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ABSTRACT. We compute the Schubert cycle expansion of those irreducible components of Springer
fibers equal to Richardson varieties. This generalizes work of Güemes in the case of a hook shape
and answers a question of Karp–Precup.

Let B,B− ⊂ GLn denote the Borel and opposite Borel subgroups of upper triangular and lower
triangular matrices respectively, and we denote by b, b−, gln for the respecively Lie algebras. Karp
and Precup [24] recently studied the interplay between two distinguished classes of subvarieties
of the complete type A flag variety Fln = GLn /B.

(1) The first class are the Springer fibers

Bλ = {gB ∈ Fln | g−1Mg ∈ b},

for M ∈ gln a fixed nilpotent operator of Jordan type the partition λ ⊢ n [44]. The irre-
ducible components are indexed by standard Young tableaux (SYTs) of shape λ [43], and
Springer [45] showed the cohomology rings of Springer fibers carry an action of the sym-
metric group which is irreducible in the top dimension, connecting the geometric study of
Springer fibers to representation theory.

(2) The second class are the Richardson varieties

Xw
v := BwB ∩B−vB,

indexed by pairs of permutations (v, w) where v ≤B w in Bruhat order. These varieties are
irreducible, and are obtained by intersecting Schubert varieties Xw = BwB with opposite
Schubert varieties Xv = B−vB. Richardson varieties play a crucial role in the connection
between algebraic geometry and Schubert calculus because of the identity

[Xw
v ] =

∑
u

cwuv[X
u] ∈ H•(Fln)

which decomposes the homology class of the Richardson variety into the homological basis
of Schubert varieties, with coefficients cwuv the structure constants for Schubert polynomial
multiplication SuSv =

∑
w c

w
uvSw. Showing the nonnegativity of cwuv via combinatorial

means for arbitrary triples (u, v, w) is an outstanding open problem in algebraic combina-
torics [48, Problem 11]. The answer, outside of the celebrated Littlewood–Richardson rule
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for Grassmannian permutations [27, 30, 40], is known in special cases. See for instance
[18, 21, 22, 28, 38] for manifestly nonnegative rules, [36] for a signed rule, and [37] for a
complexity-theoretic perspective.

Motivated by Lusztig’s study [33] of the totally nonnegative Springer fiber, Karp and Precup clas-
sified the SYTs which they called Richardson tableaux that index irreducible components of Springer
fibers which are equal to Richardson varieties [24, Theorem 1.5].

It is unknown what the coefficients of the expansion of arbitrary Springer fibers and their ir-
reducible components into Schubert cycles are in full generality. For tableaux of hook shape the
decomposition was determined by Güemes [20], and all such tableaux are Richardson tableaux
[24, §10]. In [24, Problem 10.4] Karp and Precup ask in the special case of a Richardson tableau
T whether there was a combinatorial way to compute the Schubert cycle expansion of the corre-
sponding Springer fiber component/Richardson variety XwT

vT
. We answer this question:

Theorem 0.1. Given a Richardson tableau T , there is a combinatorial rule for computing cwT
u,vT

.

Our strategy is to describe a family of pairs of permutations (v, w) we call well-aligned, for which
we can combinatorially compute the Schubert structure coefficients cwu,v, and show that (vT , wT )

are well-aligned when T is a Richardson tableau. For pairs of well-aligned permutations we give
two distinct combinatorial ways of computing these coefficients.

(1) One way is to show that well-aligned pairs give Bruhat intervals [v, w] that are translation-
equivalent to [v′, w′] with v′ a 132-avoiding permutation, which guarantees that cwu,v = cw

′
u,v′ ,

and then using the fact that Sv′ is a dominant monomial we can compute the Schubert
structure coefficients by iterating the “simplest” case of Sottile’s Pieri rule [42].

(2) Our second way is to show that the cwu,v can be obtained by successively applying Schubert
positive maps to Su, one of which is the divided difference operation ∂if = f−si·f

xi−xi+1
and

the other is the Bergeron–Sottile map [6, 34]

Rif = f(x1, . . . , xi−1, 0, xi, xi+1, . . .).

Both ways have geometric interpretations. The first method corresponds to showing that Xw
v

is a left-translate of Xw′
v′ by the permutation matrix for v′v−1. The second method corresponds

to geometrically building Xw
v in a manner similar to Schubert varieties via geometric push-pull

operations, interspersed with inclusions of flag varieties into larger flag varieties associated to
Bergeron–Sottile pattern maps [6], a technique that has been exploited by the authors in collabo-
ration with Bergeron, Gagnon, and Nadeau in a series of papers studying quasisymmetric coin-
variants in algebraic geometry [4, 5, 34, 35].

Finally, Karp and Precup show that XwT
vT

are smooth. We generalize this result by showing that
the pairs (vT , wT ) satisfy a finer property we call very well-aligned, and we show for very well-
aligned pairs that Xw

v is always a smooth variety.
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Outline: In Section 1 we collect the combinatorial background. In Section 2 we introduce our
central combinatorial object, well-aligned pairs, and then proceed to establish that the Bruhat in-
terval [v, w] coming from a well-aligned (v, w) is equivalent by left translation to an interval [v′, w′]

where v′ is 132-avoiding. In Section 3 we give two different nonnegative combinatorial expansions
for cwu,v for well-aligned (v, w). In Section 4 we show that the pairs of permutations indexing the
Richardson varieties of Karp and Precup are well-aligned. In Section 5 we reinterpret our combi-
natorial results geometrically. We conclude with some enumerative speculation in Section 6.

Acknowledgements. We are very grateful to Martha Precup and Steven Karp for discussions
about their work, for sharing notes as well as an early draft, and for directing us to relevant por-
tions of their article. We are also grateful to Allen Knutson for helpful discussions on descent
cycling. Finally, VT is particularly thankful to the organizers of the “Combinatorics and Enu-
merative Geometry” workshop held at the IAS in February 2025, as it provided ample food for
thought.

1. COMBINATORIAL BACKGROUND

Throughout [n] = {1, . . . , n} for n a positive integer. We refer the reader to standard texts [17, 47]
for any undefined terminology.

1.1. Young tableaux. Recall that a partition λ is a weakly decreasing sequence of positive integers.
We denote the size of λ, i.e. the sum of its entries by |λ|. If |λ| = n, we denote this by λ ⊢ n. We
represent λ using its Young diagram in English notation. Given partitions µ ⊆ λ, we define the skew
shape λ/µ as the set-theoretic difference of the Young diagrams of λ and µ. A column strip is a skew
shape with no two boxes occupying the same row.

Given λ ⊢ n, a standard Young tableau (henceforth SYT) of shape λ is a filling of the Young
diagram of λ bijectively with numbers drawn from [n], so that the entries increase strictly from
left to right along rows and from top to bottom along columns. We let SYT(λ) denote the set of
standard Young tableaux of shape λ.

Given T ∈ SYT(λ) we define two reading words associated with it. The reading word is obtained
by reading the entries of the tableau row-wise bottom to top, with each row read left to right. The
top-down reading word is defined similarly except that the rows are read from top to bottom.

We now describe Schützenberger’s evacuation operator [39]. Given T ∈ SYT(λ), define the
evacuation tableau evac(T ) ∈ SYT(λ) as follows. Delete the entry in the top left cell of T and
decrement the remaining entries by 1. Then perform jeu-de-taquin slides to rectify the resulting
Young tableau of skew shape thereby obtaining an SYT T ′ on n − 1 boxes with shape λ \ {c},
where c is a corner box in λ. We then place n in c and consider it “frozen” for the remainder of
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the procedure. We repeat this with T ′ and continue until all boxes are frozen. The final tableau is
evac(T ).

Example 1.1. Shown below are an SYT T and its evacuation.

1 2 5 7 10

3 8 11

4 9

6 12

1 4 7 9 12

2 5 8

3 10

6 11

The reading word of T and the top-down reading word of evac(T ) are as follows:

6 12 4 9 3 8 11 1 2 5 7 10

1 4 7 9 12 2 5 8 3 10 6 11.

1.2. Permutations. We denote the symmetric group comprising permutations of [n] by Sn. It is
generated by the simple transpositions si = (i, i+ 1) for 1 ≤ i ≤ n− 1. A reduced word for w ∈ Sn

is a minimal length expression w = si1 · · · siℓ as a product of simple transpositions. An inversion
in w ∈ Sn is an ordered pair (i, j) where i < j and w(i) > w(j). The length of w, denoted by ℓ(w),
is the number of inversions in w. A descent of w is an index i ∈ [n − 1] such that w(i) > w(i + 1).
We denote the set of descents of w by Des(w). We will typically write our permutations in one-line
notation, e.g. w = w(1) · · ·w(n).

Definition 1.2. The Bruhat order ≤B on Sn is obtained as the the transitive closure of the cover
relation ⋖B defined by u⋖B v if and only if ut = v, where t is a transposition and ℓ(v)− ℓ(u) = 1.

Since we need the tableau criterion [10] for Bruhat order, we recall it here.

Theorem 1.3 (Tableau criterion). Given u, v ∈ Sn, we say that u ≤B v if and only if for all ui,k ≤ vi,k

for all 1 ≤ k ≤ n, where ui,k is the i-th entry in the increasing rearrangement of u(1), . . . , u(k) and
similarly for vi,k. In fact, it suffices to take k ∈ Des(u) to check these inequalities, a statement
known as the improved tableau criterion [9].

Since we will need to apply the aforementioned criterion to establish incomparability in Bruhat
order, the following definition will be useful.

Definition 1.4. If u ≰B v, then we call p ∈ Des(u) a witness if ui,p > vi,p for some 1 ≤ i ≤ p.

Given u ≤B v, we let [u, v] be the interval in Bruhat order containing w satisfying u ≤B w ≤B v.
We say that Bruhat intervals [u, v] and [p, q] are translation-equivalent if

{u−1w | w ∈ [u, v]} = {p−1r | r ∈ [u, v]}.

We record here a simple criterion that allows for producing certain translation-equivalent pairs.
For the general statement for Coxeter groups we refer the reader to [12, Proposition 1.9] or [16].
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Proposition 1.5. Suppose v ≤B w where v, w ∈ Sn. Suppose 1 ≤ i ≤ n− 1 is such that

(i) v−1(i) < v−1(i+ 1),
(ii) w−1(i) < w−1(i+ 1),

(iii) siv ≰B w.

Then left multiplication by the simple transposition si induces a poset isomorphism between the
Bruhat intervals [v, w] and [siv, siw].

1.3. Rothe diagrams and dominant permutations. Consider an n × n collection of boxes with
rows labeled from 1 to n top to bottom and columns labeled from 1 to n left to right. The Rothe
diagram of w ∈ Sn is the collection of boxes

R(w) = {(w(j), i) | i < j, w(i) > w(j)}.

Alternatively, R(w) is obtained by marking all boxes bi = (w(i), i) and crossing out all boxes below
and to the right of bi. The boxes that do not get crossed out form R(w). The number of boxes in
R(w) is equal to ℓ(w). See Figure 1 for two examples; the shaded boxes correspond to the cells of
the Rothe diagram.

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

FIGURE 1. The Rothe diagrams for 43152 (left) and dominant 43125 (right).

Definition 1.6. A permutation is 132-avoiding or dominant if there does not exist i < j < k with
w(i) < w(k) < w(j).

It is well known [25] that the set of dominant permutations in Sn is enumerated by the Cata-
lan number Catn := 1

n+1

(
2n
n

)
. Dominant permutations have Rothe diagram a Young diagram,

whose row lengths are given by the Lehmer code (k1, . . . , kp, 0, . . . , 0) of v−1, i.e. with ki =

#{j > i | v−1(j) > v−1(i)}. See the right panel in Figure 1 for an example. In this case, we
have v−1 = 34215 and so its Lehmer code is (2, 2, 1, 0, 0).

1.4. Schubert polynomials. We denote by S∞ = ⟨s1, s2, . . .⟩ the permutations of N with finite
support, with si = (i, i+ 1) the adjacent transpositions. We view Sn ⊂ S∞ as the subgroup gener-
ated by s1, . . . , sn−1. We denote by Z[xn] := Z[x1, . . . , xn], and Z[x] := Z[x1, x2, . . .] =

⋃∞
n=1 Z[xn].
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The group S∞ acts on Z[x] by having si swap xi and xi+1. The divided difference operations are de-
fined by ∂if = f−sif

xi−xi+1
. These satisfy the nil-Coxeter relations ∂i∂j = ∂j∂i for |i− j| ≥ 2, ∂2i = 0, and

the braid relations ∂i∂i+1∂i = ∂i+1∂i∂i+1. Because of this, we can define ∂w := ∂i1 · · · ∂ik for any
reduced word decomposition w = si1 · · · sik of w.

The Schubert polynomials {Su | u ∈ S∞} ⊂ Z[x] are the unique homogenous polynomials with
the property that ev0 ∂wSu = δw,u. Alternately, they are characterized by Sid = 1 and

∂iSu =

Susi i ∈ Des(u)

0 otherwise.

If u ∈ Sn and wo = n(n− 1) · · · 1 is the longest word in Sn, then Swo = xn−1
1 xn−2

2 · · ·xn−1, and we
may explicitly compute Su = ∂u−1wo

Swo .
We define the generalized Littlewood–Richardson coefficients cwu,v as the integers arising from the

expansion

SuSv =
∑
w

cwu,vSw.

Alternately, we may write cwu,v = ev0 ∂w(SuSv). It is known that if u ̸≤B w or v ̸≤B w then cwu,v = 0.
The following fact will be essential for us, and follows from the combinatorial model for com-

puting cwu,v via Monk’s rule in the Bruhat interval [v, w].

Fact 1.7. If [v, w] is translation equivalent to [v′, w′] then cwu,v = cw
′

u,v′ .

2. WELL-ALIGNED PAIRS

The following map that inserts 1 into a permutation shall be relevant to us. Given a permutation
w ∈ Sn−1 and a positive integer j ∈ {1, . . . , n}, let εj(w) ∈ Sn be the permutation obtained
by inserting a 1 in position j in w and then incrementing the previously existing numbers by 1.
Similarly, given w ∈ Sn we define δ(w) ∈ Sn−1 to be the permutation obtained by deleting 1 from
w and then decrementing the remaining numbers by 1. Alternatively

(εiw)(j) =


w(j) + 1 j < i

1 j = i

w(j − 1) + 1 j > i

δ(w)(i) =

w(j)− 1 j < w−1(1)

w(j + 1)− 1 j ≥ w−1(1).

Writing permutations in one line notation, we have for instance that ε1(25143) = 136254, ε2(25143) =
316254, and δ(25143) = 1432.

Definition 2.1. A pair of permutations (v, w) ∈ Sn × Sn is aligned if the following hold:

(1) v−1(1) ≤ w−1(1),
(2) all indices v−1(1) ≤ i ≤ w−1(1)− 1 are ascents in v, i.e. satisfy v(i) < v(i+ 1).
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We call (v, w) ∈ Sn × Sn is well-aligned if it is aligned and (δ(v), δ(w)) is well-aligned. We let
WAn ⊂ Sn × Sn denote the set of well-aligned pairs.

Example 2.2. We have (15726348, 75182364) is aligned because 1 < 5 < 7, and is in fact well-
aligned, as successive applications of δ yield

(15726348, 75182364) 7→ (4615237, 6471253) 7→ (354126, 536142) 7→ (24315, 42531)

7→ (1324, 3142) 7→ (213, 231) 7→ (12, 12) 7→ (1, 1).

Example 2.3. A class of well-aligned pairs arises organically in a geometric context in the authors’
previous work [34] joint with Nadeau. Let c = sn−1 · · · s2s1 ∈ Sn be a standard Coxeter element.
Then (v, vc) is well-aligned for all v ∈ Sn satisfying v(n) = n.

The main result of this section will be Proposition 2.12, that for a well-aligned pair (v, w), there
is a distinguished dominant permutation v↑ with [v, w] translation-equivalent to [v↑, v↑v−1w].

2.1. Translation-equivalent Bruhat intervals and well-aligned pairs. Our next lemma relates
well-aligned pairs to Bruhat order.

Lemma 2.4. For v, w ∈ Sn, if (v, w) ∈ WAn then v ≤B w.

Proof. We establish the claim by induction on n. Let i = v−1(1) and j = w−1(1), so that v =

si · · · sj−1εj(δ(v)) and w = εj(δ(w)). We have

v ≤B vsi ≤B · · · vsi · · · sj−1 = εj(δ(v)) ≤B εj(δ(w)),

where the first string of inequalities is because (vsi · · · sk−1)(k) = v(i) = 1 < (vsi · · · sk−1)(k + 1)

and the last inequality is by the inductive hypothesis δ(v) ≤B δ(w) and the fact that εj preserves
the Bruhat order by the tableux criterion. □

The next result provides a converse when v is dominant.

Lemma 2.5. Let v ∈ Sn be dominant. Then v ≤B w, if and only if (v, w) ∈ WAn.

Proof. The previous lemma shows the reverse implication, so it remains to establish the forward
implication.

Let j = v−1(1). Since v is dominant we must have that 1 = v(j) < v(j + 1) < · · · < v(n). It is
well known (see for instance [23, §2]) that for v dominant,

(2.1) v ≤B w ⇐⇒ R(v) ⊆ R(w).

In particular w−1(1) ≥ j, and so (v, w) is aligned.
To finish the proof we need to show that (δ(v), δ(w)) ∈ WAn−1. By induction it suffices to show

that δ(v) ≤B δ(w). Note that δ(v) is dominant. Furthermore, since R(v) ⊆ R(w), we have that
R(δ(v)) ⊆ R(δ(w)). This implies that δ(v) ≤B δ(w) as desired. See Figure 2 for an illustration of
the inclusion of the Rothe diagrams. □



8 HUNTER SPINK AND VASU TEWARI

FIGURE 2. The gray shaded cells correspond to the Rothe diagram of the dominant
permutations v = 4521367 and δ(v) = 341256 respectively, while the union of the
gray and blue shaded cells correspond to the Rothe diagrams of w = 5724316 and
δ(w) = 461325 respectively.

Define
WA132

n := {(v, w) ∈ WAn | v is dominant}.

Remark 2.6. Pairs (v, w) ∈ Sn × Sn with v ≤B w where v is dominant are in bijection with match-
ings on 2n points [23, §2]. Thus |WA132

n | = (2n− 1)!!.

We emphasize a special instance of 132-patterns. Given w ∈ Sn we call 1 ≤ i ≤ n − 1 critical
if w possesses a subsequence of the form · · · i · · · j · · · (i + 1) · · · where j > i + 1. We let the set of
critical values of w be denoted by C(w). It is straightforward to check that

C(w) is empty ⇐⇒ w is dominant.

Lemma 2.7. Suppose (v, w) ∈ WAn. Then we have w−1(i) < w−1(i+ 1) for all i ∈ C(v).

Proof. We first consider the case i = 1. Since (v, w) is aligned, the criticality of 1 implies that we
must have w−1(1) < v−1(2). We claim this implies that w−1(1) < w−1(2). Indeed, if w−1(1) >

w−1(2) then (δ(v), δ(w)) cannot be aligned which contradicts the well-aligned-ness of (v, w).
Now suppose i > 1. Note that if i ∈ C(v), then i−1 ∈ C(δ(v)). Since (δ(v), δ(w)) is well-aligned,

our inductive hypothesis implies that (δ(w))−1(i− 1) < (δ(w))−1(i). But then we necessarily have
w−1(i) < w−1(i+ 1). □

Example 2.8. For (v, w) = (15726348, 75182364) ∈ WA8, we have C(v) = {1, 2, 5}. It is easily
checked that for each i ∈ C(v) we have i lying to the left of i+ 1 in w.

Lemma 2.9. Suppose (v, w) ∈ WAn. Then we have that (siv, siw) ∈ WAn for all i ∈ C(v).

Proof. It is straightforward to see that (siv, siw) is aligned, so it remains to show (δ(siv), δ(siw)) ∈
WAn−1. We show this by induction on i. For i = 1 , begin by observing that δ(s1v) and δ(s1w)
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are obtained by deleting the 2 from the one line notation of s1v and s1w respectively and then
decrementing all entries greater than two by one. This implies that (δ(s1v), δ(s1w)) is aligned.
Furthermore we have

(δδ(s1v), δδ(s1w)) = (δδ(v), δδ(w)),

and the latter is well-aligned because (v, w) is. Thus (δδ(s1v), δδ(s1w)) ∈ WAn−2, which in turn
implies (δ(s1v), δ(s1w)) ∈ WAn−1 and concludes the base step of our induction.

Now suppose i > 1. Note that (δ(siv), δ(siw)) = (si−1δ(v), si−1δ(w)). Furthermore, observe
that (δ(v), δ(w)) ∈ WAn−1 with i − 1 ∈ C(δ(v)). The inductive hypothesis thus implies that
(si−1δ(v), si−1δ(w)) ∈ WAn−1, and therefore that (δ(siv), δ(siw)) ∈ WAn−1. This concludes the
induction step. □

Lemma 2.10. Suppose (v, w) ∈ WAn. For all i ∈ C(v), we have that [siv, siw] is translation-
equivalent to [v, w] .

Proof. We verify conditions in Proposition 1.5(i)–(iii). Condition (i) holds because i ∈ C(v). Con-
dition (ii) is the content of Lemma 2.7. It remains to check Condition (iii) that siv ≰ w.

Suppose i = 1. Let j = v−1(2) and k = w−1(1), and note that 1 ∈ C(v) implies that j > k.
Therefore min{(s1v)(1), . . . , (s1v)(k)} = 1 < 2 = min{w(1), . . . , w(k)} and we conclude s1v ≰B w

by the tableau criterion.
Now suppose i > 1. Then i− 1 ∈ C(δ(v)) so our inductive hypothesis yields si−1δ(v) ≰B δ(w).

Let p ∈ Des(si−1δ(v)) be a witness for this incomparability; see Definition 1.4. Suppose that

siv = εa(si−1δ(v)) and w = εb(δ(w)).

Note that a ≤ b since (v, w) is aligned. If furthermore a ≤ p then b ≤ p+1 by alignedness of (v, w),
so p+1 ∈ Des(siv) is a witness for siv ≰B w. On the other hand if a > p, then b > p by alignedness
of (v, w) so p ∈ Des(siv) witnesses the incomparability siv ≰B w. □

We illustrate various aspects of the preceding lemmas with the following example.

Example 2.11. For (v, w) = (15726348, 75182364) ∈ WA8, we have C(v) = {1, 2, 5}. It is easily
checked that s1v ≰B w.

Consider i = 2. We will show how a witness for s1δ(v) ≰B δ(w) produces one for s2v ≰B w. We
have δ(v) = 4615237 and δ(w) = 6471253. Since the first four entries of s1δ(v) in increasing order
2, 4, 5, 6 while those of δ(w) are 1, 4, 6, 7, we have that p = 4 witnesses s1δ(v) ≰B δ(w). Now note
that

s2v = 15736248 = ε1(s1δ(v)) and w = ε3(δ(w)).

Therefore, p+ 1 = 5 witnesses s2v ≰B w.
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Finally, consider i = 5. Since the first two entries of s4δ(v) = 5614237 in increasing order are 5, 6

while those of δ(w) are 4, 6, we have that p = 2 witnesses s4δ(v) ≰B δ(w). Now note that

s5v = 16725348 = ε1(s4δ(v)) and w = ε3(δ(w)).

Therefore, p+ 1 = 3 witnesses s5v ≰B w.

2.2. Labeled plane binary trees and dominant permutations. Recall that a plane binary tree T is a
rooted tree where every internal (i.e. non-leaf) node has a left and right subtree. We denote the set
of such trees with n internal nodes by Tn. A decreasing labeling L of T ∈ Tn is a bijection of the
internal nodes with [n] such that whenever w is a descendent of v, the label of w is less than the
label of v. We now recall a folklore bijection [46, pp. 23–24]

Sn → {(T,L) | T ∈ T and L is a decreasing labeling of T}

w 7→ (ψ(w),L(w))

though we follow the conventions in [31, §2.4].
The bijection is obtained by recursively applying the following procedure, starting from the

one-line notation w(1) · · ·w(n) of w: for a word of distinct numbers z we write z = z(1)mz(2) with
m = max(z) and associate to it the tree whose root is labeled m and whose left and right subtrees
are given recursively by applying this procedure to the words z(1) and z(2) respectively.

Given T ∈ Tn, consider the fiber

ZT = {w ∈ Sn | ψ(w) = T}.

It is well known that ZT has a unique maximal element w↑ under weak order, characterized by
the fact that it is the unique dominant permutation in ZT (see [32, Theorem 2.5] and also [1, §1.2]).
In particular for dominant permutations we have w = w↑. We can describe w↑ explicitly as the
unique permutation such that T (w) has the property that for any node v, the smallest label in the
left subtree of v is greater than the largest label in the right subtree of v. Figure 3 shows an unla-
beled plane binary tree T on the left and the set ZT on the right, with the dominant permutation
highlighted.

T = ZT = {2143, 3142, 3241}

FIGURE 3. A plane binary tree T and the set ZT .

Note that i ∈ C(w) is equivalent to stating that the nodes labeled i and i+1 are incomparable in
T with the node labeled i appearing before that labeled i+1 inorder. Because all linear extensions
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of a poset can be obtained by swapping labels of adjacent incomparable nodes, by repeatedly
applying simple transpositions corresponding to the entries in the critical set we may transform
w to w↑ without altering the underlying tree. Figure 4 illustrates this starting with w = 2143 and
applying swaps corresponding to the critical values.

4 4 4

2

2 21 1 1

3

3

3

T (w) T (s2w) T (s1s2w)

FIGURE 4. Three decreasing trees with the leftmost tree associated to w = 2143 and
the rightmost corresponding to the dominant permutation w↑ = s1s2w = 3241.

We are now ready to prove the main result of this section.

Proposition 2.12. Suppose (v, w) ∈ WAn. Then the following hold.

(1) (v↑, v↑v−1w) ∈ WA132
n .

(2) The intervals [v, w] and [v↑, v↑v−1w] are translation-equivalent.

Proof. If v is dominant then there is nothing to show as v = v↑. Thus we may assume that v is not
dominant, i.e. C(v) ̸= ∅. Pick any i ∈ C(v). Then (siv, siw) ∈ WAn by Lemma 2.9. Furthermore
we know that ℓ(siv) = ℓ(v) + 1 and ℓ(siw) = ℓ(w) + 1. Repeating this procedure eventually
produces a (v′, w′) ∈ WA132

n so that [v′, w′] is translation-equivalent to [v, w]. Since v and v′ are in
the same fiber of ψ, we have v′ = v↑. Both claims now follow. □

Example 2.13. For (v, w) = (15726348, 75182364) ∈ WA8, we have v↑ = 56734128. Proposition 2.12
guarantees that [v, w] is translation-equivalent to [v↑, v↑v−1w] = [56734128, 76583142].

Remark 2.14. We revisit the well-aligned pairs from Example 2.3. In this case, Proposition 2.12
guarantees that the Bruhat interval [v, vc] is translation-equivalent to [v↑, v↑c] where v↑ ∈ Sn is
dominant and satisfies v↑(n) = n as v itself does. In particular there are Catn many such intervals,
and it is a fact they are all pairwise non-equivalent with respect to translation. Translating these
special intervals by (v↑)−1 produces noncrossing partitions, and this connection is the first step
toward understanding quasisymmetry in the context of Fln [5, 34].

3. WELL-ALIGNED SCHUBERT STRUCTURE COEFFICIENTS

Recall that we want to determine the structure coefficients cwu,v where (v, w) ∈ WAn.
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3.1. Coefficients via translation-equivalence. We recall Sottile’s Pieri rule [42] in a special case
as it will be the only combinatorial gadget that we need. We momentarily work in the infinite
symmetric group S∞. For 1 ≤ a < b, let tab ∈ S∞ be the transposition swapping a and b.

Definition 3.1. Given a nonnegative integer k, we say that a permutation u is covered by utab in
k-Bruhat order if a ≤ k < b and ℓ(u tab) = ℓ(u) + 1. The k-Bruhat order u ≤k

B w is obtained as the
transitive closure of these covers.

The saturated chains that matter to us are

u⋖k
B u ta1b1 ⋖

k
B u ta1b1 ta2b2 ⋖

k
B · · ·⋖k

B u ta1b1 · · · takbk = w

where the taibi are transpositions with a1 through ak distinct and each ai ≤ k < bi. We denote a

chain as above by u k→ w.

Theorem 3.2 ([42, Theorem 1]). Fix k a nonnegative integer and let u ∈ S∞. Then we have

x1 · · ·xkSu =
∑
u

k→w

Sw.

Note that for v a dominant permutation with Lehmer code of v−1 given by (k1, . . . , kp, 0, 0, . . . ),
we have

Sv =
∏

1≤i≤p

x1 · · ·xki ,

a dominant monomial. Iterating this Pieri rule tells us how to compute the product of an arbitrary
Schubert polynomial with such a dominant monomial in the Schubert basis. Suppose we have a

sequence k = (k1 ≥ · · · ≥ kp) of nonnegative integers and a permutation u ∈ S∞. We write u k→ w

if there is a sequence of permutations u = u0, u1, . . . , up = w such that ui−1
ki→ ui for 1 ≤ i ≤ p.

Then we have the following corollary.

Corollary 3.3. Let v ∈ S∞ be dominant with Lehmer code of v−1 given by (k1, . . . , kp, 0, 0, . . .).
Then we have

SvSu =
∑
u

k→w

Sw.

In particular the Schubert structure coefficients cwu,v can be computed combinatorially.

We are now in a position to state our main result.

Theorem 3.4. Let (v, w) ∈ WAn. Then

cwu,v = cv
↑v−1w

u,v↑ ,

and these coefficients can be computed combinatorially.
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Proof. The first half of the claim is a consequence of Proposition 2.12 which states that [v, w] and
[v↑, v↑v−1w] are translation equivalent. The second half follows from the fact that the classes of
must agree. Finally, the combinatorial computation of the coefficients cv

↑v−1w
u,v↑

follows from Corol-
lary 3.3 since v↑ is dominant. □

3.2. Coefficients via Bergeron–Sottile maps. We now proceed to study the well-aligned Schubert
structure coefficients cwu,v in a different way, using the Bergeron–Sottile maps. Say that a map
f : Z[x1, . . . , xn] → Z[x1, . . . , xn] is Schubert positive if

f(Su) =
∑

avuSv with avu ≥ 0.

We will say that f is combinatorially Schubert positive if we can combinatorially determine avu to be
nonnegative. The functional Φw

v : Z[x1, . . . , xn] → Z given by

Φw
v (f) = ev0 ∂w(fSv)

is Schubert positive because Φw
v (Su) = cwu,v. To show the combinatorial nonnegativity of cwu,v

for well-aligned pairs (v, w) ∈ WAn is tantamount to showing that Φw
v is in fact combinatorially

Schubert positive.
We will show the combinatorial Schubert positivity of Φw

v by showing it is a composite of com-
binatorially Schubert positive operations. The operations ev0, ∂i are manifestly combinatorially
Schubert positive operations; we will need one further combinatorially Schubert positive opera-
tion.

Definition 3.5. For f ∈ Z[x1, x2, . . . ] and a positive integer i, we define the ith Bergeron–Sottile
operator by

Rif = f(x1, . . . , xi−1, 0, xi, xi+1, . . . , xn−1)

As shown in Bergeron–Sottile [6], the result of applying Ri on Schubert polynomials can be com-
puted combinatorially using Sottile’s Pieri rule – in particular, Ri is a combinatorially nonnegative
operation. We verify this here quickly.

Fact 3.6. R1Sw = δw(1)=1Sδ(w) and

Rif = R1∂1 · · · ∂i−1x1 · · ·xi−1f.

Proof. The statement for R1 is well-known – one way to see it is that because ∂iR1 = ∂i+1 for all i,
we have

ev0 ∂w′R1Sw = ev0 ∂ε1(w′)Sw = δε1(w′),w = δw(1)=1δδ(w),w′ .

For the more general statement, because ∂j commutes with polynomials symmetric in xj , xj+1 we
may rewrite

R1∂1 · · · ∂ix1 · · ·xi−1f = R1∂1x1∂2x2 · · · ∂i−1xi−1f

and then repeatedly apply the (easily verified) fact Rj∂jxi = Rj+1. □
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Lemma 3.7. Consider (v, w) ∈ WAn. Suppose i = v−1(1) and j = w−1(1). Then

Φw
v = Φ

δ(w)
δ(v) Ri∂i∂i+1 · · · ∂j−1.

Proof. If i = j, then Φw
v = Φ

δ(w)
δ(v) Ri is the statement of [34, Proposition 8.1]. Otherwise because

(w, v) is well–aligned we have j − 1 ∈ Des(w) and j − 1 ̸∈ Des(v) so

Φw
v f = ev0 ∂wSvf = ev0 ∂wsj∂jSvf = ev0 ∂wsjSv(∂jf) = Φ

wsj
v ∂j−1f,

where the second last equality follows because Sv is symmetric in the variables xj−1, xj (this idea
is a special case of Knutson’s descent-cycling [26]). Since (v, wsj) ∈ WAn, we can apply this
repeatedly until the positions of 1 align and then apply the case i = j. □

Note that since (δ(v), δ(w)) ∈ WAn−1 if (v, w) ∈ WAn, iterating the previous lemma, we obtain
a formula for ev0 ∂w(SvSu) as a composite of Ris and ∂js applied to Su. We make this explicit in
the case where (v, w) ∈ WA132

n . In this case, this composite can be read off from the skew Rothe
diagram R(w) \ R(v).

Proposition 3.8. Let (v, w) ∈ WA132
n and let D := R(w) \ R(v). For 1 ≤ i ≤ n, let ri be the number

of boxes in the ith row of D, considered from top to bottom. Suppose further that (c1, . . . , cn) =

lcode(v−1). Then we have

Φw
v = ev0 Rcn+1∂cn+1 · · · ∂cn+rnRcn−1+1∂cn−1+1 · · · ∂cn−1+rn−1 · · ·Rc1+1∂c1+1 · · · ∂c1+r1 .

Proof. This is a consequence of the fact that applying δ to each of v and w corresponds to striking
out the top row of the bounding n× n box and then the column containing the 1 in v. □

Example 3.9. Referring back to the well-aligned pair (v, w) = (4521367, 5724316) depicted on the
left in Figure 2, we have

(r1, . . . , r7) = (2, 0, 1, 2, 0, 1, 0) and (c1, . . . , c7) = (3, 2, 2, 0, 0, 0, 0) = lcode(4351267).

Thus we have
Φw
v = ev0 R1R1∂1R1R1∂1∂2R3∂3R3R4∂4∂5.

In particular, the boundary of the grey region correspoding to v determines the subscripts of the
Ris and the skew Rothe diagram D (given by the blue shaded cells) determines the subscripts of
the ∂js.

4. RICHARDSON TABLEAUX AND WELL-ALIGNED PAIRS

The main subfamily of well-aligned pairs in this article comes from a subfamily of SYTs com-
prising Richardson tableaux. Given a partition λ, we let crop(λ) denote the partition obtained
by omitting the first row of λ. For T ∈ SYT(λ), we let crop(T ) denote the SYT of shape crop(λ)

obtained from the subtableau of T determined from rows 2 and below, where we naturally stan-
dardize said filling so that the entries are precisely {1, . . . , | crop(λ)|}.
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Definition 4.1. We say that an SYT T is a Richardson tableau if the following conditions hold:

(1) for every entry j in the second row j − 1 is in the first row, and
(2) crop(T ) is a Richardson tableau.

Given a partition λ we let RT(λ) denote the set of Richardson tableaux of shape λ.

The preceding definition is not the original definition of Richardson tableau by Karp and Precup
[24, Definition 1.3]; that the aforementioned definition is an alternative characterization is shown
by the same authors [24, Corollary 4.18].

Example 4.2. Shown below are repeated croppings of the tableau on the left. Each tableau satisfies
condition (1) in Definition 4.1. In particular the leftmost tableau is an element of RT((5, 3, 2, 2)).

1 2 5 7 10

3 8 11

4 9

6 12

1 4 6

2 5

3 7

1 3

2 4

1 2 ∅

We record two facts about Richardson tableaux that we need later.

Theorem 4.3 ([24]). The following hold.

(1) Richardson tableaux are characterized by the fact that each evacuation slide is an L-slide
[24, Theorem 5.3]. That is, as one computes the evacuation tableau for T a Richardson
tableau, the path traced by the “hole” during a single jeu-de-taquin slide is L-shaped.

(2) A tableau T is Richardson if and only if evac(T ) is Richardson [24, Corollary 3.23].

We make note of some crucial consequences of the first part of Theorem 4.3. For T a Richardson
tableux, the tableau T ′ obtained after a single evacuation slide, where we ignore the frozen cell,
is also Richardson. Indeed the L-slide characterization immediately implies that all evacuation
slides applied to T ′ are L-slides. Furthermore it is the case that

crop(evac(T )) = evac(crop(T )).

We now associate a pair of permutations to any SYT. It will turn out that this pair is well-aligned
for Richardson tableaux.

Definition 4.4. Given T ∈ SYT(λ), we define permutations vT , wT ∈ Sn as follows:

(1) v−1
T is the top down reading word of evac(T ),

(2) wow
−1
T wo is the reading word of T .

Example 4.5. Consider the T and evac(T ) from Example 1.1. Then

vT = 1 6 9 2 7 11 3 8 4 10 12 5

wT = 11 6 1 9 7 2 12 3 10 8 4 5.
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We now proceed to an alternative recursive description of vT and wT that will be more conve-
nient for our purposes. We begin with an elementary lemma about Richardson tableaux that relies
on their characterization in terms of L-slides.

Lemma 4.6. Let λ ⊢ n and T ∈ RT(λ). Suppose m is the largest number such that the entries
{1, 2, . . . ,m} appear in the first column of T . Then the first m evacuations slides terminate in rows
r1, . . . , rm where r1 > r2 > · · · > rm = 1. Consequently, the entries {n −m + 1, . . . , n} occupy a
column strip in evac(T ) with n−m+ 1 appearing at the end of the first row.

Proof. We shall repeatedly use the L-slide characterization of Richardson tableaux without explicit
mention. The case m = 1 is trivial. Suppose m > 1. If λ = (1n) then the claim is clear. So we
assume that λ1 > 1. By our condition on m we know that m+ 1 appears in the first row next to 1.
In particular the mth evacuation slide must terminate at the end of the first row. So rm = 1.

To establish the claim we only need to show that r1 > r2, as induction does the rest. If the r1th
row is of length 1, again the claim is clear. So we assume that the r1th row has length at least 2. Let
j be the entry in the r1th row and the second column. Since T is standard we know that j is strictly
larger than the entry immediately above it; call it k. After the first evacuation slide, j moves to the
first column whilst remaining in row r1, whereas k does not move. This configuration guarantees
that the next evacuation slide terminates in a row strictly above r1. This concludes the proof. □

Example 4.7. Shown below is a Richardson tableau T (left) and the result of applying the first
three evacuation slides to it. The shaded entries belong to the evacuation tableau and are frozen.
In this case m = 3, r1 = 5, r2 = 2, and r3 = 1. The entries {10, 11, 12} occupy a column strip in
evac(T ) with 10 appearing at the end of the first row.

1 4 7 9 12

2 5 8

3 10

6 11

1 3 6 8 11

2 4 7

5 9

10 12

1 2 5 7 10

3 6 11

4 8

9 12

1 4 6 9 10

3 6 11

4 8

9 12

Informally, the preceding lemma states that a column of entries {1, . . . ,m} on the top left in a
Richardson tableau T creates a distinguished column strip in the Richardson tableau evac(T ). To
employ this observation recursively, we first show that there is a natural column strip decomposition
of any Richardson tableau completely determined by the entries in its first row.

Definition 4.8. For T ∈ SYT(λ), we let First(T ) = {1 = a1 < · · · < aλ1} denote the entries in the
first row of T read from left to right. We further declare that aλ1+1 = |λ|+ 1.

Lemma 4.9. Let T ∈ RT(λ). Let First(T ) = {1 = a1 < · · · < aλ1}. For 1 ≤ i ≤ λ1, the cells
occupied by the entries in {ai, . . . , ai+1 − 1} form a column strip in T .
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Proof. Let Bad denote the set of Richardson tableaux that do not have the desired property. Our
goal is to show that Bad = ∅. We proceed by contradiction. Suppose T ∈ Bad is minimal, in the
sense that T has the fewest boxes among all elements of Bad. Let X = {ai, . . . , ai+1 − 1} be the
set of entries in T that do not form a column strip, and let S denote the skew shape consisting of
these entries.

We claim that S must contain at least two boxes in the second row. Indeed, if this were not the
case, then crop(T ) would also be a Richardson tableau lying in Bad, contradicting the minimality
of T . Let j be the smallest element of X that lies in the second row. Since T is Richardson, we
know that j − 1 must appear in the first row.

Now consider the entry j′ immediately to the right of j in T . We must have j′ > j + 1. Indeed,
if j′ = j + 1, then by the definition of a Richardson tableau, j would lie in the first row, a contra-
diction. Observe further that j′ ∈ X . But then j′ − 1 belongs to both the first row and to X . This
is impossible, since X contains exactly one entry from the first row. □

Given T ∈ RT(λ), we let Π(T ) denote the set partition of {1, . . . , |λ|} whose blocks are given by
the entries in the column strips from Lemma 4.9. We note that Π(T ) is completely determined by
First(T ). As a corollary of the preceding two lemmas we have the following.

Corollary 4.10. Fix λ ⊢ n. For T ∈ RT(λ), the partition Π(evac(T )) is obtained by replacing the
entries i in each block of Π(T ) by n+ 1− i.

Example 4.11. Shown below are the column strip decompositions of T and evac(T ) from Exam-
ple 1.1.

1 2 5 7 10

3 8 11

4 9

6 12

1 4 7 9 12

2 5 8

3 10

6 11

For completeness, we record both Π(T ) and Π(evac(T )) below.

Π(T ) = {1} ⊔ {2, 3, 4} ⊔ {5, 6} ⊔ {7, 8, 9} ⊔ {10, 11, 12},

Π(evac(T )) = {12} ⊔ {9, 10, 11} ⊔ {7, 8} ⊔ {4, 5, 6} ⊔ {1, 2, 3}.

We record some additional consequences separately as they will be useful in proving that
the pairs (vT , wT ) satisfy a stronger condition than being well-aligned. We omit the proof as it
amounts to unraveling Definition 4.4 which tells us how to obtain (vT , wT ) from the appropriate
reading words.

Corollary 4.12. Fix λ ⊢ n and let λ1 = k. For T ∈ RT(λ), consider the column strip decomposition
of evac(T ). Suppose that m1 through mk (resp. M1 through Mk) are the smallest (resp. largest)
entries within each block in increasing order.
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(1) The positions of 1, 2, . . . , k in vT are given by m1 through mk. Additionally we have
Des(vT ) ⊆ {M1, . . . ,Mk−1}.

(2) The positions of 1, 2, . . . , k in wT are given by M1 through Mk. Additionally we have
Des(wT ) ⊆ {M1, . . . ,Mk−1,Mk}c.

The parallel between the two statements in the next result is a reflection of the fact that evacua-
tion is an involution. The interested reader is also referred to [24, Proposition 6.4] as an alternative
means to deriving the second part from the first part; the result in loc. cit. tell us how wT may be
computed from vevac(T ).

Definition 4.13. We call (v, w) ∈ WAn very well-aligned if (vwo, uwo) is well-aligned as well.

Since right multiplication by wo reverses the one line notation of a permutation, we see that
(v, w) is very well-aligned if and only if the following hold:

(i) v−1(1) ≤ w−1(1),
(ii) all indices v−1(1) ≤ i ≤ w−1(1)− 1 are ascents in v,

(iii) all indices v−1(1) ≤ i ≤ w−1(1)− 1 are descents in w, and
(iv) (δ(v), δ(w)) is very well-aligned.

Lemma 4.14. Fix λ ⊢ n and let T ∈ RT(λ). Then (vT , wT ) is very well-aligned.

Proof. Let k := λ1. By Corollary 4.12, we know that v−1
T (i) = mi and w−1

T (i) = Mi for 1 ≤ i ≤ k,
andmi ≤Mi for 1 ≤ i ≤ k. We further know that all indices in the range [mi,Mi−1] are ascents in
vT and descents in wT . In particular, Conditions (i)–(iii) hold for (δi(vT ), δi(wT )) all 0 ≤ i ≤ k − 1.
To establish the claim observe that

(δk(vT ), δ
k(wT )) = (vcrop(T ), wcrop(T )).

We briefly explain this equality. Note that vcrop(T ) can be read off from evac(crop(T )), but this
latter tableau equals crop(evac(T )). Cropping the first row of evac(T ), whose entries correspond to
the positions of 1 through k in vT , and then standardizing the remaining entries to obtain an SYT
then amounts to applying δk to vT . Similarly, the positions of 1 through k in wT , considered from
the right, are determined by the first row of T . Cropping the first row of T and then standardizing
amounts to applying δk to wT . □

Example 4.15. For the Richardson tableau T in Example 4.2, we have crop(T ) and evac(crop(T ))

equaling the following tableaux.

1 4 6

2 5

3 7

1 3 5

2 6

4 7
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It follows that

vcrop(T ) = 1 4 2 6 3 5 7

wcrop(T ) = 6 1 4 2 7 5 3,

which the reader can check agree with δ5(vT ) and δ5(wT ) respectively from Example 4.5.

Example 4.16. We borrow the the well-aligned pair (vT , wT ) = (1523467, 7123654) from [24, Ex-
ample 10.9] for ease of comparison, and use Theorem 3.4 to compute the expansion [Xw

v ] =∑
u∈Sn

cwu,v[Xu]. We have v↑T = 4512367 and v↑T v
−1
T wT = 7412653. The Schubert polynomial in-

dexed by vT is the Schur polynomial s(4)(x1, x2) whereas the Schubert polynomial indexed by v↑T
is the dominant monomial x31x

3
2. For wo = n(n − 1) · · · 1, by the identity cwu,v = cwou

v,wow whenever
u, v, w ∈ Sn we have

SvSwow =
∑
u

cuv,wowSu =
∑
u∈Sn

cwwou,vSu +
∑

u∈S∞\Sn

cuv,wowSwou.

and so applying this for v = v↑T and w = v↑T v
−1
T wT , if we restrict this sum to those u ∈ Sn we can

read off the well-aligned Schubert coefficients (after reindexing the permutations u 7→ wou). From
Figure 5 it follows that

S4512367 ·S1476235 = S4765123 +S5763124 +S6735124 +S6752134 + · · · ,

where we omitted the Schuberts Su with u ̸∈ S7, so

[Xw
v ] = [X4123765] + [X3125764] + [X2153764] + [X2136754].

We note that prior to our work, the cases for which [XwT
vT

] was computed combinatorially in
the Schubert basis was limited to tableaux of hook shape [20]; see also work of Graham–Zierau
[19] which applies localization techniques but the expressions produced are not combinatorial.
We briefly recall the combinatorial interpretation in [20], recast in the language of Güemes tableaux
in [24, §10]. Given a Richardson tableau T of hook shape, the full expansion involves counting
certain semistandard tableaux of staircase shape whose (column) reading words give reduced
words. Our expansion, on the other hand, involves counting certain saturated chains in k-Bruhat
order, for varying k.

Problem 4.17. Find a bijection between the chains in k-Bruhat order that arise in this way for well-
aligned pairs (vT , wT ) associated to a Richardson tableaux T of hook shape and Güemes tableaux.

For u = vT for T a Richardson tableau of hook shape of size n, the permutation u↑ is relatively
straightforward to compute– it is given by a shuffle of the letters k, k + 1, . . . , n and 1, 2, . . . , k −
1, where the letters in the former appear in increasing order and those in the latter appear in
decreasing order, and the first letter of u↑ is k. It is easily checked that this is dominant.
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1476235

2674135 46712352746135 47162352576134

3764125 4762135 6724135 5672134 3675124 3756124 5726134 5761234 6741235

6752134 4765123 5763124 6735124

2 2 2 2

2 2 2 2

22
2

2 2 2
2 2

22

FIGURE 5. The product x31x
3
2S1476235 computed via Corollary 3.3. The green chains

in 2-Bruhat order are the ones that contribute. At every level we have only recorded
terms indexed by permutations in S7.

5. THE GEOMETRY OF WELL AND VERY-WELL ALIGNED RICHARDSON VARIETIES

We refer the reader to [3, 8, 49] for detailed treatment of notions/results in Schubert calculus
that we employ but do not define. Throughout we work over C. We denote by GLn the group of
invertible n × n matrices. Let B and B− be the subsets of GLn comprising upper triangular and
lower triangular invertible n × n matrices respectively. A flag in Cn is a sequence of subspaces
V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn where dim(Vi) = i. The complete flag variety Fln is the set of all flags
in Cn. The group GLn acts transitively on Fln via its natural action on Cn. The stabilizer of the
standard flag E• = E1 ⊂ E2 ⊂ · · · ⊂ En = Cn, where Ei = span{e1, . . . , ei}, is B. Thus we have
Fln ∼= GLn /B.

For v, w ∈ Sn, we will denote the Schubert cycles in Fln byXw = BwB, the opposite Schubert cycles
by Xv = B−vB, and for v ≤ w the Richardson varieties Xw

v := Xw ∩Xv = BwB ∩ B−vB. By work
of Borel [11], we have an identification H•(Fln) = Z[x1, . . . , xn]/ Sym+

n where Sym+
n is the ideal

generated by positive degree symmetric polynomials in x1 through xn. The classes of Schubert
cycles [Xw] ∈ H•(Fln) for w ∈ Sn form a homology basis Kronecker dual to the cohomology basis
{Sv(x1, . . . , xn) | v ∈ Sn} ⊂ H•(Fln) of Schubert polynomials [29], which themselves represent
the Poincaré dual classes to the opposite Schubert cycles Xv in H•(Fln).

We have an expansion

[Xw
v ] =

∑
cwu,v[X

u]
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where cwu,v are the generalized Littlewood–Richardson coefficients appearing in SuSv =
∑
cwu,vSw.

More generally, for f ∈ H•(Fln) we have

degXw
v
f = ev0 ∂w(Svf) = Φw

v f.

In particular, degXw
v
Su = cwu,v.

5.1. Translation equivalence for well–aligned Richardson varieties. Recall that the generalized
Plücker functions of M ∈ GLn are given by

Plw(M) =

n∏
i=1

detM1,...,k
w(1),...,w(k)

where MA
B is the submatrix of M determined by the columns from A and the rows of B. We have

Plw(w
′M) = ±Plww′(M), Plw(Bw′B) = 0 whenever w ̸≤B w′, and BwB ⊂ {Plw ̸= 0}. The

characterization that follows is well known; we include a proof for completeness.

Lemma 5.1. If v ≤B w then we can write

Xw
v =

⋂
u̸∈[v,w]

{Plu = 0}.

Proof. It suffices to show the statement for Xw and Xv. We do this for Xw, the case for Xv is
similar. We have to show that

Xw =
⋂

u̸≤Bw

{Plu = 0}.

Recall the Bruhat decomposition GLn /B =
⊔

u∈Sn
BuB. Note that Xw and

⋂
u̸≤Bw{Plu = 0} are

both closed subvarieties containing BwB, and disjoint from BuB for u ̸≤B w. The claim now
follows from the equalities:

Xw = BwB =
⋃

u≤Bw

BuB. □

Proposition 5.2. If [v, w] is translation-equivalent to [v′, w′], then Xw′
v′ = v′v−1Xw

v .

Proof. This follows from the Plücker vanishing characterization in Lemma 5.1 and the Sn-equivariance
of generalized Plücker functions up to sign. □

Corollary 5.3. If (v, w) ∈ WAn, then (v↑v−1)Xw
v = Xv↑v−1w

v↑
. In particular [Xw

v ] = [Xw′
v′ ] ∈ H•(Fln).
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5.2. Building well-aligned Richardsons from pattern maps and geometric push-pull. Let Ψ1,i :

GLn−1 /B → GLn /B be the which takes MB to M ′B where M ′ is obtained by including M into
an n × n matrix avoiding the first row and i"th column, and then inserting a 1 into the first row
and i’th column. For example

Ψ1,2

[
a b

c d

]
=

0 1 0

a 0 b

c 0 d

 .
This is an inclusion map, and as shown in [34, Theorem 4.4] we have

Ψ1,iX
w
v = X

εi(w)
εi(w) .

Furthermore, we have Ψ∗
i : H•(Fln) → H•(Fln−1) is given by Ri, so for f(x1, . . . , xn) ∈ H•(Fln)

we have

deg
X

εi(w)

εi(v)

f = degXw
v
Rif.

Let πi : GLn /B → GLn /Pi be the projection map where Pi is the minimal parabolic subgroup
associated to si. Then by the classical computation of Bernstein–Gelfand–Gelfand [7] we have
(πi)

∗(πi)∗f = ∂if . We claim that if i is an ascent of both v and w we have

π−1
i πiX

w
v = Xwsi

v ,

with πi|Xw
v

generically injective. Indeed, we have π−1
i πiX

w ⊂ Xwsi and π−1
i πiXv ⊂ Xv which

shows the left hand side is contained in the right hand side, and the identity Φwsi
v = Φw

v ∂i, verified
in the proof of Lemma 3.7 implies that (π∗i )(πi)∗[X

w
v ] = [Xwsi

v ]. In particular, we have

degXwsi
v

f = degXw
v
∂if.

Therefore because a well-aligned pair can be obtained by successively applying either (v, w) 7→
(εiv, εiw) and (v, w) 7→ (v, wsi) with i an ascent of both v, w, we see that Xw

v can be obtained as
a successive application of Ψ1,i and π−1

i πi. Furthermore, Φw
v f = degXw

v
f, so the derivation of Φw

v

as a successive application of operations Ri and ∂i follows geometrically from the corresponding
degree map facts above.

5.3. Smoothness and very well-aligned-ness. We revisit another result of Karp–Precup in light
of ours and offer a generalization. In [24, §9] they establish that the Richardson variety XwT

vT
is

smooth for all Richardson tableaux T . We show that this smoothness property extends to Richard-
son varieties coming from very well-aligned pairs. Our proof also involves verifying [24, Corol-
lary 9.5] which gives a criterion for smoothness of Richardson varieties by reducing it to testing
the smoothness at two special T -fixed points.

Fact 5.4 ([24, Corollary 9.5]). Xw
v is smooth if and only if it is smooth at the points vB and wB.
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We will also need Deodhar’s criterion [13] for smoothness at T -fixed points of Xw
v . Recall that

we denote tab ∈ Sn for the transposition swapping a and b, where by convention we always set
a < b.

Proposition 5.5 ([13]). For uB ∈ Xw
v , we have

#{tab ∈ Sn | u tab ∈ [v, w]} ≥ ℓ(w)− ℓ(v)

with equality if and only if Xw
v is smooth at uB.

Lemma 5.6. If v is dominant then Xw
v is smooth at wB.

Proof. The boxes in the Rothe diagram R(w) are in bijection with the inversions tab of w, i.e. with
wtab ≤B w, by taking such a transposition to the box at position (w(b), a). Furthermore the ℓ(v)-
many boxes in the Rothe diagram R(v) are inversions tab such thatwtab has its permutation matrix
occupy a box in R(v), and hence v ̸≤B wtab by (2.1). We conclude by Proposition 5.5 that the
remaining (ℓ(w)− ℓ(v))-many inversions of w have v ≤B wtab and Xw

v is smooth at wB. □

Remark 5.7. Geometrically, if v is a dominant permutation then Xv ⊂ Fln is the subvariety of
those gB where the entries of g inside the Rothe diagram are set to zero (this follows from the
rank condition characterization of Schubert varieties and is the key observation in the study of
Ding partition varieties, see e.g. [15, 14]). In the Bruhat decomposition GLn /B =

⊔
u∈Sn

BuB, we
have BuB ∼= Aℓ(u) as the set of matrices which are 1 in the entries (u(i), i), indeterminate entries
in the boxes of the Rothe diagram R(u), and zero elsewhere. Therefore we have

Xw
v =

⊔
u≤Bw

Xv ∩BuB =
⊔

u∈[v,w]

Xv ∩BuB

and Xv ∩ BuB ∼= Aℓ(u)−ℓ(v) is the coordinate subspace of BuB ∼= Aℓ(u) where we set the entries
in R(v) to 0 (this is well-defined by (2.1)). This gives an affine paving of Richardsons Xw

v with v
dominant, and because Xv ∩ BwB is a dense open chart around w isomorphic to Aℓ(w)−ℓ(v) this
gives an alternate geometric way to verify that wB ∈ Xw

v is smooth.

Theorem 5.8. Let (v, w) ∈ WAn be very well-aligned. Then the Richardson variety Xw
v is smooth.

Proof. Let [v′, w′] be translation-equivalent to [v, w] with v′ dominant. Then Xw
v = v(v′)−1Xw′

v′ , and
so Xw

v is smooth at wB since Xw′
v′ is smooth at v′B by Lemma 5.6.

Since (wwo, vwo) is also well-aligned, we know that the interval [wwo, vwo] is translation equiv-
alent to [w′′wo, v

′′wo] with w′′wo a dominant permutation. Therefore vwoB is smooth in Xww0
vwo

by
Lemma 5.6. Now, right multiplication by wo is an anti-isomorphism from [wwo, vwo] to [v, w]. So,
by Proposition 5.5, we get thatXwwo

vwo
is smooth at vwoB if and only ifXw

v is smooth atwB. Because
Xw

v is smooth at vB and wB, we conclude by Fact 5.4. □
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6. ODDS AND ENDS

To conclude this article we collect some numerological observations that may be of interest.
One may ask for quantitative information about how many Schubert structure coefficient have we
computed. Put differently, one may inquire about the number |WAn | of well-aligned pairs for a
given nonnegative integer n. We offer the following conjecture.

Conjecture 6.1. Let W(x) denote the exponential generating function:

W(x) =
∑
n≥0

|WAn |
xn

n!
= 1 + 1

x1

1!
+ 3

x2

2!
+ 17

x3

3!
+ 147

x4

4!
+ 1729

x5

5!
+ 25827

x6

6!
+ 468593

x7

7!
+ · · · .

Then W(x) satisfies the following functional equation:

W ′(x) =
W(x)2

2−W(x)
.

The sequence in question matches [41, A234289] for 0 ≤ n ≤ 7. Both sides of the functional
equation can be assigned combinatorial meaning easily, which in turn suggests there is a recursive
decomposition of “pointed” well-aligned pairs that witnesses the functional equation.

As seen before, the well-aligned pairs in WA132
n are crucial for us. The cardinality of this set

equals (2n − 1)!!; see Remark 2.6. Nevertheless there is a curious observation to be made. It is
the case that there exist (v, w), (v′, w′) ∈ WA132

n such that the Bruhat intervals [v, w] and [v′, w′] are
translation-equivalent. So one may quotient WA132

n further by this equivalence and inquire about
the resulting number of equivalence classes. We make the following conjecture.

Conjecture 6.2. The total number of equivalence classes of translation-equivalent intervals is
given by [41, A111088], which counts circular planar electrical networks [2].
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