. Sections
5 and 6 are devoted to the proof of necessity in Theorem 1.2, i.e., if r /∈ `2 then Sr does not
quasisymmetrically embed into the plane. In Section 7 we construct the “pillowcase surface”

Ŝ and prove the sufficiency in Theorem 1.2.
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2. Background

2.1. Notations and Definitions. Given a metric space (X, d), a point x ∈ X and r > 0, we
denote by B(x, r) the open ball of radius r centered at x, i.e., B(x, r) = {y ∈ X : d(x, y) < r}.
For a ball B = B(x, r) ⊂ X and λ > 0 we let λB = B(x, λr).

The closed unit disk and its boundary circle in the Euclidean plane R2 will be denoted by
D and ∂D, respectively.

If E ⊂ X, then the closure, interior and topological boundary of E will be denoted by E,
int(E), and ∂E, respectively. The diameter of E in X and the distance between subsets E
and F of X are defined as follows:

diam(E) = sup{d(x, y) : x, y ∈ E},
dist(E,F ) = inf{d(x, y) : x ∈ E, y ∈ F}.

Sometimes we will write diamX(E) and distX(E,F ) to emphasize the metric with respect
to which these quantities are being calculated.

If diam(E) > 0 and diam(F ) > 0, the relative distance between E and F is

∆(A,B) =
dist(A,B)

min{diam(A), diam(B)}
.(2.1)

Let I be a finite or countable indexing set. A family K = {Ki}i∈I of subsets of X is called
s-relatively separated for s > 0 if ∆(Ki, Kj) ≥ s for every i, j ∈ I, i 6= j. The sets in K are
said to be uniformly relatively separated if they are s-relatively separated for some s > 0.

Everywhere in this paper we will denote by H2 the normalized Hausdorff 2-measure on
X. More specifically, H2(E) = limε→0H2

ε (E), where

H2
ε (E) = inf

{
π

2

∞∑
i=1

r2
i : E ⊂

∞⋃
i=1

B(x, ri), ri ≤ ε

}
This choice is made so that H2 coincides with the 2 dimensional Lebesgue measure L2 for
subsets of the plane and for spaces isometric to these.

A metric space (X, d) is said to be Ahlfors 2-regular, if there is a constant C ≥ 1 such that

r2/C ≤ H2(B(p, r)) ≤ C · r2(2.2)

for any p ∈ X and 0 < r ≤ diam(X). The constant C in (2.2) will be called the Ahlfors
regularity constant of X. Sometimes, when the constants are not important, the upper and
lower estimates of H2(B(x, r)) in (2.2) will be written as

H2(B(x, r)) . r2 and H2(B(x, r)) & r2,

respectively, while if both inequalities hold we may write H2(B(x, r)) � r2, instead of (2.2).

2.2. Quasiconformal and quasisymmetric mappings. Here we define the various classes
of mappings we are going to work with and refer to [Ahl06], [Hei01] and [Vai71] for further
details and properties of these maps.

Let f : X → Y be a homeomorphism between two metric spaces (X, dX) and (Y, dY ). For
a point x ∈ X and r > 0, we define the linear dilatation of f at x as

Hf (x) = lim sup
r→0

Lf (x, r)

lf (x, r)
,(2.3)
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where

Lf (x, r) = sup
y
{dY (f(x), f(y)) | dX(x, y) ≤ r},

lf (x, r) = inf
y
{dY (f(x), f(y)) | dX(x, y) ≥ r}.

We say that a homeomorphism f : X → Y is (metrically) H-quasiconformal (or H-qc) if

sup
x∈X

Hf (x) ≤ H

for some 1 ≤ H <∞. A map is quasiconformal if it is H-quasiconformal for some H.
A homeomorphism f : X → Y is called η-quasisymmetric, where η : [0,∞)→ [0,∞) is a

given homeomorphism, if

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(
dX(x, y)

dX(x, z)

)
for all x, y, z ∈ X with x 6= z. The map f is called quasisymmetric if it is η-quasisymmetric
for some distortion function η.

Here are some useful properties of quasisymmetric maps, which will be used repeatedly in
the paper, see [Hei01].

Lemma 2.1. Suppose f : X → Y and g : Y → Z are η and η′-quasisymmetric mappings,
respectively.

(1). The composition f ◦ g : X → Z is an η′ ◦ η-quasisymmetric map.
(2). The inverse f−1 : Y → X is a θ-quasisymmetric map, where θ(t) = 1/η(1/t).
(3). If A and B are subsets of X and A ⊂ B, then

1

2η
(

diam(B)
diam(A)

) ≤ diam(f(A))

diam(f(B))
≤ η

(
2diam(A)

diam(B)

)
.(2.4)

2.3. Finitely connected domains bounded by quasicircles. A quasicircle is a qua-
sisymmetric image of the unit circle ∂D. The following well-known result of Tukia and
Väsälä [TV80] provides a complete characterization of quasicircles.

Proposition 2.2. A simple closed curve γ ⊂ X is a quasicircle if and only if it is doubling
and there is a constant k ≥ 1 such that for every x, y ∈ γ we have

(2.5) min{diam(γ1), diam(γ2)} ≤ k · dX(x, y),

where γ1 and γ2 are the two subarcs of γ with endpoints x and y.

Here, a metric space (X, d) is doubling, if there exists N ∈ N such that every ball of radius
r > 0 in X can be covered by at most N balls of radius r/2 in X.

A quasicircle is a k-quasicircle for some k ≥ 1 if it satisfies (2.5). If γ is a k-quasicircle and
is also doubling with doubling constant N , then there exists a quasisymmetry f mapping
∂D to γ, where the distortion function of f depends only on k and N . On the other hand,
if f : ∂D→ γ is η-quasisymmetric then γ satisfies (2.5) with k = 2η(1).

A family {γi : i ∈ I} of quasicircles in X is said to consist of uniform quasicircles if there
exists k ≥ 1 such that γi is a k-quasicircle for each i ∈ I.

8



2.4. Lengths of curves. A curve in a metric space X is a continuous function γ : J → X
where J is an interval in R, i.e., there are real numbers a < b such that J has one of the
following forms [a, b], (a, b), [a, b) or (a, b]. We will often denote the image γ(J) simply by γ.
We say the curve γ is rectifiable if it has finite length: l(γ) <∞. If every compact subcurve
of γ is rectifiable, we say that γ is locally rectifiable.

If Γ is a family of curves in X and f : X → Y is a homeomorphism, we denote by
f(Γ) = {f ◦ γ : γ ∈ Γ}.

Let E,F be subsets of X. We say that a curve γ in X connects E and F if there is a closed
interval [a, b] ⊂ R and a continuous path γ : [a, b] → X such that γ(a) ∈ E and γ(b) ∈ F .
We will denote by Γ(E,F ;X) the family of curves γ in X connecting E and F .

For a rectifiable curve γ : J → X, the associated length function, sγ : J → [0, l(γ)] is
defined by sγ(t) = l(γ([0, t))). The arclength parametrization of γ is the unique 1-Lipschitz
function γs : [0, l(γ)]→ X that satisfies the equation γ = γs ◦ sγ.

Given a Borel function ρ : X → [0,∞] we define the ρ-length of a rectifiable curve γ as
follows

lρ(γ) :=

∫
γ

ρds =

∫ l(γ)

0

ρ(γs(t))dt.(2.6)

For f : X → Y and x ∈ X let Lf (x) := lim supr→0 (Lf (x, r)/r) , where Lf (x, r) is the
distortion of f at x at scale r defined in Section 2.2. The following result, see [Vai71, Theorem
5.3], will be crucial in the proof of quasi-invariance of transboundary modulus below.

Theorem 2.3. Suppose D ⊂ Rn and f : D → Rn is a continuous map. If γ ∈ D is a locally
rectifiable curve and f is absolutely continuous on every closed subcurve of γ, then f(γ) is
locally rectifiable, and for every Borel function ρ : Y → [0,∞] we have∫

f(γ)

ρds ≤
∫
γ

(ρ ◦ f) · Lf ds.(2.7)

2.5. Classical Modulus. Let (X, d, µ) be a metric space equipped with a Borel measure µ,
and Γ be a family of curves in X. A Borel function ρ : X → [0,∞) is called admissible for
Γ, denoted by ρ ∧ Γ, if

∫
γ
ρ ds ≥ 1, ∀γ ∈ Γ, where, as in (2.6), ds is the arclength measure

of γ. For p ≥ 1, the p-modulus of Γ is defined as

modp(Γ) = inf
ρ∧Γ

∫
X

ρpdµ.

When (X, d, µ) is locally Ahlfors 2-regular, i.e., if (2.2) is satisfied near every p but only
for r > 0 small enough, and in particular for domains in the plane, we write mod(Γ) instead
of mod2(Γ).

The following lemma summarizes some of the most important properties of modulus which
will be used in this paper. We say Γ1 minorizes Γ2 and write Γ1 < Γ2, if every curve γ ∈ Γ2

contains a subcurve δ ⊂ γ which belongs to Γ1.

Lemma 2.4. Suppose (X, d, µ) is a metric measure spaces, p ≥ 1 and Γi, i = 1, 2, . . . are
curve families in X. Then

(1) (Monotonicity) modp(Γ) ≤ modp(Γ
′), if Γ ⊂ Γ′,

(2) (Subadditivity) modp(Γ) ≤
∑

i modp(Γi), if Γ =
⋃∞
i=1 Γi,

(3) (Overflowing) modp(Γ1) ≥ modp(Γ2) if Γ1 < Γ2.
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3. Transboundary Modulus

In this section we define the transboundary modulus introduced by Schramm [Sch95], and
further developed and used by Bonk and Merenkov [Bon11, Mer12]. Our definition slightly
differs from those in [Sch95, Bon11, Mer12], and we explain the reasons for this after the
definition. We also prove some properties of the transboundary modulus used below.

3.1. Definition. Let Ω be a domain in the plane C and let K = {Ki}mi=1 be a finite collection
of compact connected sets in Ω.

On the domain Ω we consider the equivalence relation ∼K, where x ∼K y if and only if
x = y or x and y belong to Ki for some i ∈ {1, . . . ,m}.

We denote the corresponding quotient space by

ΩK = Ω/ ∼K .
The space ΩK is equipped with the quotient topology. Let q : Ω→ ΩK be the quotient map.

Let K = ∪mi=1Ki. The elements of ΩK are the points in Ω\K and the points corresponding
to the subsets Ki, denoted by ki. Therefore,

ki = q(Ki) ∈ ΩK.

Since q is injective on Ω \K, we will think of Ω \K as a subset of ΩK and q restricted to
Ω \K as the identity map.

We equip ΩK with a measure µK, which is equal to the 2-dimensional Hausdorff measureH2

on Ω\K (or area, as per our convention) and to the counting measure on q(K) = ΩK\(Ω\K),

µK = H2bΩ\K+
m∑
i=1

δki .

A transboundary mass distribution on ΩK is an (m+ 1)-tuple

% = (ρ; ρ1, . . . , ρm),

where ρ : Ω \K → [0,∞) is a Borel function and ρi is a non-negative weight corresponding
to Ki. Thus % can also be thought of as a Borel function % : ΩK → [0,∞).

The mass of the transboundary mass distribution % is defined by

A(%) =

∫
%2dµK =

∫
Ω\K

ρ2dH2 +
m∑
i=1

ρ2
i

Let γ : J → ΩK be a curve where J ⊂ R is an interval. Since ΩK \ q(K) = Ω \K is open
in ΩK, the set γ−1(Ω \K) ⊂ R is a relatively open subset of J . Therefore, each connected
component of γ−1(Ω \K) is an interval J ′ ⊂ J . We say that γ is locally rectifiable in ΩK if
γ|J ′ : J ′ → Ω \K is locally rectifiable for every component J ′ ⊂ γ−1(Ω \K).

Given a locally rectifiable curve γ in Ω and a transboundary mass distribution %, the
%-length of γ relative K is

l%(γ) :=

∫
γ∩(Ω\K)

ρ ds+
∑
i : ki∈γ

ρi.

If Γ is a family of curves in ΩK we say that a mass distribution % is admissible for Γ relative
K, and write % ∧K Γ, if l%(γ) ≥ 1 for all γ ∈ Γ.

10



Let Γ be a family of curves in ΩK. The transboundary modulus of Γ is

ModΩ,K(Γ) = inf
%∧KΓ

A(%) = inf
%∧KΓ

∫
%2dµK.(3.1)

If Γ is a curve family in Ω then we let

ModΩ,K(Γ) := ModΩ,K(q(Γ)).(3.2)

Our definition of transboundary modulus is slightly more general than those in [Bon11,
Mer10], since we work in the quotient space ΩK like in [Sch95]. One reason for this is that
unlike [Bon11, Mer10] the mappings we consider cannot be extended to Ω, even continuously
(think of the conformal map φ : C \ [−i, i] → C \ D). Nevertheless, using the notation
above, for curve families in Ω our definition coincides with the definitions of Bonk and
Merenkov. Also, we do not use the ends compactification notation used in [Sch95], since it
is more convenient for our applications (see, e.g., Lemma 6.1) to use the notation similar to
[Bon11, Mer10] where the domain Ω stays fixed, while the families of continua Kn change
with n.

Note that with our convention Γ may denote either a family of curves in Ω or in ΩK since
transboundary modulus is defined in both cases.

3.2. Properties of the transboundary modulus. Some of the properties of transbound-
ary modulus can be proved exactly the same way as for the regular modulus of curve families.
However the property of overflowing can be somewhat strengthened. Indeed, we say that
Γ1 minorizes Γ2 relative K, and write Γ1 <K Γ2, if for every γ ∈ Γ2 there is a curve δ ∈ Γ1

such that for the images of the curves δ and γ under the quotient map q : Ω→ ΩK we have
q(δ) ⊂ q(γ) ⊂ ΩK.

Proposition 3.1. Let Ω ⊂ C be a domain, and K = {Ki}mi=1 be a finite collection of pairwise
disjoint compact connected subsets of Ω. Then the following properties are satisfied:

(1) (Monotonicity) ModΩ,K(Γ) ≤ ModΩ,K(Γ′), if Γ ⊂ Γ′.
(2) (Subadditivity) ModΩ,K(Γ) ≤

∑∞
j=1 ModΩ,K(Γj), if Γ =

⋃∞
j=1 Γj

(3) (Overflowing) ModΩ,K(Γ1) ≥ ModΩ,K(Γ2), if Γ1 <K Γ2.

Proof. To prove the properties of overflowing (and therefore of monotonicity) note that if
Γ1 <K Γ2, then any mass distribution (ρ, {ρi}) admissible for Γ1 is also admissible for Γ2.
So ModΩ,K(Γ1) ≥ ModΩ,K(Γ2).

To prove subadditivity assume without loss of generality that
∑

j ModΩ,K(Γj) < ∞. Fix

ε > 0. Then for every j ≥ 1 there is a mass distribution (ρj, {ρi,j}mi=1) ∧Kj Γj so that

A(ρj, {ρi,j}) < ModΩ,K(Γj) +
ε

2j
.

Let ρ̃ = (
∑

j ρ
2
j)

1
2 and ρ̃i = (

∑
j ρi,j

2)
1
2 for 1 ≤ i ≤ m. Then (ρ̃, {ρ̃i}) is admissible for Γ

since ρ ≥ ρj, and ρ̃i ≥ ρi,j for every i ∈ {1, . . . , n} and every j ≥ 1. Therefore,

ModΩ,K(Γ) ≤ A(ρ̃, {ρ̃i}) <
∞∑
j=1

ModΩ,K(Γj) + ε.

Letting ε→ 0 finishes the proof. �
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One of the most important properties of transboundary modulus is that it is a conformal
invariant, cf. [Bon11] [Sch95]. Next we show that transboundary modulus is distorted by at
most a multiplicative constant under a quasiconformal map. This fact is crucial in the proof
of Theorem 1.2.

Theorem 3.2 (Quasiconformal quasi-invariance of transboundary modulus). Suppose Ω and
Ω′ are planar domains and K = {Ki}mi=1 and K′ = {K ′i}mi=1 are finite collections of compact
connected subsets of Ω and Ω′, respectively. Let f : (Ω)K → (Ω′)K′ be a homeomorphism s.t.

• f(ki) = k′i, i = 1, . . .m.
• f |Ω : Ω→ Ω′ is an H-quasiconformal mapping, H ≥ 1.

Then for every curve family Γ ⊂ ΩK we have

H−1ModΩ,K(Γ) ≤ ModΩ′,K′(f(Γ)) ≤ HModΩ,K(Γ),(3.3)

where f(Γ) = {f ◦ γ : γ ∈ Γ}.

Proof. Since the inverse of an H - quasiconformal map between planar domains is H-
quasiconformal, it is enough to show only the left inequality in (3.3). We first note that
we may assume that for every γ ∈ Γ the mapping f is absolutely continuous on every closed
subcurve of γ ∩ Ω \K, where K = ∪mi=1Ki. For this, let Γ be an arbitrary curve family in
ΩK and let

Γ1 = {γ ∈ Γ : f is absolutely continuous on every closed subcurve of γ ∩ Ω\K}.

For every γ ∈ Γ\Γ1 there exists a closed (connected) subcurve γf ⊂ Ω so that f is not
absolutely continuous on it. Let Γ0 = {γf ⊂ Ω : γ ∈ Γ}, then Γ0 <K Γ\Γ1. Since f is
quasiconformal we obtain that mod(Γ0) = 0 cf., [Vai71, page 95].

By Proposition 3.1 we have ModΩ,K(Γ\Γ1) ≤ ModΩ,K(Γ0) = mod(Γ0) and therefore
ModΩ,K(Γ \ Γ1) = 0. By subadditivity of transboundary modulus we have ModΩ,K(Γ) =
ModΩ,K(Γ1). In particular, since ModΩ′,K′(f(Γ1)) ≤ ModΩ′,K′(f(Γ)), in order to obtain the
right inequality in (3.3) it is enough to show it for Γ = Γ1. Thus, below we assume that f
is absolutely continuous on every closed subcurve of γ ∩ Ω \K for each γ ∈ Γ.

Suppose %′ = (ρ′; {ρ′i}) is a mass distribution on Ω′K′ admissible for f(Γ). Define % =
(ρ; {ρi}) on ΩK as follows,

ρ(x) = ρ′
(
f(x)

)
· Lf (x), for x ∈ Ω,

ρi = ρ′i, 1 ≤ i ≤ m.

Since f is absolutely continuous on every subcurve of γ∩Ω\K we have L%(γ) ≥ L%′(f◦γ) ≥
1, see Theorem 2.3. Thus % ∧K Γ and we have

ModΩ,K(Γ) ≤
∫

Ω

ρ2dH2 +
m∑
i=1

ρ2
i =

∫
Ω

(ρ′ ◦ f)2L2
f dH2 +

m∑
i=1

(ρ′i)
n

≤ H

(∫
Ω

(ρ′ ◦ f)2|Jf | dH2 +
m∑
i=1

(ρ′i)
2

)

≤ H

(∫
Ω′

(ρ′)2 dH2 +
m∑
i=1

(ρ′i)
2

)
.
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The second to last inequality above holds because a quasiconformal map is differentiable
almost every point and for such a point x ∈ Ω we have |Df(x)|2 = Lf (x)2 ≤ H|Jf (x)|.
Taking infimum over all % admissible for f(Γ) we obtain the left inequality in (3.3). �

3.3. Transboundary modulus in finitely connected domains. In general, transbound-
ary modulus cannot be bounded in terms of the classical modulus. The next result however
shows that if ModΩ,K(Γ) is small enough and Ki’s are uniform quasidisks then transboundary
modulus may be bounded from below by the classical modulus. Here we say that a Jordan
domain K ⊂ C is a k-quasidisk if ∂K satisfies (2.5).

Lemma 3.3. Suppose Ω ⊂ C is a domain and K = {Ki}mi=1 is a collection of (closed)
k-quasidisks in Ω. If Γ is a family of curves in Ω then

ModΩ,K(Γ) ≥ min{c1, c2mod(Γ)}(3.4)

where the constants c1 and c2 depend only on k.

For the proof of Lemma 3.3 we need the following auxiliary results. The first is the
well-known Bojarski’s Lemma, see, e.g., [Boj88, Lemma 4.2] or [Mer12, Lemma 5.1].

Lemma 3.4 (Bojarski’s Lemma). Let B1, . . . , Bm be any collection of open balls in the
plane, a1, . . . , am be non-negative numbers, and λ ≥ 1. Then there is a constant Cλ ≥ 1
which depends only on λ such that∫

C

(
m∑
i=1

aiχλBi

)2

dxdy ≤ Cλ

∫
C

(
m∑
i=1

aiχBi

)2

dxdy.

The second lemma gives an upper bound for the number of “sufficiently large” quasidisks
intersecting a given set. Similar results appeared previously for disks, cf. [Mer12, Lemma
5.2], or for uniformly relatively separated quasi-round sets [Bon11, Lemma 8.2]. We will
need a version which works for quasidisks which are not necessarily uniformly separated. To
state the next result we need the notion of fat sets due to Schramm [Sch95].

Let τ > 0. A set K ⊂ C is said to be τ -fat if for every x ∈ K and r > 0 such that B(x, r)
does not contain K we have

H2(B(x, r) ∩K) ≥ τH2(B(x, r)).(3.5)

Lemma 3.5. Suppose E is a planar continuum, and τ > 0. Let {Ki}i∈I be a collection of
disjoint τ -fat sets in the plane, such that

Ki ∩ E 6= ∅ and λdiamKi ≥ diamE,(3.6)

for some λ ≥ 1. Then card(I) ≤ N , where N = N(τ, λ) depends only on τ and λ.

Proof. Without loss of generality assume 0 ∈ E. Denote d = diamE. Since Ki intersects E
we have that Ki intersects the ball B = B(0, d).

Denote δ = λ−1 and let I1 be the collection of i ∈ I such that Ki intersects the circle
{|z| = (1 + δ)d}.

For i ∈ I1 pick xi ∈ Ki ∩{|z| = d}. Since Ki ∩{|z| = (1 + δ)d} 6= ∅ we have that B(xi, δd)
does not contain Ki and therefore

H2(B(xi, δd) ∩Ki) ≥ τH2(B(xi, δd)).

13



Since Ki’s are disjoint we have

cardI1 ≤
H2(B(0, (1 + δ)d) \B(0, (1− δ)d))

τH2(B(xi, δd))
=

1

τ

(1 + δ)2 − (1− δ)2

δ2
=

4λ

τ
.

To estimate card(I \ I1), observe that since diam(Ki) ≥ d/λ, there is a point yi ∈ Ki such
that B(yi, d/λ) does not contain Ki. Hence, H2(B(yi, d/λ) ∩Ki) ≥ τH2(B(yi, d/λ)). Since
Ki ⊂ B(0, (1 + δ)d) for i ∈ I \ I1 it follows that

card(I \ I1) ≤ H
2(B(0, (1 + δ)d))

τH2(B(yi, d/λ))
=

(1 + λ)2

τ
.

Thus card(I) ≤ N(τ, λ) = τ−1(4λ+ (1 + λ)2) ≤ (3 + λ)2/τ . �

By [Sch95, Corollary 2.3] every k-quasidisk is τ -fat with τ depending only on k. Therefore,
by Lemma 3.5 we obtain the following.

Corollary 3.6. Suppose E is a planar continuum. Let k ≥ 1 and {Ki}i∈I be a collection
of disjoint k-quasidisks in the plane, such that (3.6) holds. Then card(I) ≤ N1, where
N1 = N1(k, λ) depends only on k and λ.

Proof of Lemma 3.3. Since every Ki is a k-quasidisk, it follows (see e.g., [Bon11, Proposition
4.3]) that there is a λ ≥ 1, which depends only on k, such that Ki’s are λ-quasi-round, i.e.,
for every i = 1, . . . ,m, there is a ball Bi = B(xi, Ri) ⊂ C such that λ−1Bi ⊂ Ki ⊂ Bi.

Let C = N1(k, 2λ), whereN1 is the constant from Corollary 3.6. Assume that ModΩ,K(Γ) ≤
1/(8C2). Let ε < 1/(8C2), and choose a mass distribution % = (ρ; ρ1, . . . , ρn) that is admis-
sible for Γ relative K and such that

A(%) ≤ ModΩ,K(Γ) + ε ≤ 1

4C2
.

Define g : Ω→ [0,∞) as follows

g = 2

(
ρ+

m∑
i=1

ρi
Ri

χ2Bi∩Ω

)
.

To show that g is admissible for Γ, pick a curve γ ∈ Γ and let

Iγ = {i ∈ I : γ ∩Ki 6= ∅ and 2λdiam(Ki) ≥ diam(γ)}.

Then ∫
γ

gds = 2

∫
γ∩Ω

ρds+
∑

i: γ∩2Bi 6=∅

ρi
Ri

∫
γ∩2Bi

ds


≥ 2

∫
γ∩Ω

ρds+
∑

i∈I\Iγ : γ∩Ki 6=∅

ρi
Ri

∫
γ∩2Bi

ds

 .
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For i ∈ I \ Iγ we have diamγ > 2λdiam(Ki) ≥ 2λdiam(λ−1Bi) = 2diamBi. Hence, γ is not
contained in 2Bi and if, additionally, γ ∩Ki 6= ∅ we have that

∫
γ∩2Bi

ds ≥ Ri. Thus,∫
γ

gds ≥ 2

∫
γ∩Ω

ρds+
∑

i∈I\Iγ : γ∩Ki 6=∅

ρi

 .(3.7)

To estimate the right hand side from below observe that ρi ≤
√
A(ρ) ≤ 1/(2C). Moreover,

by Corollary 3.6 we have card(Iγ) ≤ C. Thus
∑

i∈Iγ ρi ≤
1
2

and∫
γ∩Ω

ρds+
∑

i∈I\Iγ : γ∩Ki 6=∅

ρi ≥ l%(γ)− 1

2
≥ 1

2
,

since % is admissible for Γ relative K. Hence by (3.7)
∫
γ
gds ≥ 1 and g is admissible for Γ.

Thus we can estimate the modulus as follows,

mod(Γ) ≤
∫

Ω

g2 dxdy ≤ 8

∫
Ω

ρ2dxdy +

∫
Ω

(
m∑
i=1

ρi
Ri

χ2Bi∩Ω

)2

dxdy

 .(3.8)

By Bojarski’s Lemma and because the balls {λ−1Bi}mi=1 are pairwise disjoint, we have∫
Ω

(
m∑
i=1

ρi
Ri

χ2Bi∩Ω

)2

dxdy ≤
∫
C

(
m∑
i=1

ρi
Ri

χ2Bi

)2

dxdy

≤ C2λ

∫
C

(
m∑
i=1

ρi
Ri

χλ−1Bi

)2

dxdy

= C2λ

m∑
i=1

(
ρi
Ri

)2

H2(λ−1Bi)

=
πC2λ

λ2

m∑
i=1

ρi
2.

Therefore, by (3.8) we obtain

mod(Γ) ≤ 8 max

(
1,
πC2λ

λ2

)
ModΩ,K(Γ). �

4. Dyadic Slit Carpets

4.1. Metric carpets. The classical Sierpiński carpet S1/3 is the subset of the plane obtained
as follows: Divide the unit square [0, 1]2 into nine congruent squares of side-length 1/3 with
disjoint interiors, and let E1 be the closed set obtained by removing the interior of the middle
square from [0, 1]2. Assume that for i ≥ 1 the set Ei has been constructed and is a union
of finitely many closed squares with sidelength 1/3i (and disjoint interiors). Dividing each
such square in Ei into 9 subsquares and removing the interiors of middle squares produces
the set Ei+1 ⊂ Ei. The classical Sierpiński carpet S1/3 is ∩i∈IEi.

The following theorem of Whyburn [Why58] characterizes the subsets of the plane which
are homeomorphic to S1/3.
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Theorem 4.1 (Whyburn). Suppose Di ⊂ S2, i ≥ 0, is a sequence of topological disks
satisfying the conditions:

(1) Di ∩Dj = ∅, for i 6= j,
(2) diam(Di)→ 0, as i→∞,
(3) (

⋃
iDi) = S2.

Then the compact set S2\
⋃
iDi is homeomorphic to the standard Sierpiński carpet S1/3.

If X is a metric carpet then a topological circle γ ⊂ X is called a peripheral circle if X \ γ
is connected, i.e., γ is a non-separating curve in X. From Whyburn’s theorem it follows that
γ ⊂ X is a non-separating curve if and only if there is a homeomorphism mapping X to S1/3

and γ to the boundary of one of the complementary domains of S1/3 in the plane.
In this section we construct a class of metric carpets called dyadic slit carpets which are

the main object of study in this paper. Dyadic slit carpets include the slit carpet considered
by Merenkov in [Mer10] and were also considered by the first author in [Hak17].

4.2. Dyadic slit domains and the inner metric. Let U = (0, 1) × (0, 1) in R2. We say
that ∆ ⊂ U is a dyadic square of generation n if there exist i, j ∈ {0, 1, 2, . . . , 2n − 1} such
that

∆ =

[
i

2n
,
i+ 1

2n

]
×
[
j

2n
,
j + 1

2n

]
.

We will denote by Dn be the collection of all dyadic squares of generation n and by D =
∪∞n=0Dn the collection of all dyadic squares in [0, 1]2. The sidelength of a dyadic square ∆
will be denote by l(∆). Thus, ∆ ∈ Dn if and only if l(∆) = 1/2n.

Given a sequence r = {rn}∞n=0 such that rn ∈ (0, 1) for n = 0, 1, 2, . . . , we next construct
the corresponding sequence of “slit” domains Sn = Sn(r) in U. For every dyadic square ∆ of
generation n we denote by s(∆) the closed vertical slit in ∆ of length rnl(∆), whose center
coincides with the center of ∆. More precisely, if (x, y) is the center of ∆ ∈ Dn then

s(∆) = {x} ×
[
y − rn

2n+1
, y +

rn
2n+1

]
.

We say that a slit s = s(∆) ⊂ ∆ is a slit of generation n if ∆ ∈ Dn, for some n ≥ 0. For
n ≥ 0 let

Kn = Kn(r) = {s(∆) : ∆ ∈ D0 ∪ . . . ∪ Dn} and

Kn =
⋃
s∈Kn

s =
n⋃
i=0

⋃
∆∈Di

s(∆)

be the collection of all slits of generation at most n and their union, respectively. We will
also use the following convention: K−1 = ∅.

Similarly, for the collection of all slits and their union let

K = K(r) = {s(∆) : ∆ ∈ D} and

K =
⋃
s∈K

s =
⋃

∆∈D

s(∆)
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Finally, let S0 = U and for n ≥ 1, let

Sn = U\Kn−1 = U \
n−1⋃
i=0

⋃
∆∈Di

s(∆),(4.1)

where U is the open unit square as usual. We call Sn the dyadic slit domain of generation
n ≥ 0.

To define the metric carpet Sr, we first let Sn be the completion of the domain Sn in its
path metric dSn . Recall that the path metric dΩ on a domain Ω ⊂ Rn is defined by

dΩ(x, y) := inf{l(γ) : γ ⊂ Ω s.t. γ(0) = x, γ(1) = y},

for all x, y ∈ Ω, where l(γ) denotes the length of a rectifiable curve γ in Ω, and the infimum
is over all rectifiable curves in Ω connecting x and y. The metric on Sn will be denoted by
dSn . Note that S0 is isometric to [0, 1]2 equipped with the Euclidean metric.

A boundary component of Sn corresponding to a slit of a dyadic square ∆ ∈ Dm of
generation m ≤ n− 1 will be called a slit of Sn of generation m. The slit of generation 0 in
Sn will be called the the central slit of Sn. The boundary component of Sn corresponding
to ∂([0, 1]2) will be called the outer square of Sn.

4.3. Dyadic slit carpets. For every m,n ∈ N ∪ {0} with m ≤ n there exists a natural
1-Lipschitz projection

πm,n : Sn → Sm

obtained by identifying the points on the slits of Sn that correspond to the same point of
Sm. More precisely, if p, q ∈ Sn then πm,n(p) = πm,n(q), whenever dSm(p, q) = 0. Note that
all the boundary components of Sn are topological circles. Moreover, every slit of diameter
d > 0 in Sn is isometric to the square ∂([0, d/2] × [0, d/2]) ⊂ R2 equipped with the metric
induced from the `1 norm on R2.

As a topological space, the dyadic slit Sierpiński carpet corresponding to r is defined as
the inverse limit of the system (Sn, πm,n), and is denoted by Sr. More explicitly,

Sr = {(p0, p1, . . .) : pi ∈ Si and pi = πi,i+1(pi+1)} .(4.2)

If the sequence r is understood from the context, we will denote Sr simply by S .
The inverse limits of the slits and outer squares of Sn are topological circles and will be

called the slits and outer square of S , respectively. Clearly, the slits are dense in S , i.e., for
every point p in S and every neighborhood U of p, there exists a slit of S that intersects
U .

The diameter of each Sn is clearly bounded by 2. If x = (x0, x1, . . .) and y = (y0, y1, . . .)
are points in S , we define a distance between them by

dS (x, y) = lim
n→∞

dSn(xn, yn)

Since every πm,n is 1-Lipschitz, (dSn(pn, qn)) is a non-decreasing bounded sequence, and thus
dS (p, q) exists and defines a metric on S .

For each n ≥ 0, there are natural projection maps

πn : S → Sn,

π0,n : Sn → S0.
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To simplify notations, we we will denote the projection π0 of S onto the unit square by π.
Thus, for every n ≥ 1 we have

π = π0,n ◦ πn : S → [0, 1]2.

It was shown in [Hak17] (see also [Mer10]) that the metric space S corresponding to a
general collections of slits {si}∞i=1 ⊂ (0, 1)2 is homeomorphic to the Sierpiński carpet S1/3,
provided the slits are uniformly relatively separated, dense in [0, 1]2 and diam(si) → 0 as
i → ∞. In fact, the proof of [Mer10, Lemma 2.1] easily generalizes to show that Sr is
homeomorphic to S1/3 even for an arbitrary sequence r = {ri}∞i=0, where 0 < ri < 1.

When talking about a dyadic square of generation n in S , we mean the subset of
π−1(∆),∆ ∈ Dn, which can be thought of as a slit carpet with respect to {ri}∞i=n constructed
in ∆ instead of U. More precisely, we say that T ⊂ S is a dyadic square of generation n in
S , if there is a dyadic square ∆ ∈ Dn such that

T = T∆ = π−1(int(∆)).(4.3)

We will also denote

∂T∆ := T∆ \ π−1(int(∆)).

Thus ∂T∆ is the “outer square” of T∆. For all m,n ≥ 0 a dyadic square of generation m in
Sn is the image of a dyadic square of generation m in S under πn. Note that for m > n
dyadic squares of generation m in Sn do not contain slits in their interiors and therefore are
isometric to Euclidean squares.

Define a projection map proj(x, y) = x for ∀ (x, y) ∈ [0, 1]2. A curve γ : [a, b] → S in a
slit carpet is called vertical if proj(π(γ([a, b])) is a point, i.e., the first coordinate of π(γ) is
a constant. A curve which is not vertical is called nonvertical.

The following properties are from [Mer10] and [Hak17]. We state them without proof.

Lemma 4.2. There exists a constant 0 < c < 1, which does not depend of n, such that
∀p ∈ S and 0 < r < diam(S ) there exists a point q ∈ Sn, n ≥ 0 such that

B(q, cr) ⊂ πn(B(p, r)) ⊂ B(πn(p), r).(4.4)

Lemma 4.3. There exists a constant C ≥ 1, independent of n ≥ 1, such that for any Borel
set E ⊂ S we have

1

C
H2(πn(E)) ≤ H2(E) ≤ CH2(πn(E)).

In addition, S and Sn are Ahlfors 2-regular with the same Ahlfors regularity constant and
N-doubling with the same doubling constant for every n.

Lemma 4.4. The metric space S equipped with H2 is a metric Sierpiński carpet which is
doubling and Ahlfors 2-regular.

5. A Necessary Condition for a Quasisymmetric Embedding

In this section we provide a necessary condition for the existence of a quasisymmetric em-
bedding of the slit carpet Sr into the plane. This condition is an estimate on the transbound-
ary modulus relative to the collection of slits Kn . Below we use the notations introduced in
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Section 4. In particular, U = (0, 1)2. Moreover, we let

L = {(0, y) : 0 ≤ y ≤ 1} ⊂ ∂U,
R = {(1, y) : 0 ≤ y ≤ 1} ⊂ ∂U,
Γ = Γ(L,R;U).

(5.1)

Thus, Γ is the family of curves in U connecting the vertical sides of U.

Lemma 5.1. Suppose there is an η-quasisymmetric embedding f : Sr ↪→ R2 of the slit carpet
S = Sr into the plane. Then there is a constant c > 0 which depends only on η such that
for every n > 0 we have

ModU,Kn(Γ) ≥ c.(5.2)

To prove Lemma 5.1 we will first show that a quasisymmetric embedding f : S ↪→ R2

descends to uniformly quasiconformal mappings fn : Sn ↪→ R2 which are quasisymmetric on
the “outer square”, see Lemma 5.3.

For n ≥ 1, we will denote by Πn and Π̃n the preimages of the dyadic grid of generation n
in U = [0, 1]2 under the projections π0,n and π in Sn and S , respectively. In other words
we have

Πn = π−1
0,n

( ⋃
∆∈Dn

∂∆

)
⊂ Sn, Π̃n = π−1

( ⋃
∆∈Dn

∂∆

)
⊂ S .

From the definitions it follows that πn|Π̃n is a homeomorphism. In fact more is true.

Lemma 5.2. For every n ≥ 0, the mapping πn|Π̃n, i.e., the restriction of the projection maps

πn : S → Sn to Π̃n is bi-Lipschitz. More precisely, if p, q ∈ Π̃n then

dSn(πn(p), πn(q)) ≤ dS (p, q) ≤ 3dSn(πn(p), πn(q)).(5.3)

Proof. The left inequality in (5.3) follows from the fact that the sequence dSn(πn(p), πn(q))
is non-decreasing in n.

To obtain the right inequality in (5.3) we recall the following notation from Section 4.3.
Suppose n ≥ 0 and ∆ ∈ Dn is a dyadic square. Let T = T∆ be the corresponding “dyadic
square” in S , i.e., T∆ = π−1(int(∆)) where the closure is in dS metric.

First, assume that p, q ∈ ∂T∆ for some ∆ ∈ Dn. If π(p) and π(q) belong to the same edge
of the square ∂∆ then

dS (p, q) = dS0(π(p), π(q)) = |π(p)− π(q)|.
On the other hand, if π(p) and π(q) belong to different edges of the Euclidean square ∂∆
then there are at most two corner points z1, z2 of ∂∆ between π(p) and π(q) on ∂∆ such
that

|π(p)− π(z1)|+ |π(z1)− π(z2)|+ |π(z2)− π(q)| ≤ 3|π(p)− π(q)|.
Therefore,

dS (p, q) ≤ dS (p, z1) + dS (z1, z2) + dS (z2, q)

= |π(p)− π(z1)|+ |π(z1)− π(z2)|+ |π(z2)− π(q)|
≤ 3dS0(π(p), π(q))

≤ 3dSn(πn(p), πn(q)).
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More generally, suppose p, q ∈ Π̃n. Consider a curve γ connecting γ(0) = πn(p) and
γ(1) = πn(q) in Sn of minimal length. It is easy to see that such a curve exists, and it
is, in fact, a preimage of a piecewise linear curve in U under π0,n. Observe that there are
points ζj, j = 0, . . . , k + 1, on γ such that: (i) ζ0 = πn(p), ζk+1 = πn(q), (ii) for every j the
two consecutive points ζj and ζj+1 belong to the outer boundary of the same dyadic square
πn(T∆) ⊂ Sn for some ∆ ∈ Dn, and (iii) the following equality holds dSn(πn(p), πn(q)) =∑k

j=0 dSn(ζj, ζj+1). Indeed, this can be achieved by letting ζ1 be the “last point of exit” of γ

from the (closed) square T∆ containing ζ0 = γ(0), and continuing by induction.
Finally, letting pj = π−1

n (ζj), j = 0, . . . , k + 1, and using the estimate above, we obtain

dS (p, q) ≤
k∑
j=0

dS (pj, pj+1) ≤
k∑
j=0

3dSn(ζj, ζj+1) = 3dSn(πn(p), πn(q)),

which completes the proof. �

Lemma 5.3. Suppose there is a η-quasisymmetric mapping f : S ↪→ R2. Then there are
constants H = H(η), C = C(η) and embeddings fn : Sn ↪→ R2 such that the following
conditions hold:

(a). For every n ≥ 1 the mapping fn is H-quasiconformal.
(b). fn|Πn is an η′-quasisymmetric mapping for every n, where η′ depends only on η.

Remark 5.4. It is possible to show that the mappings fn constructed below are in fact
uniformly quasisymmetric on Sn, however the details are not illuminating and we do not
use this fact in the proof of Lemma 5.1.

To prove Lemma 5.3 we will need an extension result of Bonk, cf. Proposition 5.3 in
[Bon11], which is a generalization of the classical Beurling-Ahlfors extension [AB56].

Theorem 5.5. Let D,D′ ⊂ C be Jordan domains and f : ∂D → ∂D′ be an η-quasisymmetric
mapping. Suppose that ∂D is a k-quasicircle. If

min{diam(D), diam(D′)} ≤ δ

for some δ > 0, then f can be extended to an η′-quasisymmetric mapping F : D → D′ where
η′ only depends on δ, k and η.

The original theorem in [Bon11] deals with Jordan regions in Ĉ, however Theorem 5.5 is
easily obtained from Bonk’s result.

Proof of Lemma 5.3. To define the embeddings fn : Sn ↪→ R2 we will first define them
locally on the lifts of (closed) dyadic squares ∆ ⊂ [0, 1]2 using Bonk’s extension result above.
The definition will be such that it will be consistent along the common parts of boundaries
of such lifts in Sn.

For n ≥ 0 and a dyadic square ∆ ∈ Dn let T = T∆ be the “dyadic square” in S as before.
Observe that if ∆ ∈ Dn then ∆ does not contain a slit of Sn in its interior and hence

the path metric on Sn restricted to πn(T ) ⊂ Sn coincides with the Euclidean metric on
∆ = π0,n(πn(T )). Therefore πn(T ) is isometric to a closed Jordan domain in C with the

boundary which is a
√

2-quasicircle (since it is a square). On this boundary curve we define
the following mapping

f∂Tn := f |∂T ◦ (πn|∂T )−1 : ∂πn(T )→ R2.
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Since f is η-quasisymmetric and by Lemma 5.2 πn|−1
∂T is bi-Lipschitz, it follows that f∂Tn is

an η1-quasisymmetric map, where η1(t) only depends on η, but not on the particular choice
of the dyadic square (in fact η1(t) = η(3t), but this is not important for us). It follows that
all the conditions of Theorem 5.5 are satisfied and applying it to f∂Tn and πn(T ) we obtain
that for every ∆ ∈ Dn there is a quasisymmetric map fTn = fT∆

n : πn(T )→ R2 which extents
f∂Tn . Moreover, fTn is η2-quasisymmetric, where η2 depends only on η1, the quasiconformal
constant of the boundary curves (i.e.,

√
2 in this case), and diameters of these circles, which

are bounded by diam(S ). Thus, η2 is independent of n as well as of the particular dyadic
square ∆ ⊂ Dn (or T = T∆).

Combining the functions fTn produces a homeomorphism fn : Sn → R2. More precisely,
if ξ ∈ Sn is such that ξ ∈ πn(T∆) for some ∆ ∈ Dn we let

fn(ξ) = fT∆
n (ξ).(5.4)

Note that fn is well defined since the squares {πn(T∆)}∆∈Dn cover Sn and the maps fT∆
n

coincide at points which are common to different dyadic squares of generation n in Sn.
For part (a) note that fn is a homeomorphism, which is η2(1) - quasiconformal at every

point ξ ∈ Sn such that π0,n(ξ) ∈ int(∆) for some ∆ ∈ Dn. Next, suppose ξ ∈ Πn and
0 < r < 2−(n+1). Denote by ζM and ζm the points at which the quantity |f(ζ)− f(ξ)| on the
circle ∂B(ξ, r) ⊂ Sn is maximized and minimized, respectively. Since dSn coincides with
the Euclidean metric on B(ξ, r) and fn is a homeomorphism, we have

Lfn(ξ, r)

lfn(ξ, r)
=

max{|f(ζ)− f(ξ)| : dSn(ζ, ξ) ≤ r}
min{|f(ζ)− f(ξ)| : dSn(ζ, ξ) ≥ r}

=
|f(ζM)− f(ξ)|
|f(ζm)− f(ξ)|

=
|f(ζM)− f(ξ)|
|f(ζ ′M)− f(ξ)|

· |f(ζ ′m)− f(ξ)|
|f(ζm)− f(ξ)|

· |f(ζ ′M)− f(ξ)|
|f(ζ ′m)− f(ξ)|

,

where ζ ′M , ζ
′
m ∈ Πn∩∂B(ξ, r) belong to the boundaries of same n-th generation dyadic squares

in Sn as ζM and ζm. Therefore we have Hfn(ξ) ≤ η2(1)2η1(1), and fn is H-quasiconformal
with H = η2(1)2η1(1) independent of n.

To prove (b) note that fn|Πn = f ◦ (π−1
n |Πn). Since f is quasisymmetric and π−1

n is 3-bi-
Lipschitz by Lemma 5.2, it follows that fn|Πn is η′-quasisymmetric with η′ depending only
on η. �

Proof of Lemma 5.1. Assume there exists a quasisymmetric embedding f : S → R2. By
Lemma 5.3 there exists an H-quasiconformal map fn : Sn → R2 such that

fn(Sn) = Ω′n\

(
mn−1⋃
j=0

K ′n,j

)
⊂ R2

where mn = 1+4+. . .+4n−1, and {int(K ′n,j)} are pairwise disjoint Jordan domains compactly
contained in the Jordan domain Ω′n. Moreover, since fn|Πn is η′-quasisymmetric, with η′

depending on η, we have that Ω′n and K ′n,j’s are all k-quasidisks, with k depending only on
η. We denote K′n = {K ′n,0, . . . , K ′n,mn−1} and K ′n = ∪jK ′n,j.

Observe that we may assume that the image of the “outer square” of Sn under fn is
the “outermost” boundary component γ′n of Ω′n, i.e., γ′n = fn(π−1

0,n(∂U)) is the boundary of
the unbounded component of R2 \ Ω′n. This can be achieved by post-composing fn with an
appropriate Möbius transformation of the plane and denoting the resulting mapping by fn
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again. Indeed, we may first post-compose fn with a scaling so that diam(fn(π−1
0,n(∂U))) = 1.

Then, one can compose the result with a reflection in the boundary of a largest disk, of
radius say αn, inscribed in the domain bounded by fn(π−1

0,n(∂U)). Since fn(π−1
0,n(∂U)) is a

k′-quasicircle, and therefore is quasi-round, the radius αn of the disk is bounded from below
by a constant depending only on k′. Therefore, the resulting mapping will be uniformly
quasisymmetric on fn(Sn), since by (2.4) we have

diam (fn(Sn)) ≤ η′(2) · diam(fn(π−1
0,n(∂U))) = η′(2).

Let Ln = π−1
0,n(L) and Rn = π−1

0,n(R) be the “vertical sides” of Sn. Denote

Γn := (fn(Ln), fn(Rn); Ω′n).

Thus, Γn is the family of curves in Ω′n connecting the images of lifts of the vertical sides of
the unit square U under fn. Next we observe that for all n ≥ 1 we have

ModU,Kn(Γ) ≥ H−1ModΩ′n,K′n(Γn).(5.5)

Indeed, the identity map idn from Sn = U \Kn equipped with the Euclidean metric to Sn
with the inner metric dSn is a local isometry and therefore is 1-quasiconformal. Hence, by
letting φn := fn ◦ idn, we have that φn : U \ Kn → Ω′n \ K ′n is an H-quasiconformal map
between domains in R2. Moreover, the mapping φn descends to a homeomorphism between
the quotient spaces φ̃n : (U)Kn → (Ω′n)K′n , and if Γ̃ and Γ̃n are the images of Γ and Γn under

the quotient maps, then φ̃n(Γ̃) = Γ̃n. Therefore, by (3.2) and Lemma 3.3 we have that

ModU,Kn(Γ) = ModU,Kn(Γ̃) ≥ H−1ModΩ′n,K′n

(
φ̃n(Γ̃)

)
= H−1ModΩ′n,K′n(Γn).

Since K ′n,j’s are k-quasidisks, by Lemma 3.3 we have that

ModΩ′n,K′n(Γn) ≥ min{c1, c2mod(Γn)}.(5.6)

Moreover, since Ω′n is a k-quasidisk it is then Loewner (see, e.g., [Bon11, Proposition 7.3])
and therefore

mod(Γn) ≥ ψ(∆(fn(Ln), fn(Rn))),(5.7)

where ψ depends only on k (and therefore on η). However, if xn ∈ Ln and yn ∈ Rn are such
that dist(fn(xn), fn(yn)) = dist(fn(Ln), fn(Rn)) then

∆(fn(Ln), fn(Rn)) ≥ dist(fn(xn), fn(yn))

diamfn(Ln ∪Rn)
≥ 1

2η
(

diam(Ln∪Rn)
dist(xn,yn)

) ≥ 1

2η(2)
,(5.8)

since dist(xn, yn) ≥ 1 and diam(Ln ∪Rn) ≤ diamSn ≤ 2.
From (5.5),(5.6), (5.7), and (5.8) it follows that for all n ≥ 1 we have

ModU,Kn(Γ) ≥ H−1 min

{
c1, c2ψ

(
1

2η(2)

)}
,

where H, c1, c2 and ψ depend only on η. �
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6. The Main Estimate

In this section we prove the “only if” direction of Theorem 1.2. For this we estimate the
transboundary modulus of curve families connecting the vertical sides of the unit square in
dyadic slit domains. In particular we show that if the sequence of relative sizes ri of slits is
not square summable then the transboundary modulus approaches 0. Combining with the
results of Section 5 we show that if r /∈ `2 then there is no QS embedding of Sr into the
plane, cf. Theorem 6.2.

6.1. Estimates for Transboundary Modulus in slit domains. The following lemma is
the main result of this section. Below we use the same notation as in Section 5.

Lemma 6.1. Let Γ be the collection of all the curves in the unit square [0, 1]2 connecting
the vertical edges of the square. Suppose r = {ri}∞i=0 is a sequence of numbers in (0, 1) such
that r /∈ `2. Then for every 0 < ε < 1 we have

(6.1) ModU,Kn(Γ) ≤
n∏
i=0

(1− 1

8
εr2
i ) + 3ε,

for every n ≥ 0. In particular, if {ri}∞i=0 /∈ `2 then

lim
n→∞

ModU,Kn(Γ) = 0.(6.2)

Before proceeding to the proof we observe that by combining Lemma 6.1 with Lemma 5.1
we obtain the necessity in Theorem 1.2.

Theorem 6.2. If r /∈ `2 then there is no quasisymmetric embedding of S = Sr into the
plane R2.

Proof of Lemma 6.1. The proof below is similar to proofs in [Hak17], where estimates for
the classical modulus in slit domains were obtained. However, transboundary modulus in
general can be larger than the classical modulus and therefore the results in this section do
not follow directly from [Hak17].

6.1.1. Constructing mass distribution %εn. We will first prove the estimate (6.1) assuming
that the sequence ri is such that for every i ≥ 0 we have ri = 2−ji for some ji ≥ 1, and
ε = 2−m for some m ≥ 1. The estimate is obtained by defining a particular mass distribution
for the pair (U,Kn). In order to do that, new notations are introduced below.

Let s = s(∆) = {x} × [a, b] ⊂ U be a slit of length l(s) = b− a. For ε ∈ (0, 1) the ε-collar
of s is the rectangle sε = (x, x+ εl(s))× s. Equivalently,

sε = s+ (0, εl(s)) = {t+ x : t ∈ s, x ∈ (0, εl(s))}.
Let t(sε), b(sε), `(sε), r(sε) be the top, bottom, left, and right sides of sε, respectively. Note

that `(sε) = s.

Lemma 6.3. Assume that rn = 1/2jn , n ≥ 1, and ε = 2−m for some natural numbers
{jn}∞n=1 and m ≥ 1. Then the ε-collars of any two slits s and s′ are either disjoint, or one
is completely contained in the other.

Proof. If s = s(∆) = {x} × [a, b] with ∆ ∈ Dn, rn = 2−jn and ε = 2−m then sε is a rectangle
that can be written as a union of ε−1 = 2m dyadic squares of generation N = n + jn + m.
Therefore, if ∆′ is a dyadic subsquare of ∆ of generation k ≥ N then it is either disjoint
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Figure 6.1. Choosing a subset Kε from the family of slits K so that the
ε-collars vεj (darker grey rectangles) are disjoint. Note that the slits within
the collars are discarded (not included in Kε). In this example ε = 1/4 and
ri = 1/2 for i = 0, 1, 2, 3.

from sε or is completely contained in it and the same is true for s′ = s(∆′). On the other
hand, if ∆′ is a dyadic square of generation k ≤ N − 1 in ∆, and s′ = s(∆′) = {x′} × [a′, b′],
then the distance between x and x′ is at least a half of the sidelength of ∆′ and therefore

|x− x′| ≥ 1

2
2−k ≥ 2−1−(N−1) = 2−N .

Since the width of s is exactly 2−N and (s′)ε is located to the right of the slit s′, it follows
that the ε collars of s and s′ are disjoint if x′ > x. In the case x′ < x there is nothing to
prove since any dyadic square ∆′ contained in the left half of ∆ does not intersect sε. �

From the above it follows that it is possible to select an infinite subsequence Kε = {sin}
in K for which the ε-collars are disjoint (i.e., the “smaller” collars which are contained in
“larger” ones are not enumerated). Indeed, we may first enumerate K = {si}∞i=0 so that
the lengths of the slits are non-increasing, i.e., l(si) ≥ l(si+1) for every i ≥ 0. Then, we
choose the sequence vn := sin by induction. Let v0 = s0. Suppose for n ≥ 1 the sequence
v0, . . . , vn−1 has been defined, and let vn = sin , where

in = min

{
j : sεj ∩

(
n−1⋃
i

vεi

)
= ∅

}
.

Since the set [0, 1]2 \
(⋃n−1

i vεi
)

always contains a dyadic square (it has a nonempty interior),
the process never ends and the collars {vεi}∞i=0 are disjoint by construction. Let

Kε = {vi}∞i=0

denote this subsequence. Moreover, for n ≥ 0 let

Kε,n = Kε ∩ Kn = {vi}Nεi=0,

where Nε = |Kε ∩ Kn| is the cardinality of Kε,n.
For ε as above, we denote by Bε

i , the ε-buffer of the slit vi, the union of the top and bottom
squares in vεi . More precisely,

Bε
i = {x ∈ vεi : dist(x, t(vεi )) ≤ εl(vi) or dist(x, b(vεi )) ≤ εl(vi)}.

The sets Oε
i = vεi\Bε

i and Rε
i = U\vεi = U\(Bε

i ∪Oε
i) will be called the ε-omitted and residual

regions of vi, respectively.
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Figure 6.2. The white, dark grey and light grey regions in the picture on
the left are the ε-omitted, buffer, and residual subsets corresponding to a slit
vi in the unit square U. The second and third pictures show the sets Oεn,Bεn
and Rε

n (in white, dark grey and light grey, respectively) for the ”standard”
collection of slits corresponding to the sequence ri = 1/2, i ≥ 0. Here ε = 1/4,
and n = 1, 2.

We also define the ε-buffer, omitted and residual sets in U, denoting them by Bεn,Oεn,Rε
n,

respectively, as follows:

Bεn =
⋃

vj∈Kε,n

Bε
j , Oεn =

⋃
vj∈Kε,n

Oε
j, Rε

n = U\(Bεn ∪ Oεn).(6.3)

Note that the Oε
i and Oεn are both open sets, while U\Oεn is a compact set for every n ≥ 1.

Finally, we define a Borel function ρεn : U\Kn → [0,∞] and weights {ρn,j} = {ρn(sj)} on
Kn as follows:

ρεn := χBεn∪Rεn = χU\Oεn =

{
0, on Oεn,
1, on Bεn ∪Rε

n.

ρn,j := ρn(sj) =

{
εl(sj), sj ∈ Kε,n,
0, sj ∈ Kn \ Kε,n.

(6.4)

where χE denotes the characteristic function of the set E, and let

%εn = (ρεn; ρn,1, . . . , ρn,N),

where N = 1 + . . . + 4n is the number of slits of generation at most n. In other words, ρεn
vanishes on the omitted set and is equal to 1 otherwise, while ρn,j is equal to the width of
the ε-collar for each slit sj ∈ Kε,n and is 0 otherwise.

6.1.2. Admissibility of %εn relative Kn. Next, we show that %εn is admissible for Γ relative Kn,
i.e., the estimate

l%εn(γ) =

∫
γ

ρεnds+
∑

γ∩si 6=∅

ρn,i ≥ 1,(6.5)

holds for every γ ∈ Γ.
In [Hak17] it was shown that if γ ∈ Γ does not intersect any of the slits of Kn then

ρεn-length of γ (i.e.,
∫
γ
ρεn) is at least 1. The idea and the reason for defining the discrete

weights ρn,j as in (6.4), is to ensure that when a curve γ ∈ Γ intersects a slit sj ∈ Kn, its
“horizontal-length” does not decrease too much. Indeed, if γ intersects a slit si the integral
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∫
γ
ρεnds may decrease by the amount equal to the width of the corresponding collar (or more),

but the second term in l%εn(γ) would increase by ρn,j = εl(sj), which is the “width” of the
collar of sεi . This balance implies that the %εn-lengths of the curves stays bounded below by
1. Next we provide the details of this argument.

To prove (6.5) we will show that for every γ ∈ Γ there is a subset γ′ ⊂ U, which is not
necessarily a curve, such that

l%εn(γ) ≥ l%εn(γ′) and l%εn(γ′) ≥ 1.

Pick a curve γ ∈ Γ. Without loss of generality, we may assume that γ is oriented so that it
starts at the left and ends at the right vertical edge of the unit square U. Given two disjoint
subsets E and F in U, we say that γ meets E before F if there exists t ∈ (0, 1) so that
γ(t) ∈ E and γ(s) /∈ F for any s < t and γ meets E after F if γ meet F before E. Before
constructing γ′, we modify γ inductively around every slit vi ∈ Kε,n as described next.

Denote γ−1 := γ. For 0 ≤ i ≤ Nε, suppose the subsets γ0, . . . , γi−1 of U have been defined
and define γi as follows:

(a) If γ ∩ vi = ∅, then

γi =

 γi−1 if γ ∩Oε
i = ∅,

(γi−1\vεi ) ∪ (t(vεi ) \ vi) if γ meets Oε
i before r(vεi ),

γi−1\Oε
i if γ meets Oε

i after r(vεi ).

(b) If γ ∩ vi 6= ∅ then

γi = (γi−1\(vεi ∪ vi)) ∪ (t(vεi ) \ vi),

where t(vεi ) and r(vεi ) as before denote the top and the right sides of the collar vεi , respectively.
This is a finite induction. Thus, we only construct γi for i = 0, . . . , Nε and let

γ′ = γNε .

Note that γ′ ⊂ Bεn ∪ Rε
n. Moreover, at every step of the construction above the curves are

modified so that the projection of γi to the x-axis is equal to the interval [0, 1] except for
possibly finitely many dyadic points. Thus, we have H1(projx(γi)) = 1, where projx denotes
the projection onto the x axis in the plane. By induction, we also have H1(projx(γ

′)) = 1.
Therefore

l%εn(γ′) =

∫
γ′
ρεnds = H1(γ′) ≥ H1(projx(γ

′)) = H1([0, 1]) = 1,

and it would be sufficient to prove that l%εn(γ) ≥ l%εn(γ′). Since γ = γ−1 and γ′ = γNε , it is
enough to show that for every 0 ≤ i ≤ Nε we have

l%εn(γi−1) ≥ l%εn(γi).(6.6)

By the definition of mass distribution %εn in (6.4), we have

l%εn(γi−1) = H1(γi−1 ∩Rε
n) +H1(γi−1 ∩ Bεn) +

∑
{j : γi−1∩vj 6=∅}

ρn,j

= H1(γi−1 ∩Rε
n) +

Nε∑
j=0

H1(γi−1 ∩Bε
j) +

∑
{j : γi−1∩vj 6=∅}

ρn,j.
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Figure 6.3. A curve γ = γ−1 and its modifications. Since γ meets the slit
v0, we have γ0 = γ \ vε0 ∪ (t(vε0) \ v0). Since γ does not intersect the collars
of v1 and v2, we have γ2 = γ1 = γ0. Since γ2 meets O3 before r3, we have
γ3 = γ2 \ vε3 ∪ (t(vε3) \ v3).

Therefore, letting

δi,j =

{
1, if γi ∩ vj 6= ∅,
0, otherwise,

we have

l%εn(γi−1) = H1(γi−1 ∩Rε
n) +

Nε∑
j=1

(
H1(γi−1 ∩Bε

j) + δi−1,j · ρn,j
)
.(6.7)

Since γi is obtained by modifying γi−1 only within (vεi ), we have that the two curves
coincide on the residual set Rε

n (note that t(vεi ) is in the complement of Rε
n), and therefore

H1(γi−1 ∩Rε
n) = H1(γi ∩Rε

n),(6.8)

and for every j ∈ {0, . . . , Nε} with j 6= i we have

H1(γi−1 ∩Bε
j) + δi−1,j · ρn,j = H1(γi ∩Bε

j) + δi,j · ρn,j.(6.9)

Therefore, by (6.7) and since δi,i = 0, to prove (6.6) we only need to show the following
estimate

H1(γi−1 ∩Bε
i ) + δi−1,i · ρn,i ≥ H1(γi ∩Bε

i ).(6.10)

Corresponding to the definition of %εn in (6.4), there are several cases to consider:

(a) If γi−1 ∩ vi = ∅, i.e., δi−1,i = 0, then three possibilities can occur:
- If γ∩Oi = ∅ then γi−1∩Bε

i = γi∩Bε
i . In particular H1(γi−1∩Bε

i ) = H1(γi∩Bε
i ).

- If γ meets Oε
i before r(vεi ) then γi−1 connects the top and bottom of one com-

ponent of an ε-buffer and therefore H1(γi−1 ∩Bε
i ) ≥ εl(vi) = H1(γi ∩Bε

i ).
- If γ meets Oε

i after r(sεi) then H1(γi−1 ∩Bε
i ) = H1(γi ∩Bε

i ).
(b) If γi−1 ∩ vi 6= ∅ then

H1(γi−1 ∩Bε
i ) + ρn,i ≥ ρn,i = εl(si) = H1(t(vεi )) = H1(γi ∩Bε

i ).

Thus (6.10) holds in all the cases. Combining (6.7),(6.8),(6.9) and (6.10) we obtain (6.6).
Therefore l%εn(γ) ≥ 1 and %εn is admissible for Γ relative Kn.
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6.1.3. Estimating the mass of %εn. To estimate A(%εn) note that

A(%εn) =

∫
Rεn∪Bεn

(ρεn)2dH2 +
∑
sj∈Kn

ρ2
n,j

= H2(Rε
n) +H2(Bεn) +

∑
vj∈Kε,n

(εl(vj))
2.

Since εl(vj) is the side length of each of the buffer squares, we have that

H2(Bε
j) = 2(εl(vj))

2 = 2εH2(vεj)

and therefore

A(%εn) = H2(Rε
n) + (3/2)H2(Bεn) = H2(Rε

n) + 3εH2

 ⋃
vj∈Kε,n

vεj


≤ H2(Rε

n) + 3ε,

(6.11)

where the last inequality holds since vεj’s are pairwise disjoint and ∪jvεj ⊂ U.

To estimate H2(Rε
n), we first note that H2(Rε

0) = 1− εl(s0) = 1− εr0. Next, assume that
for some n ≥ 1 we have H2(Rε

n−1) ≤
∏n−1

i=1 (1 − εr2
i ). From the definition of Rε

n and the
disjointness properties of the collars we have that

Rε
n = [0, 1]2 \

⋃
vj∈K′n

vεj = [0, 1]2 \
⋃
si∈Kn

sεi .

Next, we observe that if ∆ ∈ Dn, n > 1, then

Rε
n ∩∆ = (Rε

n−1 ∩∆) \ sε(∆),(6.12)

where s(∆) is the slit corresponding to ∆. Indeed, as noted above either sε(∆) is contained
in a previously removed collar, or it does not intersect any such collar. If sε(∆) is contained
in a previously removed collar then by (the proof of) Lemma 6.3, the dyadic square ∆ is
also in the complement of Rε

n−1 and both sides of (6.12) are empty. On the other hand if
sε(∆) ∩ Rε

n−1 6= ∅ then sε(∆) ⊂ Rε
n−1 (again by Lemma 6.3) and (6.12) follows from the

definition of Rε
n.

From (6.12) we have that if ∆ ∈ Dn is such that Rε
n−1 ∩∆ 6= ∅ then

H2(Rε
n ∩∆) = H2(Rε

n−1 ∩∆)−H2(sε(∆)).

But

H2(sε(∆)) = εl(s(∆))2 = ε
(rn

2n

)2

= εr2
nH2(∆) ≥ εr2

nH2(Rε
n−1 ∩∆),

and therefore if s(∆), or equivalently ∆, intersects Rε
n−1 then we have

H2(Rε
n ∩∆) ≤ (1− εr2

n)H2(Rε
n−1 ∩∆).(6.13)

Moreover, if ∆ ∩ Rε
n−1 = ∅ then both sides in (6.12) are empty and (6.13) still holds with

both sides being 0. Summing (6.13) over all dyadic cubes of generation n we obtain

H2(Rε
n) ≤ (1− εr2

n)H2(Rε
n−1).
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By induction hypothesis we have H2(Rε
k) ≤

∏k
i=0(1−εr2

i ), and therefore by (6.11) we obtain

A(%εn) ≤
n∏
i=0

(1− εr2
i ) + 3ε.

Since %εn is admissible for Γ relative Kn we obtain (a stronger version of) inequality (6.1) in
the case when ri’s and ε are powers of 2.

To prove (6.1) in general, assume ri, i ≥ 0, and ε are arbitrary numbers in (0, 1). Then
there are integers ji ≥ 1 and m ≥ 1 such that 2−ji ≤ ri < 2−ji+1 and 2−m ≤ ε < 2−m+1.
Let ε′ = 2−m, r′i = 2−ji , and let K′n, n = 0, 1, . . . , be the families of dyadic slits {s′(∆)}∆∈D,
corresponding to the sequence {r′i}∞i=0, cf. Section 4. Defining the omitted, residual and
buffer sets for K′n as before, we let (%εn)′ = ((ρεn)′; ρ′n,1, . . . , ρ

′
n,N) be the mass distribution

corresponding to K′n defined as in (6.4). In particular, the weight corresponding to a slit
s′ = s′(∆) ∈ K′n is either 0 or is given by ρ′n,i = ε′l(s′).

Next, define a new mass distribution ζεn = (σεn; {σn,i}) relative Kn by setting σn,i, i.e., the
weight of si, to be the same as the weight of s′i, and by letting σεn to be the restriction of (ρεn)′

to U \Kn. Just like above, one may see that ζεn is admissible for Γ relative Kn. Therefore,

ModU,Kn(Γ) ≤ A((%εn)′) ≤
n∏
i=0

(1− ε′(r′i)2) + 3ε′.

Since εr2
i ≤ 2ε′(2r′i)

2 and ε′ ≤ ε, the last inequality implies (6.1) in general.
Finally, if r /∈ `2 then the first term in the right hand side of (6.1) approaches 0 as n→∞.

Therefore, for every ε > 0 we have that

lim sup
n→∞

ModU,Kn(Γ) ≤ 3ε,

which implies (6.2) and completes the proof. �

7. Embeddings of Slit Carpets

In this section, we prove the “if” direction in Theorem 1.2.

Theorem 7.1. If r = {ri}∞i=0 ∈ `2 then there is a quasisymmetric embedding F : S = Sr ↪→
R2.

The idea is to show that there is a metric 2-sphere Ŝ which contains S and is quasisym-

metric to the standard sphere S2. The surface Ŝ will be obtained by “gluing in” topological
disks along the peripheral circles of the slit carpet S . We will then use Bonk and Kleiner’s

uniformization theorem, cf. [BK02], to show that Ŝ is quasisymmetric to S2.

7.1. Pillowcases. For l ∈ (0, 1) consider the rectangle R = R(l) = [−l, l] × [0, l]. Define
an equivalence relation on ∂R by identifying (x, 0) with (−x, 0), and (x, 1) with (−x, 1) for
x ∈ [0, l]. The quotient space

(7.1) P = P(l) = R(l)/ ∼

can be thought of as a “square pillowcase” with an open “mouth”, which corresponds to
the vertical sides of the rectangle R. For this reason we will call P a square pillowcase of

29



sidelength l. The image of a point z ∈ R in P under the quotient map will be denoted by
[z]. We will also use the following notations:

T (P) = {[(0, t)] : 0 ≤ t ≤ l},
L(P) = {[(t, 0)] : 0 ≤ t ≤ l},
U(P) = {[(t, l)] : 0 ≤ t ≤ l},

and will call these sets the top, lower and upper edges of P, respectively. Clearly, P is a
topological disk and ∂P is a topological circle corresponding to the vertical sides of R.

As a metric space, P is equipped with the quotient of the Euclidean metric on R, cf.
[BBI01, Section 3.1].

7.2. The “pillowcase” surface. Next we show how one can glue a pillowcase to a slit of
the slit carpet S . Suppose s ⊂ S is a slit such that π(s) = {x}× [a, a+ l] ⊂ int(U). Given
a point z = (x, a + t) ∈ π(s) we will denote by p+

z or p−z the preimages of z in S which
are closer to the right or left sides of the outer square of S , respectively. Note that for the
endpoints of the slit s, i.e., for z = (x, a) and z = (x, a+ l) we have p+

z = p−z .
Next, for a slit of length l consider the mapping

g(s) : ∂P(l)→ s

[(l, t)] 7→ p+
(x,a+t),

[(−l, t)] 7→ p−(x,a+t).

(7.2)

Clearly g(s) is a homeomorphism and is an isometry when P(l) is equipped with the quotient
metric and s with the restriction of the metric in S .

Given a slit carpet S we define the double DS of S by taking two copies of S and
identifying them along the outer square, i.e., denoting by S1 and S2 the two copies of S
we have

DS = S1 tS2/ ∼,

where p1 ∈ S1 is equivalent to p2 ∈ S2 if they correspond to the same point on ∂U. It
follows from Whyburn’s theorem that as a topological space DS is homeomorphic to the
Sierpiński carpet. Moreover, the path metric dS naturally induces a quotient metric on DS ,
which we will denote by dDS .

Let DK denote the collection of all slits in DS , and let DK = {sj}∞j=0 be an enumeration
of the slits. To each slit sj in DK we assign a pillowcase Pj of sidelength equal to diam(sj) =
l(sj) and a gluing function gj = g(sj) : ∂Pj → sj as defined in (7.2).

Thus, for every slit carpet we may define the topological space Ŝ as follows. Consider
the quotient space

(7.3) Ŝ =
(
DS t (∪∞j=0Pj)

)
/ ∼,

obtained by gluing the pillowcase Pj to DS via gj, i.e., for j ≥ 0, if x ∈ ∂Pj then we have
that x ∼ gj(x). Thus, we cover every slit with a square pillowcase by gluing its boundary
with the corresponding slit isometrically.

Note that Ŝ is homeomorphic to S2 since every Pi is a topological disk and DS is
homeomorphic to S1/3 by Whyburn’s Theorem 4.1.
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The space Ŝ can be equipped with a natural metric studied by Häıssinsky in [Hai15].

First, define a quasimetric τ on Ŝ by setting

τ(p, q) =


dDS (p, q), if p, q ∈ DS ,

di(p, q), if p, q ∈Pi, i ≥ 1,

infζ∈si{dDS (p, ζ) + di(ζ, q)}, if p ∈ DS , q ∈Pi,

infζ∈si,ξ∈sj{di(p, ζ) + dDS (ζ, ξ) + dj(ξ, q)}, if p ∈Pi, q ∈Pj, i 6= j,

where di, i ≥ 1, denotes the metric on Pi. Furthermore, for p, q ∈ Ŝ let

dŜ (p, q) = inf
N−1∑
k=0

τ(ζk, ζk+1),(7.4)

where the infimum is taken over all finite chains ζ0, . . . , ζN in Ŝ such that ζ0 = p, ζN = q.
By Theorem 2.2 in [Hai15], dŜ is a metric provided the mappings gi are uniformly quasisym-
metric and diamdiPi ≤ Cdiamdi∂Pi, for all i ≥ 1. Since in our case the mappings gi are
all isometries, and the inequality above holds with C =

√
2, it follows that dŜ is indeed a

metric. Moreover, by [Hai15] the restriction of dŜ to the slit carpet S ⊂ Ŝ is comparable
to τ , or equivalently, is bi-Lipschitz to dS . Therefore, to show that (S , dS ) quasisymmet-

rically embeds into the plane (or S2) it is enough to show that Ŝ is quasisymmetric to S2.
For this we will need the following well known uniformization result of Bonk and Kleiner.

Theorem 7.2 (Bonk, Kleiner, [BK02]). Let X be an Ahlfors 2-regular compact connected
metric space homeomorphic to S2. Then X is quasisymmetric to S2 if and only if X is
linearly locally connected.

Recall that a metric space (X, d) is called linearly locally connected (or LLC) if there exists
a constant λ ≥ 1 so that for every z ∈ X and r > 0 the following conditions hold:

(LLC1) If x, y ∈ B(z, r), then there exists a continuum E ⊂ B(z, λr) containing x and y.
(LLC2) If x, y /∈ B(z, r), then there exists a continuum E ⊂ X\B(z, r/λ) containing x and

y.

Thus, by Theorem 7.2, to complete the proof we need to show that Ŝ is LLC and Ahlfors
2-regular.

By [Hai15, Theorem 2.6.2] the metric sphere Ŝ is LLC provided DS and all Pi, i ≥ 1
are uniformly LLC. Since Pi’s are all uniformly LLC (with λ = 1) it is enough to show that
DS is LLC.

Lemma 7.3. The double DS of the slit carpet S = Sr is LLC.

Proof. Note that if x ∈ B(z, r) and γxz denotes a length minimizing curve connecting x
and z, then for every p ∈ γxz we have dDS (z, p) ≤ dDS (z, x) and therefore γxz ⊂ B(z, r).
Therefore if x, y ∈ B(z, r) then γzx ∪ γzy ⊂ B(x, r) is a continuum connecting x and y.
Therefore DS is LLC1 with λ = 1.

To show that DS is LLC2 let x, y ∈ DS \B(z, r), where 2−n−1 ≤ r < 2−n. Let

T ′ =
⋃

∆∈Dn+3

T∆∩B(z,2−(n+3))6=∅

T∆
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where, as before T∆ = π−1(int(∆)) denotes a “dyadic square” in S corresponding to some
dyadic square ∆ ⊂ U. Note that, since diamST∆ ≤ 2 · 2−n−3 for ∆ ∈ Dn+3, we have that for
every p ∈ T ′ the following inequalities hold:

dDS (p, z) ≤ 2−(n+3) + diamT∆ ≤ 3 · 2−(n+3) ≤ 3

4
r.

Therefore,

B
(
z,
r

8

)
⊂ B

(
z,

1

2n+3

)
⊂ T ′ ⊂ B

(
z,

3

4
r

)
.

Finally, since x, y ∈ DS \ ∂T ′ there is a continuum connecting x and y without intersecting
B(z, r/8). Indeed, if x and y belong to the same “dyadic” square T∆ for some ∆ ∈ Dn+3

then there is a curve γxy ⊂ T∆ connecting x and y, since T∆ is path connected. On the
other hand, if x ∈ T∆ and y ∈ T∆′ , we can first connect x and y to the “outer squares”
of T∆ and T∆′ , respectively, and then we may connect these outer squares to each other
through the preimages of the grids Π̃n+3, cf. Section 5, without intersecting int(T ′). This
gives a continuum γx,y ⊂ DS \ int(T ′) connecting x and y in general. Therefore γxy ⊂
DS \B(z, r/8) and DS is LLC2. �

Lemma 7.4. If r ∈ `2 then Ŝ is Ahlfors 2-regular.

Proof. Note that it is enough to show that the space D = S t (∪sj⊂S P(sj))/ ∼ is Ahlfors

regular. Indeed, Ŝ can be obtained by gluing two copies of D along the outer square by the

identity, and therefore if D is Ahlfors 2-regular with constant C then Ŝ is Ahlfors regular
with constant 2C.

Below we use the same notation T = T∆ ⊂ S as above for the dyadic squares in S .
Moreover, for a dyadic square ∆ ∈ Dn in U we let T̃ = T̃∆ denote the portion of D “over”
T , i.e.,

T̃ := T̃∆ = (T∆ t
⋃

sj⊂T∆

P(sj))/ ∼,

where ∼ is the same “gluing” equivalence relation as before.
Next, suppose ∆ is a dyadic square of generation n ≥ 1. Then, by Lemma 4.3, there is a

constant C ≥ 1 which does not depend on n, so that the following inequalities hold:

H2(T̃∆) = H2(T∆) +
∑
sj⊂T∆

H2(P(sj))

≤ C(2−n)2 +
∑
k≥n

 ∑
s(∆′)⊂T∆

∆′∈Dk

2l(s(∆′))2

 .(7.5)

The number of generation k ≥ n slits (or equivalently dyadic subsquares) contained in ∆ is
equal to 4k−n. Therefore, since l(s(∆′)) = rk2

−k for ∆′ ∈ Dk, the following equality holds
for every k ≥ n: ∑

s(∆′)⊂T∆
sj⊂Dk

l(s(∆′))2 = 4k−n(rk2
−k)2.(7.6)
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Hence, combining (7.5) and (7.6) we obtain

H2(T̃∆) ≤ C4−n +
∑
k≥n

4k−n(r2
k4
−k) = 4−n(C +

∑
k≥n

r2
k).

Since 2−n ≤ diamT∆ ≤ 2−n+1 we obtain that for every ∆ ∈ D the following inequalities hold:

1

4C
(diamT∆)2 ≤ H2(T̃∆) ≤ C1(diamT∆)2,

where C1 = C +
∑∞

k=1 r
2
i , with C being the constant from Lemma 4.3.

Now, if x ∈ S and 2−n−1 ≤ r < 2−n then considering a dyadic square T∆ for some
∆ ∈ Dn+3 such that B(x, r/8) ∩ T∆ 6= ∅, we have (like in Lemma 7.3) T∆ ⊂ B(x, r) and

H2(B(x, r)) ≥ H2(T∆) ≥ 1

4C
(diamT∆)2 ≥ 1

4C

( r
23

)2

=
r2

28C
.(7.7)

On the other hand, since π(B(x, r)) ⊂ B(π(x), r), there are at most 9 dyadic squares of
generation n intersecting B(π(x), r) such that their union is a Euclidean square in U. It
follows that there are at most 9 dyadic squares ∆1, . . . ,∆9 ∈ Dn such that B(x, r) ∩ T̃∆i

6=
∅, i = 1, . . . 9. Let

T̃ = ∪9
i=1T̃∆i

.

Then, we have

H2(B(x, r) ∩ T̃ ) ≤
9∑
i=1

H2(T̃∆i
) ≤ 9C1(diam(T̃∆i

))2 ≤ 9C1(2 · 2−n)2

≤ 9 · 24C1r
2.

(7.8)

Next, if y ∈ B(x, r) \ T̃ then y belongs to a pillowcase P(sj) over a slit sj of generation
≤ n − 1, thus l(sj) ≥ 2−n+1 > r. Note that if z ∈ ∂P(sj) is the closest point in P(sj) to
x ∈ S , we have that P(sj) ∩B(x, r) is contained in P(sj) ∩B(z, r). Therefore

H2(B(x, r) ∩P(sj)) ≤ H2(B(z, r) ∩P(sj)) ≤ πr2/2,

since z ∈ ∂P(sj).

On the other hand, from the construction of T̃ it follows that there are at most 8 such “large
pillowcases” P(sj)’s intersecting T̃ , (two for every “vertical curve” containing a vertical side

of some T̃∆j
⊂ T̃ ). Therefore,

H2(B(x, r) \ T̃ ) ≤ 4πr2.(7.9)

Combining (7.7), (7.8) and (7.9) we obtain that for every x ∈ S and 0 < r ≤ diamS the
following holds:

H2(B(x, r)) � r2.(7.10)

Finally, for x ∈Pj there are three possibilities:

(1). If r < l(sj) then there is a point y ∈ B(x, r) such that B(y, r/2) ⊂Pj and therefore
H2(B(x, r) & r2. To get the upper estimate, first note that if B(x, r) ∩ sj = ∅
then H2(B(x, r)) ≤ πr2. On the other hand, if there exists y ∈ B(x, r) ∩ sj, then
B(x, r) ⊂ B(y, 2r) and therefore by (7.10) we have H2(B(x, r)) . r2.
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(2). If l(sj) ≤ r ≤ 2l(sj) then

H2(B(x, r)) ≥ H2(B(x,
r

2
)) & r2,

by part (1), since r/2 < l(sj). On the other hand, since Ŝ is easily seen to
be a metric doubling space, every ball B(x, r) can be covered by N balls Bi =
B(xi, r/2) of radius r/2 < l(sj), with N independent of x. Therefore, H2(B(x, r)) ≤∑N

i=1H2(B(xi, r/2)) . r2 by (7.10) and part (1).
(3). If r > 2l(sj) > diam(Pj) then there is a point y ∈ B(x, r) ∩ sj such that

B(y,
r

2
) ⊂ B(x, r) ⊂ B(y, 2r).

Therefore H2(B(x, r)) � r2 by (7.10). �

Proof of Theorem 7.1. Combining Lemma 7.3 and Lemma 7.4 with Theorem 7.2 we obtain

a quasisymmetric mapping g : Ŝ → S2. By [Hai15] dŜ is comparable to the semi-metric

τ (cf. Section 7.2) when restricted to S ⊂ Ŝ . Since τ on S is equal to dS , it follows
that id : (S , dS ) → (S , dŜ |S ) is a bi-Lipschitz map. Therefore f = g ◦ id : S → S2 is a
quasisymmetric embedding. �
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[Hai15] Häıssinsky, P.: Hyperbolic groups with planar boundaries. Invent. Math. 201 (2015), No. 1,

239–307.
[Hak17] Hakobyan, H.: Quasisymmetrically co-Hopfian Menger curves and Sierpiński spaces. Preprint.
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