RICHARDSON TABLEAUX AND SCHUBERT POSITIVITY
HUNTER SPINK AND VASU TEWARI

ABSTRACT. We compute the Schubert cycle expansion of those irreducible components of Springer
fibers equal to Richardson varieties. This generalizes work of Giiemes in the case of a hook shape
and answers a question of Karp-Precup.

Let B, B~ C GL,, denote the Borel and opposite Borel subgroups of upper triangular and lower
triangular matrices respectively, and we denote by b, b~, gl,, for the respecively Lie algebras. Karp
and Precup [24] recently studied the interplay between two distinguished classes of subvarieties
of the complete type A flag variety Fl, = GL,, /B.

(1) The first class are the Springer fibers
By={gB€Fl, | g~ Mg € b},

for M € gl, a fixed nilpotent operator of Jordan type the partition A = n [44]. The irre-
ducible components are indexed by standard Young tableaux (SYTs) of shape A [43], and
Springer [45] showed the cohomology rings of Springer fibers carry an action of the sym-
metric group which is irreducible in the top dimension, connecting the geometric study of
Springer fibers to representation theory.

(2) The second class are the Richardson varieties

X, = BwBNB~vB,

indexed by pairs of permutations (v, w) where v <p w in Bruhat order. These varieties are
irreducible, and are obtained by intersecting Schubert varieties X = BwB with opposite
Schubert varieties X,, = B~vB. Richardson varieties play a crucial role in the connection
between algebraic geometry and Schubert calculus because of the identity

[Xy]=)  cin[X"] € Ho(FLy)

which decomposes the homology class of the Richardson variety into the homological basis
of Schubert varieties, with coefficients c;;, the structure constants for Schubert polynomial
multiplication 6,6, = ) ¢ &,. Showing the nonnegativity of c;;, via combinatorial

means for arbitrary triples (u, v, w) is an outstanding open problem in algebraic combina-
torics [48, Problem 11]. The answer, outside of the celebrated Littlewood—Richardson rule
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for Grassmannian permutations [27, 30, 40], is known in special cases. See for instance
[18, 21, 22, 28, 38] for manifestly nonnegative rules, [36] for a signed rule, and [37] for a
complexity-theoretic perspective.

Motivated by Lusztig’s study [33] of the totally nonnegative Springer fiber, Karp and Precup clas-
sified the SYTs which they called Richardson tableaux that index irreducible components of Springer
fibers which are equal to Richardson varieties [24, Theorem 1.5].

It is unknown what the coefficients of the expansion of arbitrary Springer fibers and their ir-
reducible components into Schubert cycles are in full generality. For tableaux of hook shape the
decomposition was determined by Giiemes [20], and all such tableaux are Richardson tableaux
[24, §10]. In [24, Problem 10.4] Karp and Precup ask in the special case of a Richardson tableau
T whether there was a combinatorial way to compute the Schubert cycle expansion of the corre-
sponding Springer fiber component/Richardson variety X,’7. We answer this question:

Theorem 0.1. Given a Richardson tableau T, there is a combinatorial rule for computing c;;7_.

Our strategy is to describe a family of pairs of permutations (v, w) we call well-aligned, for which

w
u,v’

we can combinatorially compute the Schubert structure coefficients c;.,, and show that (vr, wr)
are well-aligned when T  is a Richardson tableau. For pairs of well-aligned permutations we give

two distinct combinatorial ways of computing these coefficients.

(1) One way is to show that well-aligned pairs give Bruhat intervals [v, w] that are translation-
equivalent to [, w'] with v" a 132-avoiding permutation, which guarantees that ¢}/ , = cﬁfv,,
and then using the fact that &,/ is a dominant monomial we can compute the Schubert
structure coefficients by iterating the “simplest” case of Sottile’s Pieri rule [42].

(2) Our second way is to show that the ¢}/, can be obtained by successively applying Schubert
positive maps to &,,, one of which is the divided difference operation 0; f = I{%ZL and

the other is the Bergeron—Sottile map [6, 34]

sz = f(:El, N ,l’i,1,0,$i,1}¢+1, .. )

Both ways have geometric interpretations. The first method corresponds to showing that X’
is a left-translate of X' by the permutation matrix for v'v~!. The second method corresponds
to geometrically building X’ in a manner similar to Schubert varieties via geometric push-pull
operations, interspersed with inclusions of flag varieties into larger flag varieties associated to
Bergeron—Sottile pattern maps [6], a technique that has been exploited by the authors in collabo-
ration with Bergeron, Gagnon, and Nadeau in a series of papers studying quasisymmetric coin-
variants in algebraic geometry [4, 5, 34, 35].

Finally, Karp and Precup show that X;'7 are smooth. We generalize this result by showing that
the pairs (vr, wr) satisfy a finer property we call very well-aligned, and we show for very well-
aligned pairs that X’ is always a smooth variety.
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Outline: In Section 1 we collect the combinatorial background. In Section 2 we introduce our
central combinatorial object, well-aligned pairs, and then proceed to establish that the Bruhat in-
terval [v, w] coming from a well-aligned (v, w) is equivalent by left translation to an interval [v/, w']
where v’ is 132-avoiding. In Section 3 we give two different nonnegative combinatorial expansions
for ¢}, for well-aligned (v, w). In Section 4 we show that the pairs of permutations indexing the
Richardson varieties of Karp and Precup are well-aligned. In Section 5 we reinterpret our combi-
natorial results geometrically. We conclude with some enumerative speculation in Section 6.

Acknowledgements. We are very grateful to Martha Precup and Steven Karp for discussions
about their work, for sharing notes as well as an early draft, and for directing us to relevant por-
tions of their article. We are also grateful to Allen Knutson for helpful discussions on descent
cycling. Finally, VT is particularly thankful to the organizers of the “Combinatorics and Enu-
merative Geometry” workshop held at the IAS in February 2025, as it provided ample food for
thought.

1. COMBINATORIAL BACKGROUND

Throughout [n] = {1,...,n} for n a positive integer. We refer the reader to standard texts [17, 47]
for any undefined terminology.

1.1. Young tableaux. Recall that a partition ) is a weakly decreasing sequence of positive integers.
We denote the size of ), i.e. the sum of its entries by |A|. If |A\| = n, we denote this by A F n. We
represent A using its Young diagram in English notation. Given partitions p1 C A, we define the skew
shape X/ as the set-theoretic difference of the Young diagrams of A and p. A column strip is a skew
shape with no two boxes occupying the same row.

Given \ F n, a standard Young tableau (henceforth SYT) of shape A is a filling of the Young
diagram of A bijectively with numbers drawn from [n], so that the entries increase strictly from
left to right along rows and from top to bottom along columns. We let SYT(\) denote the set of
standard Young tableaux of shape A.

Given T € SYT(X) we define two reading words associated with it. The reading word is obtained
by reading the entries of the tableau row-wise bottom to top, with each row read left to right. The
top-down reading word is defined similarly except that the rows are read from top to bottom.

We now describe Schiitzenberger’s evacuation operator [39]. Given T' € SYT()), define the
evacuation tableau evac(T') € SYT()) as follows. Delete the entry in the top left cell of 7" and
decrement the remaining entries by 1. Then perform jeu-de-taquin slides to rectify the resulting
Young tableau of skew shape thereby obtaining an SYT 7" on n — 1 boxes with shape A \ {c},
where c is a corner box in \. We then place n in ¢ and consider it “frozen” for the remainder of
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the procedure. We repeat this with 7" and continue until all boxes are frozen. The final tableau is
evac(T).

Example 1.1. Shown below are an SYT 7" and its evacuation.

1257|1o\ 1479|12\
31811 2158
419 3110
6|12 6|11

The reading word of 7" and the top-down reading word of evac(T) are as follows:

6 12 4 9 3 8 11 1 2 5 7 10
14 7 9 12 2 5 8 3 10 6 11.

1.2. Permutations. We denote the symmetric group comprising permutations of [n] by S,,. It is
generated by the simple transpositions s; = (¢,7+ 1) for 1 <i <n — 1. A reduced word for w € Sy,
is a minimal length expression w = s;, - - - s;, as a product of simple transpositions. An inversion
in w € S, is an ordered pair (4, j) where i < j and w(i) > w(j). The length of w, denoted by ¢(w),
is the number of inversions in w. A descent of w is an index ¢ € [n — 1] such that w(i) > w(i + 1).
We denote the set of descents of w by Des(w). We will typically write our permutations in one-line
notation, e.g. w = w(1) - - - w(n).

Definition 1.2. The Bruhat order <g on S,, is obtained as the the transitive closure of the cover
relation < p defined by u <p v if and only if ut = v, where t is a transposition and ¢(v) — ¢(u) = 1.

Since we need the tableau criterion [10] for Bruhat order, we recall it here.

Theorem 1.3 (Tableau criterion). Givenu,v € S,, we say that u <p vif and only if for all u; , < v; .
forall 1 < k < n, where u; ;, is the i-th entry in the increasing rearrangement of u(1), ..., u(k) and
similarly for v; ;. In fact, it suffices to take & € Des(u) to check these inequalities, a statement
known as the improved tableau criterion [9].

Since we will need to apply the aforementioned criterion to establish incomparability in Bruhat
order, the following definition will be useful.

Definition 1.4. If u £ v, then we call p € Des(u) a witness if u; , > v;, for some 1 < i < p.

Given u <p v, we let [u, v] be the interval in Bruhat order containing w satisfying u <p w <p v.
We say that Bruhat intervals [u, v] and [p, q] are translation-equivalent if

{v™tw|we [u,v]} ={ptr|reu]}

We record here a simple criterion that allows for producing certain translation-equivalent pairs.
For the general statement for Coxeter groups we refer the reader to [12, Proposition 1.9] or [16].
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Proposition 1.5. Suppose v <p w where v,w € S,,. Suppose 1 < i < n — 1is such that
@) v7'(@) <v i+ 1),
(i) w (i) <w (i +1),
(iii) s;v £p w.
Then left multiplication by the simple transposition s; induces a poset isomorphism between the
Bruhat intervals [v, w] and [s;v, s;w].

1.3. Rothe diagrams and dominant permutations. Consider an n x n collection of boxes with
rows labeled from 1 to n top to bottom and columns labeled from 1 to n left to right. The Rothe
diagram of w € S,, is the collection of boxes

R(w) = {(w(j), ) | i < j,w(i) > w(j)}-
Alternatively, R(w) is obtained by marking all boxes b; = (w(i), i) and crossing out all boxes below
and to the right of b;. The boxes that do not get crossed out form R(w). The number of boxes in
R(w) is equal to ¢(w). See Figure 1 for two examples; the shaded boxes correspond to the cells of
the Rothe diagram.

I P I .

FIGURE 1. The Rothe diagrams for 43152 (left) and dominant 43125 (right).

Definition 1.6. A permutation is 132-avoiding or dominant if there does not exist i < j < k with
w(i) < w(k) < w(j).

It is well known [25] that the set of dominant permutations in .S, is enumerated by the Cata-
1 (2n

n+1 ( n

whose row lengths are given by the Lehmer code (ki,...,kp,0,...,0) of v™1, ie. with k; =

lan number Cat,, = ). Dominant permutations have Rothe diagram a Young diagram,
#{j > i | v71(j) > v71(i)}. See the right panel in Figure 1 for an example. In this case, we
have v~! = 34215 and so its Lehmer code is (2,2, 1,0,0).

1.4. Schubert polynomials. We denote by S = (s1, 52,...) the permutations of N with finite
support, with s; = (i,7 + 1) the adjacent transpositions. We view S,, C S as the subgroup gener-
ated by s1,..., sp—1. We denote by Z[x,] := Z[z1,..., 2], and Z[X] = Z[z1, 22, ...] = Uy Z[xy].
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The group S acts on Z[x] by having s; swap x; and z;1. The divided difference operations are de-
fined by 0, f = f SZf . These satisfy the nil-Coxeter relations 9;0; = 9;0; for |i — j| > 2, 0? = 0, and
the braid relatlons 8 82+18 = 0;+10;0;+1. Because of this, we can define 9,, := 0;, - - - 0;, for any
reduced word decomposition w = s;, - - - 55, of w.

The Schubert polynomials {&,, | w € S} C Z[x] are the unique homogenous polynomials with
the property that evg 9,6, = dy,4. Alternately, they are characterized by Giq = 1 and

Gus; 1 € Des(u)

0 otherwise.

0,6, =

Ifu € S, and w, = n(n — 1) ---11is the longest word in S,,, then &,,, = =7 ‘2572z, 1, and we
may explicitly compute &, = 9,,-1,,, G
We define the generalized Littlewood—Richardson coefficients c;;, as the integers arising from the
expansion
GGy =) ¥, &y,

Alternately, we may write ¢}/, = evg 0w (64,6,). Itis known thatif u £ 5 w or v £ w then oy = 0.
The following fact will be essential for us, and follows from the combinatorial model for com-
puting c;/,, via Monk’s rule in the Bruhat interval [v, w].

/

Fact 1.7. If [v, w] is translation equivalent to [¢v',w'] then ¢}/, = ¢/

u,v’ "

2. WELL-ALIGNED PAIRS

The following map that inserts 1 into a permutation shall be relevant to us. Given a permutation
w € Sp—1 and a positive integer j € {1,...,n}, let ¢;(w) € S, be the permutation obtained
by inserting a 1 in position j in w and then incrementing the previously existing numbers by 1.
Similarly, given w € S,, we define 6(w) € S,,—1 to be the permutation obtained by deleting 1 from
w and then decrementing the remaining numbers by 1. Alternatively

w(j) +1 Jj<i
(ew)(j) = {1 j=i o(w)(2) =
wi—1)+1 j>i

w(j) —1 J<w (1)
w(G+1) -1 j>w ().

Writing permutations in one line notation, we have for instance that 1 (25143) = 136254, £2(25143) =
316254, and 0(25143) = 1432.

Definition 2.1. A pair of permutations (v,w) € S,, x S, is aligned if the following hold:
) v71(1) <w (D),
(2) allindices v1(1) <i < w™!(1) — 1 are ascents in v, i.e. satisfy v(i) < v(i + 1).
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We call (v,w) € S, x Sy is well-aligned if it is aligned and (d(v), é(w)) is well-aligned. We let
WA,, C S, x Sy, denote the set of well-aligned pairs.

Example 2.2. We have (15726348, 75182364) is aligned because 1 < 5 < 7, and is in fact well-
aligned, as successive applications of § yield
(15726348, 75182364) — (4615237,6471253) — (354126, 536142) — (24315,42531)
— (1324, 3142) — (213,231) — (12,12) — (1, 1).
Example 2.3. A class of well-aligned pairs arises organically in a geometric context in the authors’

previous work [34] joint with Nadeau. Let ¢ = s,,_1 - - - 5251 € S), be a standard Coxeter element.
Then (v, vc) is well-aligned for all v € S, satisfying v(n) = n.

The main result of this section will be Proposition 2.12, that for a well-aligned pair (v, w), there
is a distinguished dominant permutation v" with [v, w] translation-equivalent to [vT, vTv~1w].

2.1. Translation-equivalent Bruhat intervals and well-aligned pairs. Our next lemma relates
well-aligned pairs to Bruhat order.

Lemma 2.4. For v,w € Sy, if (v,w) € WA,, then v <p w.
Proof. We establish the claim by induction on n. Leti = v=1(1) and j = w™!(1), so that v =
si---5j—1€5(0(v)) and w = €;(6(w)). We have
v<pus; <p-vsisj-1=¢j(6(v)) <p &;(0(w)),

where the first string of inequalities is because (vs; - - sx_1)(k) = v(i) =1 < (vs;---sp_1)(k + 1)
and the last inequality is by the inductive hypothesis 6(v) <p d(w) and the fact that ¢; preserves
the Bruhat order by the tableux criterion. O

The next result provides a converse when v is dominant.
Lemma 2.5. Let v € S,, be dominant. Then v <p w, if and only if (v, w) € WA,,.
Proof. The previous lemma shows the reverse implication, so it remains to establish the forward
implication.

Let j = v~*(1). Since v is dominant we must have that 1 = v(j) < v(j + 1) < --- < v(n). Itis
well known (see for instance [23, §2]) that for v dominant,
(2.1) v<pw <= R(v) C R(w).

In particular w™!(1) > 4, and so (v, w) is aligned.

To finish the proof we need to show that (6(v), §(w)) € WA,,_;. By induction it suffices to show
that 6(v) <p d(w). Note that d(v) is dominant. Furthermore, since R(v) C R(w), we have that
R(6(v)) € R(6(w)). This implies that §(v) <p d(w) as desired. See Figure 2 for an illustration of
the inclusion of the Rothe diagrams. O
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- -
| T |
K | K

FIGURE 2. The gray shaded cells correspond to the Rothe diagram of the dominant
permutations v = 4521367 and §(v) = 341256 respectively, while the union of the
gray and blue shaded cells correspond to the Rothe diagrams of w = 5724316 and
d(w) = 461325 respectively.

EER

Define
WA!32 = {(v,w) € WA,, | vis dominant}.

Remark 2.6. Pairs (v, w) € S,, x S, with v <p w where v is dominant are in bijection with match-
ings on 2n points [23, §2]. Thus | WAL3? | = (2n — 1)!1.

We emphasize a special instance of 132-patterns. Given w € S, wecall 1 < ¢ < n — 1 critical
if w possesses a subsequence of the form ---i---j---(i 4+ 1)--- where j > i + 1. We let the set of
critical values of w be denoted by C(w). It is straightforward to check that

C(w) is empty <= w is dominant.
Lemma 2.7. Suppose (v, w) € WA,,. Then we have w™1(i) < w™!(i + 1) for all i € C(v).
Proof. We first consider the case ¢ = 1. Since (v, w) is aligned, the criticality of 1 implies that we
must have w=!(1) < v71(2). We claim this implies that w=!(1) < w=%(2). Indeed, if w=!(1) >
w~1(2) then (§(v), 6(w)) cannot be aligned which contradicts the well-aligned-ness of (v, w).
Now suppose i > 1. Note thatif i € C(v), theni—1 € C(6(v)). Since (4(v), 6(w)) is well-aligned,

our inductive hypothesis implies that (§(w)) (i — 1) < (6(w))~!(i). But then we necessarily have
w (@) <w i+ 1). O

Example 2.8. For (v,w) = (15726348, 75182364) € WAg, we have C'(v) = {1,2,5}. It is easily
checked that for each i € C(v) we have i lying to the left of i 4+ 1 in w.

Lemma 2.9. Suppose (v, w) € WA,,. Then we have that (s;v, s;w) € WA, forall i € C(v).

Proof. Tt is straightforward to see that (s;v, s;w) is aligned, so it remains to show (§(s;v), d(s;w)) €
WA,,_1. We show this by induction on i. For i = 1, begin by observing that §(s1v) and (s;w)
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are obtained by deleting the 2 from the one line notation of s;v and sjw respectively and then
decrementing all entries greater than two by one. This implies that (§(s1v),d(s1w)) is aligned.
Furthermore we have

(66(s1v),0d(s1w)) = (66(v), 00 (w)),

and the latter is well-aligned because (v, w) is. Thus (dd(s1v),dd(s1w)) € WA,,_g, which in turn
implies (d(s1v),d(s1w)) € WA,,_; and concludes the base step of our induction.

Now suppose ¢ > 1. Note that (§(s;v),d(s;w)) = (si-10(v), s;—10(w)). Furthermore, observe
that (0(v),0(w)) € WA, _1 withi — 1 € C(§(v)). The inductive hypothesis thus implies that
(8i—10(v), si—16(w)) € WA,,_1, and therefore that (§(s;v),d(s;w)) € WA, _1. This concludes the
induction step. O

Lemma 2.10. Suppose (v,w) € WA,. For all i € C(v), we have that [s;v, s;w] is translation-
equivalent to [v, w] .

Proof. We verify conditions in Proposition 1.5(i)—(iii). Condition (i) holds because i € C'(v). Con-
dition (ii) is the content of Lemma 2.7. It remains to check Condition (iii) that s;v £ w.

Suppose i = 1. Let j = v~1(2) and k = w~!(1), and note that 1 € C(v) implies that j > k.
Therefore min{(s1v)(1),..., (s1v)(k)} =1 < 2 = min{w(1),...,w(k)} and we conclude s;v £p w
by the tableau criterion.

Now suppose i > 1. Theni — 1 € C'(§(v)) so our inductive hypothesis yields s;_16(v) £5 é(w).
Let p € Des(s;—10(v)) be a witness for this incomparability; see Definition 1.4. Suppose that

$iv = €4(si—10(v)) and w = &,(d(w)).

Note that a < bsince (v, w) is aligned. If furthermore a < p then b < p+ 1 by alignedness of (v, w),
sop+1 € Des(s;v) is a witness for s;u £ w. On the other hand if a > p, then b > p by alignedness
of (v, w) so p € Des(s;v) witnesses the incomparability s;v £p w. O

We illustrate various aspects of the preceding lemmas with the following example.

Example 2.11. For (v, w) = (15726348, 75182364) € WAg, we have C(v) = {1,2,5}. It is easily
checked that s1v £5 w.

Consider i = 2. We will show how a witness for s16(v) £ §(w) produces one for sev £ w. We
have d(v) = 4615237 and 6(w) = 6471253. Since the first four entries of s1J(v) in increasing order
2,4,5,6 while those of §(w) are 1,4,6,7, we have that p = 4 witnesses s16(v) £p 6(w). Now note
that

sv = 15736248 = £1(510(v)) and w = e3(d(w)).

Therefore, p + 1 = 5 witnesses sov £ w.
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Finally, consider i = 5. Since the first two entries of s46(v) = 5614237 in increasing order are 5, 6
while those of §(w) are 4,6, we have that p = 2 witnesses s46(v) £p d(w). Now note that

s5v = 16725348 = £1(s49(v)) and w = e3(d(w)).
Therefore, p + 1 = 3 witnesses s5v £ w.

2.2. Labeled plane binary trees and dominant permutations. Recall that a plane binary tree T'is a
rooted tree where every internal (i.e. non-leaf) node has a left and right subtree. We denote the set
of such trees with n internal nodes by 7,,. A decreasing labeling £ of T € 7, is a bijection of the
internal nodes with [n] such that whenever w is a descendent of v, the label of w is less than the
label of v. We now recall a folklore bijection [46, pp. 23-24]

Sn = {(T,L) | T € T and L is a decreasing labeling of T}
w = (Y(w), L(w))

though we follow the conventions in [31, §2.4].

The bijection is obtained by recursively applying the following procedure, starting from the
one-line notation w(1) - - - w(n) of w: for a word of distinct numbers z we write z = z()mz(?) with
m = max(z) and associate to it the tree whose root is labeled m and whose left and right subtrees
are given recursively by applying this procedure to the words z(!) and 2(?) respectively.

Given T € 7,,, consider the fiber

Zp = {w € S, | P(w) =T},

It is well known that Zp has a unique maximal element w' under weak order, characterized by
the fact that it is the unique dominant permutation in Zr (see [32, Theorem 2.5] and also [1, §1.2]).
In particular for dominant permutations we have w = w'. We can describe w' explicitly as the
unique permutation such that 7'(w) has the property that for any node v, the smallest label in the
left subtree of v is greater than the largest label in the right subtree of v. Figure 3 shows an unla-
beled plane binary tree 7" on the left and the set Zr on the right, with the dominant permutation
highlighted.

T = Zp = {2143,3142,3241}

FIGURE 3. A plane binary tree 7" and the set Z7.

Note that i € C(w) is equivalent to stating that the nodes labeled i and i + 1 are incomparable in
T with the node labeled i appearing before that labeled ¢ + 1 inorder. Because all linear extensions
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of a poset can be obtained by swapping labels of adjacent incomparable nodes, by repeatedly
applying simple transpositions corresponding to the entries in the critical set we may transform
w to w! without altering the underlying tree. Figure 4 illustrates this starting with w = 2143 and
applying swaps corresponding to the critical values.

T(syw) T (s152w)

FIGURE 4. Three decreasing trees with the leftmost tree associated to w = 2143 and
the rightmost corresponding to the dominant permutation w' = s1s9w = 3241.

We are now ready to prove the main result of this section.

Proposition 2.12. Suppose (v, w) € WA,,. Then the following hold.
(1) (v, vto~lw) € WAL,
(2) The intervals [v, w] and [vT, vTv~!w)] are translation-equivalent.

Proof. 1f v is dominant then there is nothing to show as v = v". Thus we may assume that v is not
dominant, i.e. C(v) # @. Pickany ¢ € C(v). Then (s;v, sijw) € WA,, by Lemma 2.9. Furthermore
we know that /(s;v) = £(v) + 1 and ¢(s;w) = ¢(w) + 1. Repeating this procedure eventually
produces a (v, w') € WAL 5o that [v/, w'] is translation-equivalent to [v, w]. Since v and v’ are in
the same fiber of 1), we have v’ = v'. Both claims now follow. O

Example 2.13. For (v, w) = (15726348, 75182364) € WAg, we have v! = 56734128. Proposition 2.12
guarantees that [v, w] is translation-equivalent to [v", vTv~1w] = [56734128, 76583142).

Remark 2.14. We revisit the well-aligned pairs from Example 2.3. In this case, Proposition 2.12
guarantees that the Bruhat interval [v, vc| is translation-equivalent to [v",v'c] where v! € S, is
dominant and satisfies v'(n) = n as v itself does. In particular there are Cat,, many such intervals,
and it is a fact they are all pairwise non-equivalent with respect to translation. Translating these
special intervals by (v")~! produces noncrossing partitions, and this connection is the first step
toward understanding quasisymmetry in the context of F1,, [5, 34].

3. WELL-ALIGNED SCHUBERT STRUCTURE COEFFICIENTS

Recall that we want to determine the structure coefficients ¢/, where (v, w) € WA,,.
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3.1. Coefficients via translation-equivalence. We recall Sottile’s Pieri rule [42] in a special case
as it will be the only combinatorial gadget that we need. We momentarily work in the infinite
symmetric group Su.. For 1 < a < b, let ty, € So be the transposition swapping a and b.

Definition 3.1. Given a nonnegative integer k, we say that a permutation u is covered by ut,; in
k-Bruhat order if a < k < band ¢(uta) = ¢(u) + 1. The k-Bruhat order u <% w is obtained as the
transitive closure of these covers.

The saturated chains that matter to us are
k k k k
U < Utap, <B Ulaiby taghy <B - < Utasp, *laghy, = W

where the ¢,,;, are transpositions with a; through a, distinct and each a; < k < b;. We denote a

. k
chain as above by u = w.

Theorem 3.2 ([42, Theorem 1]). Fix k a nonnegative integer and let u € S,. Then we have

1‘1~--$k6u: E Gw.
K,
U—w

Note that for v a dominant permutation with Lehmer code of v~! given by (k1, ..., kp,0,0,...),
we have
61} = H X1 Ty,
1<i<p

a dominant monomial. Iterating this Pieri rule tells us how to compute the product of an arbitrary
Schubert polynomial with such a dominant monomial in the Schubert basis. Suppose we have a
sequence k = (k; > --- > k) of nonnegative integers and a permutation u € S,,. We write u 5w
if there is a sequence of permutations v = ug,u1,...,u, = w such that u;_; Ly u; forl < i < p.
Then we have the following corollary.

Corollary 3.3. Let v € Sy be dominant with Lehmer code of v~! given by (ki,...,k,,0,0,...).
Then we have

CHCHE R
UEHL)

In particular the Schubert structure coefficients c;;,, can be computed combinatorially.
We are now in a position to state our main result.

Theorem 3.4. Let (v, w) € WA,,. Then

C'w _CvTv_lw
u,v . ol )

and these coefficients can be computed combinatorially.
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Proof. The first half of the claim is a consequence of Proposition 2.12 which states that [v, w] and
[vT, vTv~lw] are translation equivalent. The second half follows from the fact that the classes of

- 'w follows from Corol-

must agree. Finally, the combinatorial computation of the coefficients c”T;f

lary 3.3 since v is dominant. O

3.2. Coefficients via Bergeron—Sottile maps. We now proceed to study the well-aligned Schubert
structure coefficients c;,, in a different way, using the Bergeron-Sottile maps. Say that a map

uU,U

f:Zzxy,...,xn] = Z[z1,. .., 2] is Schubert positive if
f(&u) =) ai6, withal) > 0.

We will say that f is combinatorially Schubert positive if we can combinatorially determine a;, to be
nonnegative. The functional ®Y : Z[z1, ..., z,] — Z given by

(I)g(f) = €vo aw(fgv)

is Schubert positive because ®;'(&,) = c,. To show the combinatorial nonnegativity of ¢/,
for well-aligned pairs (v, w) € WA, is tantamount to showing that ®¥’ is in fact combinatorially
Schubert positive.

We will show the combinatorial Schubert positivity of ®;’ by showing it is a composite of com-
binatorially Schubert positive operations. The operations evy, 9; are manifestly combinatorially
Schubert positive operations; we will need one further combinatorially Schubert positive opera-
tion.

Definition 3.5. For f € Z[z1,x2,...] and a positive integer i, we define the ith Bergeron—Sottile
operator by
sz = f([El, ey i1, 0, Ly Lit1y- - - ,xn_l)
As shown in Bergeron—Sottile [6], the result of applying R; on Schubert polynomials can be com-

puted combinatorially using Sottile’s Pieri rule — in particular, R; is a combinatorially nonnegative
operation. We verify this here quickly.

Fact 3.6. R16w = 5w(1):166(w) and
Rif =Ri01---0i_1w1--xi 1 f.

Proof. The statement for R; is well-known — one way to see it is that because 9;R; = 0;41 for all 4,
we have
evo 6w/ R16w = €evy Ggl(w/)Gw = 5al(w’),w = 6w(1)=155(w),w’~
For the more general statement, because 0; commutes with polynomials symmetric in x;, x4+ we
may rewrite
RiO1---0izy - wi—1f = RiO1210922 - 0121 f

and then repeatedly apply the (easily verified) fact R;0;x; = Rj11. O
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Lemma 3.7. Consider (v, w) € WA,,. Suppose i = v~1(1) and j = w~*(1). Then

By = B3R DD 05 1.

Proof. If i = j, then &Y = @gg:f)) R; is the statement of [34, Proposition 8.1]. Otherwise because

(w,v) is well-aligned we have j — 1 € Des(w) and j — 1 & Des(v) so
Y f = evo 0By f = ev( Ous,; 06, f = ev) Ous, S4(0; f) = 4 7 0j_1f,

where the second last equality follows because &, is symmetric in the variables x;_1, z; (this idea
is a special case of Knutson’s descent-cycling [26]). Since (v, ws;) € WA,, we can apply this
repeatedly until the positions of 1 align and then apply the case i = j. O

Note that since (§(v), §(w)) € WA, if (v,w) € WA,,, iterating the previous lemma, we obtain
a formula for evy 0,,(6,6,,) as a composite of R;s and 0;s applied to &,. We make this explicit in
the case where (v, w) € WA!32 In this case, this composite can be read off from the skew Rothe
diagram R (w) \ R(v).

Proposition 3.8. Let (v,w) € WA and let D := R(w) \ R(v). For 1 < i < n, let r; be the number
of boxes in the ith row of D, considered from top to bottom. Suppose further that (c1,...,¢,) =
lcode(v™!). Then we have

®Uw = €vo RCrL+18C7L+1 e 8Cn‘f"’"n ch,1+lacn,1+1 e 80'n,fl‘f"’"nfl e Rcl+1acl+1 e 8(31"'7"1'

Proof. This is a consequence of the fact that applying ¢ to each of v and w corresponds to striking
out the top row of the bounding n x n box and then the column containing the 1 in v. O

Example 3.9. Referring back to the well-aligned pair (v, w) = (4521367,5724316) depicted on the
left in Figure 2, we have

(ri,...,r7) =(2,0,1,2,0,1,0) and (cy,...,c7) = (3,2,2,0,0,0,0) = lcode(4351267).

Thus we have
(I)g = eV R1 Rlﬁl R1 Rlﬁl 82 R383 R3 R48465 .
In particular, the boundary of the grey region correspoding to v determines the subscripts of the

R;s and the skew Rothe diagram D (given by the blue shaded cells) determines the subscripts of
the 9;s.

4. RICHARDSON TABLEAUX AND WELL-ALIGNED PAIRS

The main subfamily of well-aligned pairs in this article comes from a subfamily of SYTs com-
prising Richardson tableaux. Given a partition A\, we let crop()\) denote the partition obtained
by omitting the first row of A\. For ' € SYT(\), we let crop(7') denote the SYT of shape crop(\)
obtained from the subtableau of 7" determined from rows 2 and below, where we naturally stan-
dardize said filling so that the entries are precisely {1, ..., |crop(\)|}.
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Definition 4.1. We say that an SYT T is a Richardson tableau if the following conditions hold:

(1) for every entry j in the second row j — 1 is in the first row, and
(2) crop(T) is a Richardson tableau.

Given a partition A we let RT()) denote the set of Richardson tableaux of shape A.
The preceding definition is not the original definition of Richardson tableau by Karp and Precup

[24, Definition 1.3]; that the aforementioned definition is an alternative characterization is shown
by the same authors [24, Corollary 4.18].

Example 4.2. Shown below are repeated croppings of the tableau on the left. Each tableau satisfies
condition (1) in Definition 4.1. In particular the leftmost tableau is an element of RT((5, 3, 2, 2)).

1257|10\ 1|46 1]3 \1|2\ o
31811 2|5 2|4

419 3|7

6 (12

We record two facts about Richardson tableaux that we need later.

Theorem 4.3 ([24]). The following hold.

(1) Richardson tableaux are characterized by the fact that each evacuation slide is an L-slide
[24, Theorem 5.3]. That is, as one computes the evacuation tableau for 7" a Richardson
tableau, the path traced by the “hole” during a single jeu-de-taquin slide is L-shaped.

(2) A tableau T is Richardson if and only if evac(T") is Richardson [24, Corollary 3.23].

We make note of some crucial consequences of the first part of Theorem 4.3. For 7" a Richardson
tableux, the tableau 7" obtained after a single evacuation slide, where we ignore the frozen cell,
is also Richardson. Indeed the L-slide characterization immediately implies that all evacuation
slides applied to 7" are L-slides. Furthermore it is the case that

crop(evac(T)) = evac(crop(T)).

We now associate a pair of permutations to any SYT. It will turn out that this pair is well-aligned
for Richardson tableaux.

Definition 4.4. Given T' € SYT(\), we define permutations vy, wr € S, as follows:

(1) v;.' is the top down reading word of evac(T),
(2) wowy Lw, is the reading word of T'.

Example 4.5. Consider the 7" and evac(7’) from Example 1.1. Then

vp=1 6 9 2 7 11 3 8 4 10 12 5
wr=11 6 1 9 7 2 12 3 10 8 4 5.
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We now proceed to an alternative recursive description of vy and wr that will be more conve-
nient for our purposes. We begin with an elementary lemma about Richardson tableaux that relies
on their characterization in terms of L-slides.

Lemma 4.6. Let A - n and 7" € RT()). Suppose m is the largest number such that the entries
{1,2,...,m} appear in the first column of 7. Then the first m evacuations slides terminate in rows
T1,...,"m Where r;y > ry > --- > r, = 1. Consequently, the entries {n —m + 1,...,n} occupy a
column strip in evac(T") with n — m + 1 appearing at the end of the first row.

Proof. We shall repeatedly use the L-slide characterization of Richardson tableaux without explicit
mention. The case m = 1 is trivial. Suppose m > 1. If A = (1") then the claim is clear. So we
assume that A; > 1. By our condition on m we know that m + 1 appears in the first row next to 1.
In particular the mth evacuation slide must terminate at the end of the first row. So r,,, = 1.

To establish the claim we only need to show that r; > ry, as induction does the rest. If the r;th
row is of length 1, again the claim is clear. So we assume that the 7 th row has length at least 2. Let
J be the entry in the 7 th row and the second column. Since T is standard we know that j is strictly
larger than the entry immediately above it; call it k. After the first evacuation slide, j moves to the
tirst column whilst remaining in row 71, whereas k& does not move. This configuration guarantees
that the next evacuation slide terminates in a row strictly above r;. This concludes the proof. [

Example 4.7. Shown below is a Richardson tableau 7" (left) and the result of applying the first
three evacuation slides to it. The shaded entries belong to the evacuation tableau and are frozen.
In this case m = 3, " = 5, r2 = 2, and r3 = 1. The entries {10, 11,12} occupy a column strip in
evac(T") with 10 appearing at the end of the first row.

1 9 l12] [1[3]e]s]u| [1][2][s][7]10] [1][4]6]9[10]
2 3 11 3 11
3 (10 4 4
6 |11 1012 9 |12 9 |12
Informally, the preceding lemma states that a column of entries {1,...,m} on the top left in a

Richardson tableau 7" creates a distinguished column strip in the Richardson tableau evac(7"). To
employ this observation recursively, we first show that there is a natural column strip decomposition
of any Richardson tableau completely determined by the entries in its first row.

Definition 4.8. For T' € SYT(\), we let First(7) = {1 = a1 < --- < a), } denote the entries in the
first row of T read from left to right. We further declare that ay,+; = |A| + 1.

Lemma 4.9. Let 7' € RT(A). Let First(7) = {1 = a1 < -+ < ay,}. For1 < i < )y, the cells
occupied by the entries in {a;, ..., a;4+1 — 1} form a column strip in 7.
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Proof. Let Bad denote the set of Richardson tableaux that do not have the desired property. Our
goal is to show that Bad = @. We proceed by contradiction. Suppose 7' € Bad is minimal, in the
sense that 7" has the fewest boxes among all elements of Bad. Let X = {a;,...,a;+1 — 1} be the
set of entries in T" that do not form a column strip, and let S denote the skew shape consisting of
these entries.

We claim that S must contain at least two boxes in the second row. Indeed, if this were not the
case, then crop(7") would also be a Richardson tableau lying in Bad, contradicting the minimality
of T. Let j be the smallest element of X that lies in the second row. Since 7T is Richardson, we
know that j — 1 must appear in the first row.

Now consider the entry j’ immediately to the right of j in 7. We must have j' > j + 1. Indeed,
if j/ = j + 1, then by the definition of a Richardson tableau, j would lie in the first row, a contra-
diction. Observe further that j/ € X. But then j' — 1 belongs to both the first row and to X. This
is impossible, since X contains exactly one entry from the first row. 0

Given T' € RT(X), we let II(T") denote the set partition of {1,...,|A|} whose blocks are given by
the entries in the column strips from Lemma 4.9. We note that II(T") is completely determined by
First(T'). As a corollary of the preceding two lemmas we have the following.

Corollary 4.10. Fix A - n. For T' € RT(\), the partition II(evac(7')) is obtained by replacing the
entries ¢ in each block of II(T") by n 4+ 1 — 4.

Example 4.11. Shown below are the column strip decompositions of 7" and evac(T") from Exam-
ple 1.1.

1 5] 7|10 1 7 9|12\
3|8 11 2|58

4 3 [10

612 6 11

For completeness, we record both II(T") and II(evac(7")) below.
I(T) = {1} U{2,3,4} U {5,6} LU {7,8,9} L {10,11,12},
I(evac(T)) = {12} U {9,10,11} L {7,8} L {4,5,6} U {1,2,3]}.

We record some additional consequences separately as they will be useful in proving that
the pairs (vr, wr) satisfy a stronger condition than being well-aligned. We omit the proof as it
amounts to unraveling Definition 4.4 which tells us how to obtain (v, wr) from the appropriate
reading words.

Corollary 4.12. Fix A - n and let A\; = k. For T € RT(\), consider the column strip decomposition
of evac(T'). Suppose that m; through my, (resp. M; through M}) are the smallest (resp. largest)
entries within each block in increasing order.



18 HUNTER SPINK AND VASU TEWARI

(1) The positions of 1,2,...,k in vy are given by m; through m;. Additionally we have
Des(vr) € {My,..., My_1}.

(2) The positions of 1,2,...,k in wr are given by M; through M. Additionally we have
Des(wT) - {Ml, ey Mk—la Mk}c.

The parallel between the two statements in the next result is a reflection of the fact that evacua-
tion is an involution. The interested reader is also referred to [24, Proposition 6.4] as an alternative
means to deriving the second part from the first part; the result in loc. cit. tell us how wr may be

computed from veyac(7)-
Definition 4.13. We call (v, w) € WA,, very well-aligned if (vw,, uw,) is well-aligned as well.

Since right multiplication by w, reverses the one line notation of a permutation, we see that
(v, w) is very well-aligned if and only if the following hold:
() v1(1) < wl(1),
(ii) all indices v—!(1) <4 <w~!(1) — 1 are ascents in v,
(iii) all indices v=*(1) <i < w~!(1) — 1 are descents in w, and
(iv) (6(v),d(w)) is very well-aligned.

Lemma 4.14. Fix A - n and let 7" € RT(\). Then (vr, wr) is very well-aligned.

Proof. Let k := A\;. By Corollary 4.12, we know that v;l(i) = m; and w;l(i) =M, forl <i<Ek,
and m; < M; for 1 < i < k. We further know that all indices in the range [m;, M; — 1] are ascents in
vy and descents in wr. In particular, Conditions (i)—(iii) hold for (§*(vr), §'(wr)) all 0 < i < k — 1.
To establish the claim observe that

(5k (UT)7 5" (wT)) = (Ucrop(T)vwcrop(T))'

We briefly explain this equality. Note that v.,(7) can be read off from evac(crop(T')), but this
latter tableau equals crop(evac(T')). Cropping the first row of evac(T"), whose entries correspond to
the positions of 1 through k in vy, and then standardizing the remaining entries to obtain an SYT
then amounts to applying 8 to vy Similarly, the positions of 1 through % in wr, considered from
the right, are determined by the first row of T'. Cropping the first row of 7" and then standardizing
amounts to applying §* to wr-. O

Example 4.15. For the Richardson tableau 7" in Example 4.2, we have crop(7) and evac(crop(T))
equaling the following tableaux.
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It follows that

Veropry =1 4 2 6 3 5 7
Weopry =6 1 4 2 7 5 3,

which the reader can check agree with §°(vr) and 6°(wr) respectively from Example 4.5.

Example 4.16. We borrow the the well-aligned pair (v, wr) = (1523467, 7123654) from [24, Ex-
ample 10.9] for ease of comparison, and use Theorem 3.4 to compute the expansion [X/] =
> ues, CuwlXu]. We have vl = 4512367 and vlw;twr = 7412653. The Schubert polynomial in-
dexed by vr is the Schur polynomial s(4)(z1, 72) whereas the Schubert polynomial indexed by U}
is the dominant monomial z?23. For w, = n(n — 1)---1, by the identity ¢, = ¢¥s"  whenever

u,v,w € S, we have

61)6111011) = § cg7wow6u = Z Clwu,,u,vgu + § C%,wowGWOU'
u uESn UESoo\Sn

and so applying this for v = v:TF and w = v:';v; Lwr, if we restrict this sum to those u € S,, we can

read off the well-aligned Schubert coefficients (after reindexing the permutations u — w,u). From
Figure 5 it follows that

Gus12367 - G1476235 = Guar65123 + S5763124 + S6735124 + G6752134 + -+ -

where we omitted the Schuberts &, with u & S7, so
(X = [Xua123765] + [X3125764] + [X2153764) + [X2136754]

We note that prior to our work, the cases for which [X'T] was computed combinatorially in
the Schubert basis was limited to tableaux of hook shape [20]; see also work of Graham—Zierau
[19] which applies localization techniques but the expressions produced are not combinatorial.
We briefly recall the combinatorial interpretation in [20], recast in the language of Giiemes tableaux
in [24, §10]. Given a Richardson tableau 7" of hook shape, the full expansion involves counting
certain semistandard tableaux of staircase shape whose (column) reading words give reduced
words. Our expansion, on the other hand, involves counting certain saturated chains in k-Bruhat
order, for varying k.

Problem 4.17. Find a bijection between the chains in k-Bruhat order that arise in this way for well-
aligned pairs (v, wr) associated to a Richardson tableaux 7' of hook shape and Giiemes tableaux.

For u = vy for T a Richardson tableau of hook shape of size n, the permutation u' is relatively
straightforward to compute- it is given by a shuffle of the letters k,k 4+ 1,...,nand 1,2,...,k —
1, where the letters in the former appear in increasing order and those in the latter appear in
decreasing order, and the first letter of u is k. It is easily checked that this is dominant.
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6752134 4765123 5763124 6735124
3764125 4762135 6724135 5672134 3675124 3756124 5726134 5761234 6741235
| | /////3//}' ‘\\\E;\\\ i4:i:j:fjjjij’/jl////////,' 2 2
2576134 4716235
2 2 2

1476235

FIGURE 5. The product 2323&1476235 computed via Corollary 3.3. The green chains
in 2-Bruhat order are the ones that contribute. At every level we have only recorded
terms indexed by permutations in S7.

5. THE GEOMETRY OF WELL AND VERY-WELL ALIGNED RICHARDSON VARIETIES

We refer the reader to [3, 8, 49] for detailed treatment of notions/results in Schubert calculus
that we employ but do not define. Throughout we work over C. We denote by GL,, the group of
invertible n x n matrices. Let B and B~ be the subsets of GL,, comprising upper triangular and
lower triangular invertible n x n matrices respectively. A flag in C" is a sequence of subspaces
Vic Voo CV, = C"where dim(V;) = i. The complete flag variety Fl,, is the set of all flags
in C". The group GL,, acts transitively on Fl,, via its natural action on C". The stabilizer of the
standard flag E, = E1 C Ey C --- C E, = C", where E; = span{e,...,e;}, is B. Thus we have
Fl, ~ GL, /B.

For v, w € S,,, we will denote the Schubert cycles in F1,, by X% = BwB, the opposite Schubert cycles
by X, = B~vB, and for v < w the Richardson varieties X* == X" N X, = BwB N B~vB. By work
of Borel [11], we have an identification H*(Fl,) = Z[z1,...,7,]/ Sym;” where Sym is the ideal

generated by positive degree symmetric polynomials in z; through z,. The classes of Schubert
cycles [X"] € H4(F1,) for w € S,, form a homology basis Kronecker dual to the cohomology basis
{&y(x1,...,2,) | v € Sy} C H*(FL,) of Schubert polynomials [29], which themselves represent
the Poincaré dual classes to the opposite Schubert cycles X, in H*(F1,).

We have an expansion

X5 = ey [X"]
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where c;/, are the generalized Littlewood-Richardson coefficients appearing in 6,6, = ) ¢}/ ,&y.
More generally, for f € H*(Fl,) we have

degyw f =evo0u(Syf) = @, f.

In particular, degxw &y = ¢/,

5.1. Translation equivalence for well-aligned Richardson varieties. Recall that the generalized
Pliicker functions of M € GL,, are given by

1,k
Pl, (M) = [ ] det Myt o
=1

where M# is the submatrix of M determined by the columns from A and the rows of B. We have
Pl,(w'M) = £ Pl (M), Pl,(Bw'B) = 0 whenever w £p w’, and BwB C {Pl,, # 0}. The
characterization that follows is well known; we include a proof for completeness.

Lemma 5.1. If v <p w then we can write
Xy = () {PL.=0}
ug[v,w]

Proof. 1t suffices to show the statement for X" and X,. We do this for X%, the case for X, is
similar. We have to show that

X = (] {Pl. =0}

uLpw

Recall the Bruhat decomposition GL,, /B = | |,cg, BuB. Note that X* and (1, ,,,{Pl. = 0} are
both closed subvarieties containing BwB, and disjoint from BuB for v £p w. The claim now
follows from the equalities:

XY = BwB = U BubB. O

u<gw
Proposition 5.2. If [v, w] is translation-equivalent to [v',w'], then X% = v'v~1 X,

Proof. This follows from the Pliicker vanishing characterization in Lemma 5.1 and the S,,-equivariance
of generalized Pliicker functions up to sign. O

Corollary 5.3. If (v, w) € WA, then (vTv~1)X¥ = X4V '*. In particular [X*] = [X%'] € Hq(FL,).
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5.2. Building well-aligned Richardsons from pattern maps and geometric push-pull. Let ¥ ; :
GL,,—1 /B — GL,, /B be the which takes M B to M’'B where M’ is obtained by including M into
an n X n matrix avoiding the first row and :"th column, and then inserting a 1 into the first row
and 7'th column. For example

L)

)

c d

010
a b
] =la 0 b
c 0 d
This is an inclusion map, and as shown in [34, Theorem 4.4] we have
w _ yei(w)
vy, X, = Xai(w).
Furthermore, we have U! : H*(Fl,,) — H*(Fl,_1) is given by R;, so for f(z1,...,z,) € H*(Fl,)
we have
deg ;) f = degxw Rif.
i(v) v
Let m; : GL, /B — GL,, /P, be the projection map where P; is the minimal parabolic subgroup

associated to s;. Then by the classical computation of Bernstein—Gelfand-Gelfand [7] we have
(m3)* (7))« f = O0;f. We claim that if 7 is an ascent of both v and w we have

-1 __ yw _ ws;
m, omX, = X,

with 7| x» generically injective. Indeed, we have L X% ¢ Xwsi gand s 1. X, C X, which
shows the left hand side is contained in the right hand side, and the identity ®}/* = ®70;, verified
in the proof of Lemma 3.7 implies that (7})(m;).[X,’] = [X'*]. In particular, we have

degyws: f = degxw i f.

Therefore because a well-aligned pair can be obtained by successively applying either (v, w) —
(giv, g;w) and (v, w) — (v, ws;) with ¢ an ascent of both v, w, we see that X’ can be obtained as
a successive application of ¥y ; and 7, L. Furthermore, OV f = deg Xw f, so the derivation of Y
as a successive application of operations R; and 0; follows geometrically from the corresponding
degree map facts above.

5.3. Smoothness and very well-aligned-ness. We revisit another result of Karp—Precup in light
of ours and offer a generalization. In [24, §9] they establish that the Richardson variety X,’7 is
smooth for all Richardson tableaux 7. We show that this smoothness property extends to Richard-
son varieties coming from very well-aligned pairs. Our proof also involves verifying [24, Corol-
lary 9.5] which gives a criterion for smoothness of Richardson varieties by reducing it to testing
the smoothness at two special T-fixed points.

Fact 5.4 ([24, Corollary 9.5]). X’ is smooth if and only if it is smooth at the points vB and wB.
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We will also need Deodhar’s criterion [13] for smoothness at T-fixed points of X,’. Recall that
we denote t,, € S, for the transposition swapping a and b, where by convention we always set
a <b.

Proposition 5.5 ([13]). For uB € X, we have

#H{tap € S | uty € [v,w]} > l(w) — £(v)
with equality if and only if X}’ is smooth at uB3.
Lemma 5.6. If v is dominant then X’ is smooth at wB.

Proof. The boxes in the Rothe diagram R(w) are in bijection with the inversions ¢, of w, i.e. with
wtqy, <p w, by taking such a transposition to the box at position (w(b), a). Furthermore the ¢(v)-
many boxes in the Rothe diagram R (v) are inversions ¢,;, such that wt,;, has its permutation matrix
occupy a box in R(v), and hence v £p wty, by (2.1). We conclude by Proposition 5.5 that the
remaining (/(w) — ¢(v))-many inversions of w have v <p wty, and X' is smooth at wB. O

Remark 5.7. Geometrically, if v is a dominant permutation then X, C Fl, is the subvariety of
those gB where the entries of g inside the Rothe diagram are set to zero (this follows from the
rank condition characterization of Schubert varieties and is the key observation in the study of
Ding partition varieties, see e.g. [15, 14]). In the Bruhat decomposition GL,, /B = |_|u6 s, BuB, we
have BuB = A" as the set of matrices which are 1 in the entries (u(i), i), indeterminate entries
in the boxes of the Rothe diagram R (u), and zero elsewhere. Therefore we have

XV = |_| X, N BuB = |_| X, N BuB

u<pw u€lv,w)

and X, N BuB = A‘"~v) is the coordinate subspace of BuB = A‘(*) where we set the entries
in R(v) to 0 (this is well-defined by (2.1)). This gives an affine paving of Richardsons X’ with v
dominant, and because X, N BwB is a dense open chart around w isomorphic to ALW) L) thig
gives an alternate geometric way to verify that wB € X is smooth.

Theorem 5.8. Let (v, w) € WA,, be very well-aligned. Then the Richardson variety X’ is smooth.

Proof. Let [v/,w'] be translation-equivalent to [v, w] with v/ dominant. Then X% = v(v/)~* X%, and
so X is smooth at wB since X% is smooth at v'B by Lemma 5.6.

Since (ww,, vw,) is also well-aligned, we know that the interval [ww,, vw,] is translation equiv-
alent to [w"w,, v"w,] with w"w, a dominant permutation. Therefore vw,B is smooth in X" by
Lemma 5.6. Now, right multiplication by w, is an anti-isomorphism from [ww,, vw,| to [v, w]. So,
by Proposition 5.5, we get that X}’ is smooth at vw, B if and only if X’ is smooth at wB. Because
X}’ is smooth at vB and wB, we conclude by Fact 5.4. O
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6. ODDS AND ENDS

To conclude this article we collect some numerological observations that may be of interest.
One may ask for quantitative information about how many Schubert structure coefficient have we
computed. Put differently, one may inquire about the number | WA,, | of well-aligned pairs for a
given nonnegative integer n. We offer the following conjecture.

Conjecture 6.1. Let W(x) denote the exponential generating function:

2 3 1'4 5 6 7

" z! T T T T T
W(z) = n;) [ WA, |0 = 1157 4+ 357 + 1750 + 1477 + 1729 + 25827 + 4685935 + -

Then W(z) satisfies the following functional equation:

W’($) = M
2—-W(x)

The sequence in question matches [41, A234289] for 0 < n < 7. Both sides of the functional
equation can be assigned combinatorial meaning easily, which in turn suggests there is a recursive
decomposition of “pointed” well-aligned pairs that witnesses the functional equation.

As seen before, the well-aligned pairs in WA!3? are crucial for us. The cardinality of this set
equals (2n — 1)!l; see Remark 2.6. Nevertheless there is a curious observation to be made. It is
the case that there exist (v, w), (v/,w") € WAL3? such that the Bruhat intervals [v, w] and [/, w'] are
translation-equivalent. So one may quotient WA'3? further by this equivalence and inquire about
the resulting number of equivalence classes. We make the following conjecture.

Conjecture 6.2. The total number of equivalence classes of translation-equivalent intervals is
given by [41, A111088], which counts circular planar electrical networks [2].
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