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ABSTRACT. We develop the geometric theory of equivariant quasisymmetry via a new “quasisym-
metric flag variety”. This is a toric complex in the flag variety whose fixed point set is the set of
noncrossing partitions, and whose cohomology ring is the ring of quasisymmetric coinvariants.

1. INTRODUCTION

In this paper we study a new geometric object we call the quasisymmetric flag variety QFln, which
is contained in the variety Fln of complete flags of subspaces 0 = F0 ( F1 ( · · · ( Fn = Cn. We
show that QFln plays the same role for the quasisymmetric polynomials of Gessel [24] and Stanley
[43] that Fln plays for symmetric polynomials. Our main results, summarized below, provide a
complete geometric model for the quasisymmetric coinvariants.

Recall that a quasisymmetric polynomial in the variable set xn = {x1, . . . , xn} is one where
the coefficient of xa11 · · ·x

ak
k equals that of xa1i1 · · ·x

ak
ik

for all increasing sequences 1 ≤ i1 < · · · <
ik ≤ n and all sequences (a1, . . . , ak) of positive integers. We denote by QSymn the ring of all
quasisymmetric polynomials, and note that since the defining condition for quasisymmetry is a
weakening of symmetry, the ring Symn of symmetric polynomials in xn is a subring of QSymn.

In [4], Aval–Bergeron–Bergeron initiated the study of the quasisymmetric coinvariant ring

QSCoinvn := Z[xn]/QSym+
n where QSym+

n := 〈f(xn)− f(0, . . . , 0) | f ∈ QSymn〉.

The graded ring Coinvn := Z[xn]/Sym+
n has a unimodal symmetric sequence of ranks, which

reflects the fact that H•(Fln) ' Coinvn and Fln is a smooth projective variety. In contrast, the
graded space QSCoinvn is not rank symmetric for any n ≥ 3 [4, Theorem 1.1], and thus it cannot
arise as the cohomology of any smooth projective variety.

We construct the quasisymmetric flag variety using a collection of (n− 1)-dimensional smooth
toric varieties X(T ) parameterized by the set Treen of n-leaf planar binary trees,

QFln :=
⋃

T∈Treen

X(T ) ⊂ Fln.
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Each variety X(T ) is a left-translated Richardson variety, and an iterated P1-bundle following a
process determined by the combinatorial structure of the tree T . The moment polytopes of these
varieties are both combinatorial cubes and polypositroids in the sense of Lam–Postnikov [33].

Theorem A. We have H•(QFln) ∼= QSCoinvn.

We note that this does not contradict the previous observation on smooth projective varieties
as QFln is reducible. We give a similar presentation of the torus-equivariant cohomology ring via
the coinvariant ring of the equivariantly quasisymmetric polynomials defined in [6]; see Section 12.2.

The combinatorics of QFln is governed by noncrossing partitions. Let Sn denote the symmetric
group on n letters. The torus fixed points of QFln are exactly the permutations NCn ⊆ Sn ob-
tained by treating each block of a noncrossing set partition as a backwards cycle, see Biane [9].
Noncrossing partitions also yield the following intrinsic characterization of QFln, which we prove
in Section 10.

Theorem B. Denoting by [Plσ]σ∈Sn the Plücker functions on Fln, we have that

QFln =
⋂

σ∈Sn\NCn

{Plσ = 0} ⊂ Fln.

Our remaining results establish the following parallels between QFln and Fln.

(1) The Bruhat decomposition gives a stratification of the flag variety into a union of affine
Schubert cells (Xw)◦ with well-behaved closure relations known as an affine paving. In
Section 9, we describe an affine paving

QFln =
⊔

w∈NCn

(Xw)◦ ∩QFln,

which shares many combinatorial properties with the Bruhat decomposition. In Section 11
we prove that the closures of our affine cells give a homology basis for H•(QFln).

(2) Schubert polynomials [34] give a basis of H•(Fln) in Borel’s presentation, and this basis is
Kronecker dual to the homology basis of Schubert cycles [Xw]. In Section 12 we prove that
our homology basis is likewise Kronecker dual to the family of forest polynomials [41, 39]
and double forest polynomials [6].

(3) The divided difference formalism for Schubert polynomials admits a geometric interpreta-
tion via Bott–Samelson resolutions of Schubert varieties. Forest polynomials satisfy similar
formalisms, and we show in Section 12 that these operations can be similarly interpreted
using iterated P1-bundles. We exploit this connection to compute the degree map of each
toric variety X(F ) in QFln using a recursive combinatorial process first defined in [6].

(4) Torus-equivariant versions of (1)–(3) also hold, highlighting parallels between the classical
double Schubert polynomials and the double forest polynomials defined in [6].
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In fact, many of our “non-equivariant” results are derived by first proving their equivariant
analogue. In doing so, we rely crucially on the combinatorial relationship between double forest
polynomials and noncrossing partitions developed in [6]. In particular, we show that the Goresky–
Kottwitz–MacPherson graph [25] associated to QFln under the standard torus action is the Krew-
eras lattice on NCn, and specializations of double forest polynomials describe a free basis of the
associated graph cohomology ring. This generalizes earlier work of the first and second author [5]
on quasisymmetric orbit harmonics, in which the main result shows that the ring

Q[xn]/〈f(xn) | f(w(1), . . . , w(n)) = 0 for all w ∈ NCn〉

has associated graded QSCoinvn.

We now give a brief outline of the paper. In Section 2 we recall standard facts about Fln, non-
crossing partitions and binary trees. We then define a family of elementary “building operations”
on Fln in Section 3 and study the combinatorics of their compositions in Section 4. The build-
ing operations are the backbone of our work, and in Section 5 we use them to construct a fam-
ily of Bott manifolds X(F̂ ) attached to bicolored nested forests F̂ that includes the X(T ) as the
top-dimensional case. We provide a precise description of the inclusion order of these varieties
in Section 6, highlighting the role of noncrossing partitions, and connect our work to HHMPn

and Richardson varieties in Section 7. In Section 8 we define QFln and completely describe the
structure of this complex. The final four sections (9, 10, 11, and 12) contain our main results, as
described above.

In the remainder of this introduction, we explain the motivation behind the construction of the
varieties X(T ). In [38] a partial solution to the geometric realization of QSCoinvn was obtained
via a different construction called the Ω-flag variety. Let Sn−1 ⊂ Sn comprise permutations w
satisfying w(n) = n and denote the backwards long cycle c = (nn − 1 · · · 1) ∈ Sn. In [38], the
third, fourth, and fifth authors consider the complex of (n− 1)! smooth toric Richardson varieties

HHMPn :=
⋃

w∈Sn−1

Xwc
w

under the torus action of Tn = (C∗)n acting on Fln via its action on Cn. This complex was first
studied in [29, 36] as arising from a toric degeneration of a general Tn-orbit closure in Fln. We
emphasize that this complex differs from QFln, as for n ≥ 3 it contains more Richardson varieties
than there are X(T ) varieties. Each toric Richardson in this complex is smooth and has a moment
polytope that is a combinatorial cube.

The toric complex HHMPn is assembled in a combinatorially simple way, equivalent to the
decomposition of [0, 1] × [0, 2] × · · · × [0, n − 1] into unit cubes; see [38, Section 7.1]. One of the
main results of [38] was that for the inclusion φ : HHMPn → Fln, we have

φ∗H•(Fln) ∼= QSCoinvn ⊂ H•(HHMPn).
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Here the inclusion is strict: multiple cycles Xwc
w are equivalent under the left action of Sn by

permutation matrices.
The geometry of QFln is constructed to avoid this duplication problem. We show (see also [38,

§6]) that the X(T ) varieties collapse the left-translation redundancy of the Xwc
w via a surjective

map

{Xwc
w | w ∈ Sn−1} → {X(T ) | T ∈ Treen}

Xwc
w 7→ w−1Xwc

w

taking the (n− 1)!-many Richardson varieties to the Catn−1 = 1
n

(
2n−2
n−1

)
-many X(T ) varieties.

The trade-off in the construction of QFln is a more complicated toric complex. In particular,
the moment polytopes of our translated Richardson varieties overlap in an irregular manner, and
torus orbits associated to partially overlapping faces do not intersect. These phenomena first ap-
pears in the case n = 3, and Figure 1 contrasts the structure of the moment polytopes for HHMPn

with our “translated” moment polytopes, which reflects the structure of QFln. Geometrically
HHMP3 is two Hirzebruch surfaces glued along a common torus-invariant P1, while QFl3 is two
Hirzebruch surfaces glued along two different and intersecting torus-invariant P1’s. We revisit
this figure in Section 8 where the right panel is redrawn to resemble the Kreweras lattice NC3.

(λ1, λ2, λ3) (λ2, λ1, λ3)

(λ3, λ1, λ2)

(λ3, λ2, λ1)(λ2, λ3, λ1)

(λ1, λ3, λ2)

(λ1, λ2, λ3) (λ2, λ1, λ3)

(λ3, λ1, λ2)

(λ3, λ2, λ1)(λ2, λ3, λ1)

(λ1, λ3, λ2)

FIGURE 1. The two trapezoids comprising the HHMP subdivision of the n = 3

permutahedron (left) and the intersecting X(T ) moment polytopes (right).
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2. PRELIMINARIES

Let s1, . . . , sn−1 be the simple transpositions si = (i, i + 1) generating the symmetric group Sn.
We let

c := (nn− 1 · · · 2 1) = sn−1sn−2 · · · s1 ∈ Sn,

denote the backwards long cycle. For all nonnegative integers m we set [m] := {1, . . . ,m}.

2.1. Recollections on Fln. We work over C and denote by Tn, Bn, B−n ⊂ GLn the subsets of diag-
onal, upper triangular, and lower triangular invertible n×nmatrices. When there is no ambiguity
we write T , B, and B− for Tn, Bn, and B−n . We will denote χi for the ith standard character of Tn,
corresponding to the i’th entry along the diagonal, so that for a = diag(a1, . . . , an) ∈ T we have
χi(a) = ai.

We identify the complete flag variety

Fln := flags of subspaces
(
{0} = F0 ( F1 ( F2 ( · · · ( Fn−1 ( Fn = Cn

)
.

with GLn/Bn via the transitive action of GLn with Bn the stabilizer of the standard coordinate flag
with Fi = 〈e1, . . . , ei〉 for 1 ≤ i ≤ n. Via this identification ith subspace in the flag associated to
hBn is the column span of the first i columns of h for 1 ≤ i ≤ n.

For w ∈ Sn, we will denote the Schubert cycles in Fln by Xv = BvB, the opposite Schubert
cycles byXu = B−uB, and for u ≤ v in the Bruhat order the Richardson varietiesXv

u := Xv∩Xu =

BvB ∩B−uB. The Bruhat decomposition

Fln =
⊔
w∈Sn

BwB with BwB ∼= A`(w),(2.1)

gives an affine paving if the BwB are ordered via any linear extension of the Bruhat order on Sn;
see Section 9 for more details.

For w ∈ Sn and a dominant weight λ = (λ1 ≥ · · · ≥ λn) ∈ Zn we have a Plücker function defined
for h ∈ GLn by

Plλ,w(h) = (dethw(1))
λ1−λ2(dethw(1),w(2))

λ2−λ3 · · · (dethw(1),...,w(n))
λn ,

where hi1,...,ik is the submatrix of h with columns 1, . . . , k and rows i1, . . . , ik. These functions
together define a map Plλ : Fln → Pn!−1, which we write simply Pl if λ is the fundamental
dominant weight (n, n−1, . . . , 1). Then Plλ is Tn-equivariant with respect to the Tn-action on Pn!−1

where diag(a1, . . . , an) ∈ Tn acts in the w-coordinate by aλ1w(1)a
λ2
w(2) · · · a

λn
w(n) = a

λw−1(1)

1 · · · a
λw−1(n)
n .

The moment polytope of Fln under Plλ is the generalized permutahedron

Perm(λ) = conv{u · λ | u ∈ Sn} ⊆ Rn,
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where u · λ = (λu−1(1), . . . , λu−1(n)) and conv denotes taking the convex hull. If X ⊂ Fln is a
Tn-invariant subvariety, then its moment polytope under Plλ is

P (X;λ) = conv{u · λ | u ∈ XT } ⊆ Perm(λ).

The moment polytope of a Tn-orbit closure X is always a flag matroid polytope (see [22]), meaning
its vertices are contained in the vertices of Perm(λ) and all edges are parallel to the typeAn−1 roots
ei − ej for various i, j.

2.2. Noncrossing partitions. A combinatorial noncrossing partition is a partition A1 t · · · tAk = [n]

such that for i 6= j, distinct elements a, b ∈ Ai, and distinct elements c, d ∈ Aj , we never have
a < c < b < d. We depict combinatorial noncrossing partitions as noncrossing arc diagram; for
example we draw {1, 2, 3, 6} t {4, 5} = [6] as

1 2 3 4 5 6 .

A backwards cycle is a cycle (b1 b2 · · · br) with b1 > b2 > · · · > br. An algebraic noncrossing parti-
tion is defined to be a permutation w whose disjoint cycle decomposition Cyc(w) := C1C2 · · ·Ck
consists of backwards cycles whose underlying sets define a combinatorial noncrossing partition.
For example w = (6321)(54) is the algebraic noncrossing partition associated to the arc diagram
above. We denote

NCn := {algebraic noncrossing partitions of [n]} ⊂ Sn.

The Kreweras order on NCn is defined by setting u ≤K v if the combinatorial noncrossing parti-
tion associated to u refines the combinatorial noncrossing partition associated to v. For example
(63)(21)(54) ≤K (6321)(54). The Kreweras order is a lattice, and the lattice structure is induced by
the lattice of set partitions under refinement [32].

Going forward, we will identify combinatorial and algebraic noncrossing partitions, using “com-
binatorial” and “algebraic” only when disambiguation is needed.

We say that permutations u,w ∈ Sn are adjacent if w = (i j)u for some transposition (i j). Let
Cayley(Sn) be the Cayley graph on Sn in which adjacent permutations are connected by an edge.
Then u,w ∈ NCn are adjacent in the Kreweras lattice (meaning one element covers the other) if
and only if u,w are adjacent in Cayley(Sn). In this way, we may identify the Hasse diagram of
the Kreweras lattice with the induced subgraph of Cayley(Sn) on NCn as was first observed by
Biane [9]. We denote this induced subgraph by Cayley(NCn).

Remark 2.1. The Kreweras order is different from the Bruhat order ≤ restricted to NCn. For
example, c is the maximal element of ≤K , whereas w0 is the maximal element of ≤. See [10] for a
more detailed study of the interaction between the two orders.
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2.3. Binary trees and nested forests. A planar binary tree is a rooted tree T in which each node v
is either an internal node with exactly 2 children vL and vR (the left and right child), or v is a leaf
with zero children. Let IN(T ) denote the set of internal nodes in T . We allow for the possibility
that | IN(T )| = 0, in which case the unique node is both a root and a leaf.

A nested forest supported on [n] is a family F̂ = (TC)C∈Cyc(w) of binary trees TC indexed by the
disjoint cycles of a noncrossing partition w = C1C2 · · ·Ck ∈ NCn such that each TC has |C| leaves.
We identify the leaves of each TC with the underlying set of C in increasing order and depict F̂ by
drawing the TC in the upper half plane so that the set [n] of all leaves appears in increasing order
along the horizontal axis.

The internal nodes of F̂ are IN(F̂ ) =
⊔
C∈Cyc(w) IN(TC). The canonical label of each v ∈ IN(F ) is

the value of the rightmost leaf descendant of vL.
We define a map NCPerm : NestForn → NCn that sends a nested forest (TC)C∈Cyc(w) to its

underlying noncrossing partition w =
∏
C∈Cyc(w)C. For example

NCPerm


1 2 3 4 5 6 7

 = (731)(654)(2).

Remark 2.2. Nested forests should be seen as an enriched version of noncrossing partitions. In
Section 6, we show that each nested forest corresponds, up to certain trivial commutation relations,
to a distinguished factorization of its associated noncrossing partition.

3. BUILDING SPLIT P1-BUNDLES

We now introduce the operations used to build QFln ⊂ Fln.

3.1. Ψ−i and Ψ+
i . We recall certain pattern maps that were studied by Bergeron–Sottile [7] and

summarize their essential properties. We refer the reader to [13, 11] for a more general perspective.

Definition 3.1. Let Ψi,j : Matm−1×m−1 → Matm×m be the operation

(Ψi,jM)k,` =


Mk−δk<i,`−δ`<j k 6= i and ` 6= j

1 (k, `) = (i, j)

0 otherwise.

The map Ψ1,i was crucial to the construction in [38, §5]. In contrast, the following two pattern
maps will be important to us:

Ψ−i := Ψi,i and Ψ+
i := Ψi,i+1.
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For example when m = 4 we have

Ψ−2

a b c

d e f

g h i

 =


a 0 b c

0 1 0 0

d 0 e f

g 0 h i

 and Ψ+
2

a b c

d e f

g h i

 =


a b 0 c

0 0 1 0

d e 0 f

g h 0 i

 .
By restricting to invertible matrices, the pattern maps descend to closed embeddings

Ψi,j : Flm−1 ↪→ Flm.

Define γi : Tm → Tm−1 to be the map diag(a1, . . . , am) 7→ diag(a1, . . . , ai−1, ai+1, . . . , am).

Definition 3.2. If T is a torus and γ : T → Tm is a map of tori then we write Flγm for Flm equipped
with the action of T induced by γ.

Fact 3.3. The maps Ψi,j : Flγim−1 → Flm are Tm-equivariant closed embeddings, and in particular
this is true of Ψ±i : Flγim−1 ↪→ Flm.

Write εi : Cm−1 ↪→ Cm for the inclusion (x1, . . . , xm−1) 7→ (x1, . . . , xi−1, 0, xi, . . . , xm−1). Then εi
is a Tm-equivariant inclusion if we give Cm−1 the action of Tm induced by γi, and we have

Ψ−i F = {0} ⊂ εi(F1) ⊂ · · · ⊂ εi(Fi) ⊂ εi(Fi)⊕ 〈ei〉 ⊂ εi(Fi+1)⊕ 〈ei〉 ⊂ · · ·

Ψ+
i F = {0} ⊂ εi(F1) ⊂ · · · ⊂ εi(Fi) ⊂ εi(Fi+1) ⊂ εi(Fi+1)⊕ 〈ei〉 ⊂ · · · .

3.2. Building P1-bundles with Pi. We use the subbundle convention for relative projectivization,
so that for V a vector bundle on a variety X we have Proj(V)X := (V \ {0})/C∗. Consider the
sequence of maps

Flγim−1

Ψ±i
⇒ Flm

πi−→ GLm/Pi,

where Pi = 〈B, si〉 is the ith minimal parabolic subgroup of GLm, and πi is the projection map.
The space GLm/Pi is typically identified with the variety of partial flags {0} ⊂ F1 ⊂ · · · ⊂

Fi−1 ⊂ Fi+1 ⊂ · · · ⊂ Fm = Cm with dimFj = j. Under this identification πi becomes the map
which forgets the ith subspace of a complete flag.

Fact 3.4. Flm → GLm/Pi is Tm-equivariantly isomorphic to the P1-bundle Proj(Fi+1/Fi−1)GLm/Pi .

We now study how the P1-bundle πi interacts with the maps Ψ±i . Since siPi = Pi, we have the
equality πiΨ−i = πiΨ

+
i . Consequently we write

πiΨi := πiΨ
+
i = πiΨ

−
i

to emphasize that this composite does not depend on ±. The map πiΨi is given by

πiΨi(F)j =

εi(Fj) j < i

εi(Fj−1)⊕ 〈ei〉 j > i,
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and is a closed Tm-equivariant embedding Flγim−1 ↪→ GLm/Pi with image

πiΨi(Flm−1) =
{
{Fj}j∈[m]\i : Fi−1 ⊂ {xi = 0} and ei ∈ Fi+1

}
⊂ GLm/Pi.

For Z ⊂ Flm−1, we define

PiZ := π−1
i πiΨiZ ⊂ Flm.

Like the pattern maps we can also view PiZ in terms of matrices. For an (m− 1)× (m− 1) matrix
M , let GiM be the set obtained from Ψ+

i M by replacing the 0 in entry (i, i) with all values + ∈ C∗.
Then Gi descends to a map

subsets of Flm−1 → subsets of Flm,

and PiZ = (Ψ+
i Z) t (GiZ) t (Ψ−i Z). For example when m = 4 we have

P2

a b c

d e f

g h i

B3 =



a b 0 c

0 0 1 0

d e 0 f

g h 0 i

B4

t


a b 0 c

0 + 1 0

d e 0 f

g h 0 i

B4 : + ∈ C∗

t


a 0 b c

0 1 0 0

d 0 e f

g 0 h i

B4

 .

Theorem 3.5. Let Z ⊂ Flm−1 be a Tm−1-invariant subvariety. If we consider Z as a Tm-invariant
subvariety of Flγim−1 for some fixed 1 ≤ i ≤ m− 1, then the following are true.

(1) The map

(πiΨi)
−1πi : PiZ → Z

realizes PiZ as a Tm-equivariant P1-bundle over Z, which is Tm-equivariantly isomorphic
to the P1-bundle Proj((Fi/Fi−1)⊕ Cχi)Z → Z.

(2) The closed subsets Ψ−i |Z and Ψ+
i |Z correspond to the Tm-equivariant sections Proj({0} ⊕

Cχi)Z and Proj((Fi/Fi−1)⊕ {0})Z respectively.

Proof. Both results follow from the case Z = Flm−1 by restriction, so we consider only Z = Flm−1.

(1) Since PiFlm−1 can be defined by the pullback diagram

PiFlm−1 Flm = Proj(Fi+1/Fi−1)GLm/Pi

Flγim−1 GLm/Pi,

πi

πiΨi

we have PiFlm−1 is the projectivization of the pullback of Fi+1/Fi−1 under the closed em-
bedding πiΨi. This pullback is given by

(πiΨi)
∗(Fi+1/Fi−1) = (Fi ⊕ Cχi)/(Fi−1 ⊕ {0}) ∼= (Fi/Fi−1)⊕ Cχi(3.1)

so the result follows.
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(2) We can realize Ψ−i Flm−1 and Ψ+
i Flm−1 as Tm-equivariant sections of πi|PiFlm−1 taking a

partial flag {Fj}j∈[m]\i ∈ πiΨi(Flm−1) to respectively

{0} ⊂ F1 ⊂ · · · ⊂ Fi−1 ⊂ Fi−1 ⊕ 〈ei〉 ⊂ Fi+1 ⊂ · · · ⊂ Fm−1 ⊂ Cm, and

{0} ⊂ F1 ⊂ · · · ⊂ Fi−1 ⊂ Fi+1 ∩ {xi = 0} ⊂ Fi+1 ⊂ · · · ⊂ Fm−1 ⊂ Cm.

These two sections correspond to the choice of intermediate sub-bundles Fi−1 ⊕ 〈ei〉 and
Fi+1∩{xi = 0} betweenFi−1|πiΨi(Flm−1) andFi+1|πiΨi(Flm−1), which in the pullback bundle
(3.1) correspond to {0} ⊕ Cχi and (Fi/Fi−1)⊕ {0} . �

4. THE VARIETIES X(F̂ ) AND RELATIONS ON THE BUILDING OPERATIONS

In this section we introduce bicolored nested forests as a tool to study compositions of the
building operations Ψ−i , Ψ+

i , and Pi. This culminates in Definition 4.9, in which we introduce the
varieties X(F̂ ) used to define QFln.

4.1. Combinatorics of bicolored nested forests. Let RESeq be the set of words from the alphabet
∞⋃
i=1

{r−i , r
+
i , ei},

and for Ω ∈ RESeq define |Ω| to be the number of ei letters in Ω. For example r−2 r
+
3 e2 ∈ RESeq and

|r−2 r
+
3 e2| = 1. We define a distinguished subset RESeqn ⊂ RESeq by

RESeqn := {x1 · · · xn ∈ RESeq | xi ∈ {r−1 , . . . , r
−
i , r

+
1 , . . . , r

+
i−1, e1, . . . , ei−1} for all i}.

Note that every word of RESeqn begins with r−1 .

Definition 4.1. Let BNestForn be the quotient of RESeqn by the local relations

eiej = ejei+1 for i > j

r−i r
−
j = r−j r

−
i+1 for i ≥ j, r+i r

+
j = r+j r

+
i+1 for i > j,

r+i r
−
j = r−j r

+
i+1 for i ≥ j, r−i r

+
j = r+j r

−
i+1 for i > j,

eir
−
j = r−j ei+1 for i ≥ j, r−i ej = ejr

−
i+1 for i > j

eir
+
j = r+j ei+1 for i > j, r+i ej = ejr

+
i+1 for i > j.

This is well-defined as the relations all preserve RESeqn.

We recall from [6, Proposition 9.4] how the equivalence classes in BNestForn can be represented
diagrammatically. A bicolored nested forest is a nested forest in which each internal node has been
colored with either black ( ∧ ) or white ( ∧ ). We now define a map F̂ from RESeqn to bicolored
nested forests with support in [n].
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Definition 4.2. For Ω ∈ RESeqn, the associated bicolored nested forest F̂ (Ω) with support in [n] is
defined recursively by F̂ (∅) = ∅ and

(1) F̂ (Ω · r−i ) is obtained from F̂ (Ω) by inserting a new tree with no internal nodes as a leaf
between i− 1 and i and relabeling leaves appropriately,

(2) F̂ (Ω · r+i ) is obtained from F̂ (Ω) by replacing the ith leaf with a white node ∧ whose
children are leaves and relabeling leaves appropriately, and

(3) F̂ (Ω · ei) is obtained from F̂ (Ω) by replacing the ith leaf with a black node ∧ whose
children are leaves and relabeling leaves appropriately.

Example 4.3. We demonstrate the recursive process for Ω = r−1 r
+
1 r
−
2 e1e3r

+
2 :

F̂ (r−1 ) =
1
, F̂ (r−1 r

+
1 ) =

1 2
, F̂ (r−1 r

+
1 r
−
2 ) =

1 2 3
, F̂ (r−1 r

+
1 r
−
2 e1) =

1 2 3 4
,

F̂ (r−1 r
+
1 r
−
2 e1e3) =

1 2 3 4 5
, and F̂ (r−1 r

+
1 r
−
2 e1e3r

+
2 ) =

1 2 3 4 5 6
.

Theorem 4.4. [6, Proposition 9.4] Two elements Ω,Ω′ ∈ RESeqn are in the same equivalence class
of BNestForn if and only if F̂ (Ω) = F̂ (Ω′).

Going forward we identify elements of BNestForn with the associated bicolored nested forest,
so that we can write K̂ = Ĥ · xi to mean Ĥ = F̂ (Ω) and K̂ = F̂ (Ω · xi) for some Ω ∈ RESeqn. The
defining relations of BNestForn preserve |Ω|, so it makes sense to discuss |F̂ |. Diagrammatically,
|F̂ | is the number of black nodes in F̂ . See Example 4.3 for a bicolored nested forest built from an
Ω ∈ RESeq6 with |Ω| = 2.

Definition 4.5. We conclude by identifying some distinguished subsets of BNestForn which will
appear in later sections.

(1) Let Forestn = {F̂ ∈ BNestForn | each Ω ∈ F̂ has the form (r−1 )n−kei1 · · · eik}; elements of
this set map to forests without white nodes in which no nesting occurs, so that the support
of each tree is a contiguous interval of [n].

(2) Let Treen = {F̂ ∈ BNestForn | |F̂ | = n − 1}; elements of this set have representatives of
the form r−1 ei1 · · · ein−1 and map to singleton trees (Tc) with entirely black nodes.

We note that in the above definition, Treen ⊆ Forestn ⊆ BNestForn.

4.2. Combinatorics of building operations.
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Lemma 4.6. We have the relations

PjPi = Pi+1Pj for i > j

Ψ−j Ψ−i = Ψ−i+1Ψ−j for i ≥ j, Ψ+
j Ψ+

i = Ψ+
i+1Ψ+

j for i > j,

Ψ−j Ψ+
i = Ψ+

i+1Ψ−j for i ≥ j, Ψ+
j Ψ−i = Ψ−i+1Ψ+

j for i > j,

Ψ−j Pi = Pi+1Ψ−j for i ≥ j, PjΨ−i = Ψ−i+1Pj for i > j

Ψ+
j Pi = Pi+1Ψ+

j for i > j, PjΨ+
i = Ψ+

i+1Pj for i > j.

Moreover, these relations hold when all P’s are replaced by G’s.

Proof. Since Pi = Ψ−i tGitΨ+
i , it suffices to check all of the above relations with Gi in place of Pi. It

suffices to show the stronger statement that these relations hold for the operations Ψ−i , Ψ+
i , and Gi

on subsets of matrices without considering equivalence classes mod B. These are straightforward
so we omit their explicit verification. �

Remark 4.7. The relations in Lemma 4.6 are not exhaustive: in Lemma 8.2 we show that two
additional relations are needed to describe all interactions between the building operations.

Example 4.8. The following computation witnesses the relation G1G2 = G3G1:

a b c

d e f

g h i

 G2−→


a b 0 c

0 + 1 0

d e 0 f

g h 0 i

 G1−→


+ 1 0 0 0

a 0 b 0 c

0 0 + 1 0

d 0 e 0 f

g 0 h 0 i


G3←−


+ 1 0 0

a 0 b c

d 0 e f

g 0 h i

 G1←−

a b c

d e f

g h i

 .

Since the relations of Lemma 4.6 are the opposites to the defining relations of BNestForn, the
following is well-defined.

Definition 4.9. For F̂ ∈ BNestForn, we define X(F̂ ) ⊂ Fln recursively: X(r−1 ) = Fl1 is a single
point, and

(1) X(F̂ · r±j ) = Ψ±j X(F̂ )

(2) X(F̂ · ej) = PjX(F̂ ).

Similarly, we define X◦(F̂ ) ⊂ Fln recursively: X◦(r−1 ) = Fl1 is a single point, and

(1) X◦(F̂ · r±j ) = Ψ±j X
◦(F̂ )

(2) X◦(F̂ · ej) = GjX
◦(F̂ ).

Remark 4.10. We conclude by revisiting the distinguished families from Definition 4.5.

(1) In Theorem 7.1, we show that the X(F ) for F ∈ Forestn are the quasisymmetric Schubert
cycles of [38, Definition 6.2].
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(2) For T ∈ Treen, the X(T ) are the top-dimensional quasisymmetric Schubert cycles, which
we use to construct QFln.

5. THE BOTT MANIFOLDS X(F̂ )

We now describe the toric structure of varieties X(F̂ ) and X◦(F̂ ) in Definition 4.9.

Theorem 5.1. For F̂ ∈ BNestForm, the variety X◦(F̂ ) is a torus orbit in Flm of dimension |F̂ |.
Furthermore, X(F̂ ) is the closure of the torus orbit X◦(F̂ ) in Flm.

We prove the theorem using the following. Recall the meaning of Flγim−1 from Definition 3.2.

Proposition 5.2. Fix F̂ ∈ BNestForm−1, and consider X(F̂ ) ⊂ Flγim−1 for some fixed 1 ≤ i ≤ m.

(1) The map Ψ−i : X(F̂ )→ X(F̂ · r−i ) is a Tm-equivariant isomorphism.

(2) If i < m, the map Ψ+
i : X(F̂ )→ X(F̂ · r+i ) is a Tm-equivariant isomorphism.

(3) If i < m, there exists a Tm-equivariant isomorphism X(F̂ · ei) ∼= Proj(Fi/Fi−1 ⊕ Cχi)X(F̂ )
.

Furthermore, X(F̂ · r−i ) and X(F̂ · r+i ) are the Tm-equivariant sections Proj({0} ⊕ Cχi)X(F̂ )

and Proj((Fi/Fi−1)⊕ {0})
X(F̂ )

respectively.

Proof. These are immediate corollaries of Theorem 3.5 and Definition 4.9. �

Proof of Theorem 5.1. The dimension statement follows because each Gi defining X◦(F̂ ) increases
the dimension by 1 and each Ψ±i preserves the dimension. To show that X◦(F̂ ) is a torus orbit, we
induct on m. By Proposition 5.2(1) and (2) if we know X◦(F̂ ) is a torus orbit then so is X◦(F̂ · r±i ).
Proposition 5.2 further implies that for any Y ⊂ X(F̂ ) we have that GiY → Y is a C∗-bundle
obtained from PiY by removing the two distinguished sections. By applying this for Y = X◦(F̂ )

we conclude that Tm acts transitively on GiX
◦(F̂ ) = X◦(F̂ ·ei) from the fact that Tm ∼= γi(Tm)×C∗χi

with γi(Tm) acting transitively on the base of the C∗-bundle X◦(F̂ · ei) → X◦(F̂ ) and C∗χi acting

transitively on the fibers while fixing the base. Finally, for any Z ⊂ Flm−1 we have Ψ±i Z = Ψ±i Z

and PiZ = PiZ = GZ, which shows by induction that X(F̂ ) is the closure of X◦(F̂ ). �

Recall that a combinatorial cube is a polytope whose face lattice is identical to that of a cube
of the same dimension. If we have a sequence of varieties X1, X2, . . . , Xm where X1 = {pt}
is a single point and Xi = Proj(Li−1 ⊕ C)Xi−1 for Li−1 a toric line bundle on Xi−1, then Xm

is a smooth projective toric variety whose moment polytope is a combinatorial cube. The toric
structure is defined recursively by saying if Ti−1 is the torus for Xi−1, then Xi is a toric variety
for Ti := Ti−1 × C∗ where Ti−1 acts trivially on the factor of C and C∗ acts by scaling this C
factor. The dense torus orbit can also be obtained by taking Proj(Li−1 ⊕ C)Ti and removing the
two distinguished sections. Such an Xm obtained in this way is called a Bott manifold (see [37]).



14 NANTEL BERGERON, LUCAS GAGNON, PHILIPPE NADEAU, HUNTER SPINK, AND VASU TEWARI

Definition 5.3. For Ω1,Ω2 ∈ RESeqn, we say Ω1 ≤re Ω2 if Ω1 is obtained from Ω2 by switching
some letters ei to r±i .

Proposition 5.4. For Ω1eiΩ2 ∈ RESeqn,

(1) F̂ (Ω1r
+
i Ω2) is obtained from F̂ (Ω1eiΩ2) by changing the black node associated to ei to a

white node and
(2) F̂ (Ω1r

−
i Ω2) is obtained from F̂ (Ω1eiΩ2) by deleting the left edge of the black node associ-

ated to ei and contracting the resulting node.

In particular, the relation ≤re descends to a partial order on BNestForn.

Proof. This follows immediately from the way that bicolored nested forests are created recursively
from sequences in RESeqn. �

We define the operation of left edge deletion at a node in IN(F̂ ) to be the operation described in
Proposition 5.4(2). We sometimes emphasize that a forest is obtained by left edge deletion at v by
drawing the contracted edge through the former location of v, as shown below.

Example 5.5. We demonstrate Proposition 5.4 using the nested forest F̂ (r−1 r
+
1 r
−
2 e1e3r

+
2 ) from Ex-

ample 4.3. Three examples of ≤re-smaller nested forests are:

1 2 3 4 5 6

F̂ (r−1 r
+
1 r
−
2 r

+
1 e3r

+
2 )

,
1 2 3 4 5 6

F̂ (r−1 r
+
1 r
−
2 e1r

−
3 r

+
2 )

, and
1 2 3 4 5 6

=
1 2 3 4 5 6

F̂ (r−1 r
+
1 r
−
2 r
−
1 e3r

+
2 )

.

Definition 5.6. For F̂ ∈ BNestForn, we define

Face(F̂ ) = {Ĝ : Ĝ ≤re F̂} and

Vert(F̂ ) = {Ĝ : Ĝ ≤re F̂ and |Ĝ| = 0}.

Restricting ≤re to Face(F̂ ) gives the face poset of a |F̂ |-dimensional cube. Indeed, the choice of
whether to change each black node white or to perform left edge deletion is equivalent to choosing
one from a pair of opposite faces. Figure 4 shows in the left panel two such cubes and the elements
of Face(F̂ ) associated with each face. We now give this interpretation a geometric meaning.

Theorem 5.7. For F̂ ∈ BNestForn, X(F̂ ) ⊂ Fln is a Bott manifold of dimension |F̂ | with dense
torus orbit X◦(F̂ ). The distinct torus orbits of X(F̂ ) are given by {X◦(Ĝ) : Ĝ ∈ Face(F̂ )}, and the
distinct torus orbit closures are given by {X(Ĝ) : Ĝ ∈ Face(F̂ )}.

Proof. By Proposition 5.2, any Ω ∈ RESeqn representing F̂ induces a Bott manifold structure on
X(F̂ ) with dense torus orbit X◦(F̂ ) as described above, and the dimension is |F̂ | by Theorem 5.1.
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As Theorem 5.1 shows the closure of the torus orbit X◦(Ĝ) is X(Ĝ), it remains to describe
the distinct torus-orbit closures. We proceeed inductively. Suppose the result holds for all F̂ ∈
BNestForn−1; we aim to prove it for each F̂ · xi ∈ BNestForn.

First, note that Ψ±i : X(F̂ ) → X(F̂ · r±i ) is an isomorphism and moreover induces a bijection
between torus orbit closures via

X(Ĝ) 7→ Ψ±i X(Ĝ) = X(Ĝ · r±i ),

so we conclude the result for F̂ · r±i as Face(F̂ · r±i ) = {Ĝ · r±i : Ĝ ∈ Face(F̂ )}. Consider now the
P1-bundle X(F̂ · ei) → X(F̂ ). For any projective toric variety X with a toric line bundle L, the
torus orbit closures on the toric variety Proj(L ⊕ C) are given by the P1-bundles over the torus
orbit closures in X , together with the images of the torus orbit closures in X in the two disjoint
sections of the split projective bundle. Consequently by Proposition 5.2 the torus orbit closures in
X(F̂ ) are given by

⊔
Ĝ∈Face(F̂ )

{Ψ−i X(Ĝ),Ψ+
i X(Ĝ),PiX(Ĝ)} =

⊔
Ĝ∈Face(F̂ )

{X(Ĝ · r−i ), X(Ĝ · r+i ), X(Ĝ · ei)}

and we conclude as Face(F̂ · ei) =
⋃
Ĝ∈Face(F̂ )

{Ĝ · r−i , Ĝ · r
+
i , Ĝ · ei}. �

6. TORUS FIXED POINTS OF X(F̂ )

In this section we describe the combinatorics of the fixed point sets

I
F̂

:= X(F̂ )T ⊂ Sn.

As the following theorem shows, elements of I
F̂

always lie in NCn.

Theorem 6.1. For any F̂ ∈ BNestForn, we have

I
F̂

= {NCPerm(Ĝ) | Ĝ ∈ Vert(F̂ )} ⊂ NCn .

In particular, if Ĝ ∈ BNestForn has |Ĝ| = 0, then X
Ĝ

= {NCPerm(Ĝ)}.
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Example 6.2. We apply the theorem to the fixed point set for the nested forest F̂ (r−1 r
+
1 r
−
2 e1e3r

+
2 )

from Examples 4.3 and 5.5. We have:

(6321)(54)↔
1 2 3 4 5 6

F̂ (r−1 r
+
1 r
−
2 r

+
1 r

+
3 r

+
2 )

(6321)↔
1 2 3 4 5 6

F̂ (r−1 r
+
1 r
−
2 r

+
1 r
−
3 r

+
2 )

(632)(54)↔
1 2 3 4 5 6

F̂ (r−1 r
+
1 r
−
2 r
−
1 r

+
3 r

+
2 )

(632)↔
1 2 3 4 5 6

F̂ (r−1 r
+
1 r
−
2 r
−
1 r
−
3 r

+
2 )

Going forward, we will abuse notation and treat Ψ−i and Ψ+
i as maps on permutations rather

than just permutation matrices. These are given by the group homomorphism Ψ−i : Sn−1 ↪→ Sn,
induced by the increasing injection {1, . . . , n− 1} ↪→ {1, . . . , i− 1, i+ 1, . . . , n} onto the subgroup
of Sn with u(i) = i, and Ψ+

i w = (Ψ−i w)si.

Proof of Theorem 6.1. We know from Theorem 5.7 that the fixed point set I
F̂

is given by the points
X
Ĝ

such that Ĝ ∈ Vert(F̂ ). Therefore we need only verify the the statement when |Ĝ| = 0,
meaning that Ĝ is represented by a sequence of r±i .

For n = 1 we have Ĝ = r−1 and X
Ĝ

= {idS1} = {NCPerm(Ĝ)}. For n > 1, by the recursive
construction of X

Ĝ
in Definition 4.9 it suffices to show that

NCPerm(F̂ · r−i ) = Ψ−i
(

NCPerm(F̂ )
)

and NCPerm(F̂ · r+i ) = Ψ+
i

(
NCPerm(F̂ )

)
.(6.1)

We check these by comparing the definition of F̂ ·r±i with that of Ψ±i : the former is straightforward,
and the latter follows from that fact that for a backwards cycle C on a set A containing i but not
i+ 1, the product C(i i+ 1) is the backwards cycle on A t {i+ 1}. �

We now characterize I
F̂

in a manner that connects nested forests to factorizations of noncrossing
partitions, as mentioned in Remark 2.2. For each internal node v ∈ IN(F̂ ), let τv denote the
transposition (i j) of the rightmost leaf descendant i of vL and the rightmost leaf descendant j of
v, as shown in Figure 2.

Say that a total order on IN(F̂ ) is a linear extension of F̂ if each v ∈ IN(F̂ ) is preceded by all of
its ancestors. As we now explain, the τv have the property that any two product orders on∏

v∈IN(F̂ )

τv(6.2)
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(2 3)(1 3) (6 7)

(5 9)

(8 9)
(10 12)

(9 12)

(3 9)

(4 5)

1 2 3 4 5 6 7 8 9 10 11 12

FIGURE 2. A bicolored nested forest with internal nodes labeled by transpositions τv

which are linear extensions of F̂ are related entirely by commuting factors past one another. In-
deed, any two linear extensions are related by repeatedly swapping adjacent elements v, v′ which
are not ancestor and descendant, and for such a pair the transpositions τv = (i, j) and τv′ = (k, `)

are disjoint and hence commute.
Thus (6.2) is unambiguously defined as the product of the vertices of F̂ taken in any order

dictated by a linear extension of F̂ . For the same reasons, one can define the product
∏
v∈S τv for

any S ⊂ IN(F̂ ).

Theorem 6.3. For each F̂ ∈ BNestForn, we have

I
F̂

=

 ∏
v∈IN(F̂ )\S

τv | S ⊆ {black vertices of F̂}

 .

In particular, NCPerm(F̂ ) =
∏
v∈IN(F̂ )

τv.

Proof. We first show the claim holds when F̂ has only white nodes, so that I
F̂

= {NCPerm(F̂ )} by
Theorem 6.1 and the claim amounts to NCPerm(F̂ ) =

∏
v∈IN(F̂ )

τv. We proceed by induction on

| IN(F̂ )|. If F̂ has no nodes, then the claim holds trivially. Otherwise let v0 be the root of a tree in
F̂ that is not nested under any other tree, so that v0 is the first element in some linear extension
of F̂ . Let Ĝ be the forest obtained by deleting v0 and all incident edges. As | IN(Ĝ)| < | IN(F̂ )|,
our inductive hypothesis guarantees that NCPerm(Ĝ) =

∏
v∈IN(Ĝ)

τv is the unique element of I
Ĝ

.

Moreover, NCPerm(Ĝ) =
∏
v∈IN(F̂ )−{v0} τv, since for v ∈ IN(Ĝ) the value of τv does not depend

on whether we consider v as a node of F̂ or Ĝ. It therefore suffices to show that τv0 NCPerm(F̂ ) =

NCPerm(Ĝ), which follows from that fact that if cA and cB are backwards cycles with maxA <

minB, then (maxA,maxB)cAcB = cAtB .
We now consider the general case of F̂ ∈ BNestForn. By Theorem 6.1, we have that I

F̂
=

{NCPerm(Ĝ) | Ĝ ∈ Vert(F̂ )}. Further, each Ĝ ∈ Vert(F̂ ) is obtained precisely by performing left
edge deletion at some subset S of black nodes from F̂ and changing the remaining black nodes to
white nodes. Thus applying the special case proved above to each Ĝ ∈ Vert(F̂ ), we see that the
theorem holds for F̂ . �
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Recall that the moment polytope for each X(F̂ ) is a combinatorial cube with vertices corre-
sponding to the fixed point set I

F̂
.

Corollary 6.4. For F̂ ∈ BNestForn, I
F̂

is an induced Boolean sublattice in the Kreweras order, and
w 7→ w · λ maps I

F̂
onto the vertices of the moment polytope of X(F̂ ) for the dominant weight λ

in such a way that the Hasse diagram of I
F̂

is identified with the 1-skeleton of the polytope.

Proof. By Theorem 6.1, I
F̂
⊆ NCn. By [30, Lemma 2.11], this is an induced Boolean sublattice of

the Kreweras order. Moreover, using the description of I
F̂

given in Proposition 6.3, the edges of
the moment polytope connect exactly those pairs of elements of I

F̂
which differ by the inclusion

of a single τv. �

7. TRANSLATED RICHARDSONS AND POLYPOSITROIDS

In this section we relate our X(F̂ ) to certain Richardson varieties previously studied in [39, 40]
and the quasisymmetric Schubert cycles of [38]; see Remark 7.3. We then use this connection to
describe the moment polytope of each X(F̂ ) as a polypositroid [33].

Recall that a Richardson variety is the intersection Xv
w = Xv ∩ Xw, which is nonempty if and

only if w ≤ v. It is straightforward to see that w ≤ wc if and only if w ∈ Sn−1, and in this case the
Richardson variety Xwc

w is known to be an (n − 1)-dimensional toric variety [38]. Consider now
the image of each Xwc

w under left multiplication by w−1.

Theorem 7.1. We have

{X(T ) | T ∈ Treen} = {w−1Xwc
w | w ∈ Sn−1}.

In particular, there are Catn−1 distinct translated Richardson varieties, one for each T ∈ Treen.

For T ∈ Treen recall that we have

X(T ) = Pin−1Pin−2 · · ·Pi1{pt} ⊂ Fln

for any sequence r−1 ei1ei2 · · · ein−1 associated to T . For any m, let εi be the map from Sm−1 → Sm

which, in one-line notation, inserts a 1 into the ith position and increases the remaining numbers
by 1. For example ε315684237 = 261795348. Note that this coincides with the map Ψ−1,i restricted
to permutation matrices. However, unlike Ψ−1,i, we shall reserve εi for use on permutations only.

Lemma 7.2. Let Y (u, v) := u−1Xv
u . Then PiY (u, v) = Y (εiu, εi+1v).

Proof. In [38, §4] it was shown that π−1
i πiΨ1,iX

v
u = X

εi+1v
εiu . Since πi is equivariant with respect to

left multiplication, we get the following sequence of equalities

Y (εiu, εi+1v) =(εiu)−1X
εi+1v
εiu = (εiu)−1π−1

i πiΨ1,iX
v
u

=π−1
i πi(εiu)−1Ψ1,iX

v
u = π−1

i πiΨ
−
i u
−1Xv

u = PiY (u, v),



THE QUASISYMMETRIC FLAG VARIETY 19

where we use the fact that (εiu)−1Ψ1,i = Ψ−i u
−1. �

Proof of Theorem 7.1. Suppose first that T ∈ Treen is associated to the sequence r−1 ei1 · · · ein−1 ∈
RESeqn. Let v = εin−1+1 · · · εi1+1 idS1 and u = εin−1 · · · εi1 idS1 . By [38, Proposition B.4(2)] we have
v = uc and u(n) = n. By repeated applications of Lemma 7.2 we have X(T ) = u−1Xv

u = u−1Xuc
u .

Conversely given u ∈ Sn−1, by induction one can show that u = εin−1 · · · εi1 idS1 for some
sequence i1, . . . , in−1 with ij ≤ j, and the tree T ∈ Treen associated to the sequence r−1 ei1 · · · ein−1 ∈
RESeqn has X(T ) = u−1Xuc

u .
Showing that there are Catn−1-many distinct translated Richardson varieties amounts to show-

ing that the X(T ) for T ∈ Treen are distinct. This follows either from the identification with the
quasisymmetric Schubert cycles of [38] as described in Remark 7.3. A second proof can be ob-
tained using the results of Section 8: we characterize when two forests in BNestForn produce the
same torus-orbit closure, and in particular show that this does not occur for any two trees. �

Remark 7.3. In [38] certain translates u−1Xv
u of Richardson varieties called quasisymmetric Schubert

cycles were defined for any forest F ∈ Forestn. The description of X(T ) for T = r−1 ei1 · · · ein−1 ∈
Treen as a translated Richardson variety is exactly the same as the description of the quasisym-
metric Schubert cycle associated to T in [38] (matching the notation, T would have been described
as associated to a sequence r1ti1 · · · tin−1 ∈ RTSeqn). More generally for F ∈ Forestn, applying

Lemma 7.2 recursively to X((r−1 )n−k) = X
idSn−k
idSn−k

⊂ Fln−k realizes each X(F ) as the quasisymmet-
ric Schubert cycle associated to F .

Recall that faces of Bruhat interval polytopes are themselves Bruhat interval polytopes. Since
the torus orbit closures in a fixed toric Richardson variety correspond to faces of the associated
Bruhat interval polytope, we infer [44, Proposition 7.12] that every torus orbit closure in a toric
Richardson variety is also a toric Richardson variety. This yields the following corollary.

Corollary 7.4. Every X(F̂ ) is the left-translate of a toric Richardson variety by an element of Sn.

Remark 7.5. Theorem 7.1 provides an alternate perspective on the presence of noncrossing parti-
tions arising as torus fixed points of X(F̂ ). Indeed, consider a fixed point u ∈ IT for T ∈ Treen.
Using the fact that X(T ) is a translated Richardson variety we will show that u ∈ NCn. To be-
gin, choose a maximal chain from w to wc containing wu in the Bruhat order. Left translation
by w−1 gives a factorization of c as a product of transpositions τ1 · · · τn−1 with u = τ1 · · · τm for
m = `(u)− `(w). Hence u ∈ NCn by the characterization of NCn due to Biane [9].

The description of eachX(T ) as a translated Richardson variety also leads to a description of the
defining hyperplanes for the moment polytope of X(T ). Recall the canonical labelling of T given
in Section 2.3 and suppose that i is the label of an internal node. Let Right(T, i) (resp. Left(T, i))
denote the set containing i and the labels of each internal node in the right (resp. left) subtree of i.
These sets are necessarily intervals of N containing i.
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Recall that a polytope is a generalized permutahedron if its edges are parallel to vectors of the
form ei − ej for distinct i and j, and that a polytope is an alcoved polytope if its facet normals
are parallel to vectors of the form ei + ei+1 + · · · + ej for i ≤ j. Following [33], a polypositroid is
a polytope that is both a generalized permutahedron and an alcoved polytope. The following is
essentially the content of [40, Remark 6.11].

Theorem 7.6. The moment polytope of X(T ) in the hyperplane z1 + · · ·+ zn = λ1 + · · ·+ λn is the
polypositroid defined by the following inequalities: for each i ∈ {1, . . . , n− 1}we have∑

j∈Right(T,i)

zj ≥
∑

j∈Right(T,i)

λj+1, and
∑

j∈Left(T,i)

zj ≤
∑

j∈Left(T,i)

λj .

As faces of polypositroids are polypositroids, we have in fact showed that the moment polytope
of every X(F̂ ) is a polypositroid. By Theorem B (proved in Section 10.1), the X(F̂ ) are the only
irreducible subvarieties of Fln whose torus fixed points are contained in NCn. Thus the moment
polytopes of our X(F̂ ) account for all flag matroid polytopes which have vertices in NCn and
moreover have “geometric origin.”

Conjecture 7.7. Every polypositroid—and more generally every flag matroid polytope—whose
vertices are contained in NCn is the moment polytope of some X(F̂ ).

Example 7.8. Figure 3 (left) depicts T ∈ Tree4 with the canonical labeling of IN(T ). On the right
is the facet description inside the hyperplane z1 + z2 + z3 + z4 = λ1 + λ2 + λ3 + λ4.

i 1 2 3

Left(T, i) {1} {1, 2} {3}
Right(T, i) {1} {2, 3} {3}

Inequality (L) z1 ≤ λ1 z1 + z2 ≤ λ1 + λ2 z3 ≤ λ3

Inequality (R) z1 ≥ λ2 z2 + z3 ≥ λ3 + λ4 z3 ≥ λ4
1 2 3 4

1 3

2T

FIGURE 3. The facet inequalities for a particular moment polytope

By Theorem 6.3 and Corollary 6.4, the set of vertices of this polytope is given by

{u · λ | u a subword of the product (2, 4)(3, 4)(1, 2)}.

8. THE QUASISYMMETRIC FLAG VARIETY

We define the quasisymmetric flag variety as the toric complex

QFln :=
⋃

T∈Treen

X(T ) ⊂ Fln.

The union defining QFln is not disjoint as there is some overlap between distinct X(T ), X(T ′).
In this section we characterize this overlap in terms of the torus fixed point sets I

F̂
described in

Section 6.



THE QUASISYMMETRIC FLAG VARIETY 21

Theorem 8.1. For F̂ , Ĝ ∈ BNestForn we have X(Ĝ) ⊂ X(F̂ ) if and only if I
Ĝ
⊂ I

F̂
.

The criterion therein provides a combinatorial model for the toric structure of QFln, see Figure 4.
First take the disjoint union of the moment polytopes for eachX(T ), which we showed in Section 5
are (n − 1)-dimensional combinatorial cubes. Then create a polyhedral complex Complex(QFln)

by identifying faces from distinct polytopes that are equal in the sense that they share the same set
of vertices. After identification, the faces of Complex(QFln) are then in bijection with the distinct
torus orbit closures in QFln.

c∼

c∼

FIGURE 4. The combinatorial cubes corresponding to the toric orbit closures in
each of the two components of QFl3 (left) and the global complex Complex(QFl3)

encoding the inclusion order on all toric closures X(F̂ ) in QFl3 (right).

We prove Theorem 8.1 at the end of Section 8.2 after introducing an important equivalence re-
lation on BNestForn in Section 8.1. Section 8.3 contains further enumerative and structural results
about Complex(QFln).

8.1. Colored Tamari equivalence and normal forms. Every torus orbit closure in QFln is by def-
inition contained in X(T ) for some T ∈ Treen. In Section 5, we showed every torus orbit closure
in X(T ) is of the form X(F̂ ) for a bicolored nested forest F̂ ≤re T . Thus the torus orbit closures in
QFln can be parametrized by BNestForn. However, there is some redundancy in this parametriza-
tion as is apparent from Figure 4. This is explained by the following two additional relations that
the building operations satisfy.

Lemma 8.2. For all 1 ≤ i < n we have the relations

Ψ+
i+1Pi = PiΨ+

i and Ψ+
i+1Ψ+

i = Ψ+
i Ψ+

i .

Proof. Both relations can be verified with elementary matrix computations. �

In the correspondence between words in RTSeqn and compositions of building operations,
these relations correspond to eir

+
i+1 = r+i ei and r+i r

+
i+1 = r+i r

+
i . Considering the relations at the

level of binary forests leads to the following definition.
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Definition 8.3. We say that F̂ , Ĝ ∈ BNestForn are colored Tamari equivalent, denoted by F̂ c∼ Ĝ, if
one can be transformed into the other by a sequence of colored Tamari rotations shown below.

A

B C A B

C A

B C A B

C

c∼ c∼

By the preceding discussion, we get the following result.

Proposition 8.4. If F̂ , Ĝ ∈ BNestFor satisfy F̂ c∼ Ĝ, then X(F̂ ) = X(Ĝ), and in particular I
F̂

= I
Ĝ

.

Definition 8.5. We say that F̂ ∈ BNestForn is in normal form if every right child in IN(F̂ ) is a black
node. Let BNestFornf

n be the set of bicolored nested forests that are in normal form.

Every element of BNestForn can be transformed to some element of BNestFornf
n by applying

colored Tamari rotations repeatedly. We will prove that this normal form is unique in the next
section. Figure 5 depicts a bicolored tree as well as its colored Tamari equivalent normal form.

1 2 3 4 5 6 7

(1 7) (3 7) (6 7) (4 6) (5 6) (2 3)

1 2 3 4 5 6 7

(3 7) (1 3) (6 7) (5 6) (4 5) (2 3)

FIGURE 5. A bicolored tree which is not in normal form (left), its Tamari-equivalent
normal form (right), and the associated factorizations of c for each tree (below).

Remark 8.6. Proposition 6.3 relates bicolored nested forests to factorizations of noncrossing parti-
tions, where the colored Tamari equivalence allows certain relations (i k)(j k) = (j k)(i j).

8.2. The Bruhat maximal element of X(F̂ ) and uniqueness of normal form. We will need to
understand the Bruhat order on I

F̂
. Since X(F̂ ) is a torus orbit closure in Fln, we have that I

F̂
is a

flag matroid [22]. Hence we have the following fact.

Fact 8.7 ([16, § 1.9]). For any F̂ ∈ BNestForn, I
F̂

has a unique Bruhat-maximum element. This
element is characterized by the property that all adjacent vertices are lower in the Bruhat order.

In order to describe this distinguished element, we define a new map. For F̂ in BNestFornf
n , let

RC(F̂ ) denote the set of internal nodes that are right children. By definition of normal form, we
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note that all nodes in RC(F̂ ) are black. We define a map

ForToNC : BNestFornf
n → NCn

F̂ 7→ NCPerm
(
F̂ \ RC(F̂ )

)
where F̂ \RC(F̂ ) denotes the bicolored nested forest obtained by left edge deletion for each node
v ∈ RC(F̂ ) and contracting it in the sense of Proposition 5.4. This is a natural extension of the map
on Forestn which we defined in [6, Section 7.2] using the same notation.

Example 8.8. We have

ForToNC


1 2 3 4 5 6 7

 = NCPerm


1 2 3 4 5 6 7

 = (731)(654)(2).

Lemma 8.9. For F̂ = Ĝ · xi ∈ BNestFornf
n with Ĝ ∈ BNestFornf

n−1, we have

ForToNC(F̂ ) =

Ψ−i ForToNC(Ĝ) if xi = r−i or leaf i is a right child in Ĝ

Ψ+
i ForToNC(Ĝ) otherwise.

Proof. From the definitions we immediately verify

F̂ \ RC(F̂ ) =

(Ĝ \ RC(Ĝ)) · r−i if xi = r−i or leaf i is a right child in Ĝ

(Ĝ \ RC(Ĝ)) · xi otherwise

after which the formulas (6.1) complete the proof. �

Proposition 8.10. If F̂ ∈ BNestFornf
n , then ForToNC(F̂ ) is the Bruhat-maximum element of I

F̂
.

Proof. We proceed by induction on n. For n = 1, ForToNC(F̂ ) is the only element of I
F̂

. For
n > 1, we have F̂ = Ĝ · xi for xi ∈ {r±i , ei} and Ĝ ∈ BNestFornf

n−1. Setting w = ForToNC(F̂ ) and
u = ForToNC(Ĝ), Lemma 8.9 states that w = Ψε

i(u) for ε ∈ {+,−}.
For xi = rεi , we note that both Ψ−i and Ψ+

i preserve the Bruhat order. This follows, for instance,
from the tableau criterion [14, Theorem 2.6.3]. Thus resorting to our inductive hypothesis on u,
we have that w = Ψε

i(u) is the Bruhat maximum of I
F̂

= Ψε
i(IĜ).

Now suppose that xi = ei. By Fact 8.7, it suffices to show that w is greater than all adjacent
fixed points in I

F̂
. As I

F̂
is a combinatorial cube and Ψε

i is a face inclusion, all but one of these
adjacent elements are contained in Ψε

i(IĜ) and therefore covered by the previous argument. The
remaining adjacent fixed point is wsi, so what remains is to show that w(i) > w(i + 1). Let v be
the (black) node associated to xi. If v is a right child in F̂ , then w(i) = i and w(i+ 1) < i+ 1. If v is
not a right child, then i is the smallest element of its cycle, which must also contain i+ 1, so again
w(i) > w(i+ 1). �
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(F, S)

̂(F, S)
7→

FIGURE 6. An example of the construction in Proposition 8.11 for n = 12 (left) and
all elements (̂F, S) ∈ BNestFornf

4 for F = F̂ (r−1 e1e1e3) ∈ Forest4 (right).

We need an alternative construction related to the map ForToNC. Let (F, S) be a pair consisting
of an indexed forest F ∈ Forestn and a subset S ⊆ IN(F ). We define

(̂F, S) ∈ Face(F ) ⊂ BNestFornf
n

by performing left-edge deletion on all vertices in S ∩RC(F ), and coloring the remaining vertices
of S white. An example is shown in Figure 6 (left).

Proposition 8.11. The map (F, S) 7→ (̂F, S) is a bijection from {(F, S) | F ∈ Forestn, S ⊆ IN(F )}
onto BNestFornf

n . Furthermore ForToNC (̂F, S) = ForToNC(F ) for all (F, S).

Proof. The fact that ForToNC (̂F, S) = ForToNC(F ) follows from the definition of ForToNC. For
fixed F the forests (̂F, S) are distinct as they correspond to distinct elements of Face(F ): given
a fixed sequence (r−1 )n−kei1 · · · eik for F the choice of S determines the subset of ei1 , . . . , eik to
transform to r±i . This shows that the map (F, S) 7→ (̂F, S) is an injection, so it remains to construct
an inverse map. Given Ĝ in BNestFornf

n we create G ∈ Forestn by coloring all of its vertices black
and then connecting the remaining nested trees using the procedure described below.

For each v ∈ IN(Ĝ), let T1, . . . , Tk be the outermost trees which are nested in the subtree below
v, listed from left to right. Denoting their roots w1, . . . , wk we create new black nodes v′1, . . . , v

′
k in

the interior of the edge from v to vR in this order, and then for each i we connect wi to v′i.
The resulting forest G does not depend on the order in which we apply the connection proce-

dure. Setting S ⊆ IN(G) to be set consisting of the newly created nodes together with the black
nodes that came from white nodes of Ĝ, Ĝ 7→ (G,S) is the inverse map. �

Proposition 8.12. Let F̂ , Ĝ ∈ BNestFornf
n . If I

F̂
= I

Ĝ
then F̂ = Ĝ.
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Proof. We show that we can reconstruct F̂ from I = I
F̂

. First, we recover w = ForToNC(F̂ ) as the
maximal element in I with respect to the Bruhat order by Proposition 8.10. By Proposition 8.11,
this means F̂ = (̂F, S) for the unique F ∈ Forestn with ForToNC(F ) = w and some unique
S ⊂ IN(F ) so it remains to show that the I

(̂F,S)
are distinct for fixed F . Indeed, by Proposition 8.11

again, as we vary S we obtain distinct (̂F, S) ∈ Face(F ), so we conclude the vertex sets I
(̂F,S)

are
distinct as a face is determined by its vertex set. �

Remark 8.13. One can show that I
(̂F,S)

is the smallest sublattice of IF which contains ForToNC(F )

and NCPerm((̂F, S) \A) for A ⊂ IN((̂F, S)) the subset of black nodes that are not right children.

Proposition 8.14. Every colored Tamari equivalence class in BNestForn has a unique normal form
representative in BNestFornf

n . Moreover, for F̂ , Ĝ ∈ BNestForn, the following are equivalent:

(1) X(F̂ ) = X(Ĝ),
(2) F̂ c∼ Ĝ, and
(3) I

F̂
= I

Ĝ
.

Proof. If F̂ c∼ Ĝ are both in normal form, then by Proposition 8.4 we have X(F̂ ) = X(Ĝ), and in
particular I

F̂
= I

Ĝ
and so by Proposition 8.12 we conclude that F̂ = Ĝ.

We know already that (2) implies (1) by Proposition 8.4, and obviously (1) implies (3). It remains
only to show that (3) implies (2). By Proposition 8.4 colored Tamari rotations preserve I

F̂
. Let F̂ ′

and Ĝ′ be the normal form colored Tamari equivalents to F̂ and Ĝ. Then I
F̂ ′ = I

Ĝ′ and so by
Proposition 8.12 we deduce that F̂ ′ = Ĝ′, and so conclude that F̂ c∼ Ĝ. �

We are now ready to prove Theorem 8.1.

Proof of Theorem 8.1. Clearly X(Ĝ) ⊂ X(F̂ ) implies I
Ĝ
⊂ I

F̂
. Suppose now I

Ĝ
⊂ I

F̂
. By Corol-

lary 6.4, both I
Ĝ

and I
F̂

are boolean lattices inside the Kreweras lattice. Recall the absolute length
of a noncrossing partition w ∈ NCn is n minus the number of cycles of w, which is the minimal
number of transpositions needed to multiply to w. Let u, v ∈ I

Ĝ
be the top and bottom elements

in the Kreweras order, of absolute lengths a and b respectively, so that |I
Ĝ
| = 2a−b. On the other

hand the set of permutations in I
F̂

between u and v in the Kreweras order is a subinterval of I
F̂

with 2a−b elements. It follows that I
Ĝ

is this subinterval of I
F̂

, so there exists Ĝ′ ∈ Face(F̂ ) with
I
Ĝ

= I
Ĝ′ . By Proposition 8.14 this implies X(Ĝ′) = X(Ĝ) ⊂ X(F̂ ). �

8.3. Combinatorics of torus orbit closures. In this section we describe several enumerative as-
pects of the complex Complex(QFln). We moreover show in Proposition 8.15 that the number
of such orbits for n = 1, 2, 3, . . . is given by generalized Catalan numbers [42, A064062], while
counting them according to dimension gives a refinement known as Borel’s triangle [42, A234950].

We now describe the cell structure of Complex(QFln). In general the intersection of two torus
orbit closures under inclusion is a union of one or more torus orbit closures. As shown on the right

https://oeis.org/A064062
https://oeis.org/A234950
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in Figure 4, the intersection of the top-dimensional orbit closures in Complex(QFl3) is the (non-
disjoint) union of two intervals. Theorem 8.1 shows that faces of Complex(QFln) are in bijection
with the fixed point sets I

F̂
⊆ NCn for F̂ ∈ BNestForn, with inclusion of faces corresponding to

inclusion of sets. The faces are also in bijection with normal form forests in BNestFornf
n , but inclu-

sion is harder to compute with these objects; in particular it is strictly stronger than the restriction
of the order ≤re.

Proposition 8.15. Let G(z, u) =
∑

n,k≥0 fn,kz
nuk where fn,k is the number of torus orbits in QFln

of dimension k. Then

G(z, u) =
1 + 2u−

√
1− 4(u+ 1)z

2(z + u)
.(8.1)

Proof. We have that fn,k is the number of F̂ ∈ BNestFornf
n with k black nodes. First let Gc(z, u) be

the generating function for trees T ∈ BNestFornf
n , so that NCPerm(T ) = c. Decomposition at the

root gives a quadratic functional equation for Gc(z, u) that has the solution

Gc(z, u) =
1 + 2u− z −

√
1 + z2 − 2(2u+ 1)z

2u
.(8.2)

For the general case, note that each F̂ ∈ BNestFornf
n is given by the choice of an element w ∈ NCn

and for each cycleC = (c1 · · · ck) ofw, a tree in BNestFornf
k . As in [18, §2.2], we can therefore apply

the R-transform from free probability to obtain the equation G(z, u) = Gc(zG(z, u), u). This can
be solved using the quadratic equation for Gc(z, u), from which we obtain the desired result. �

The expression (8.1) is the generating function for Borel’s triangle [42, A234950] whose entries
have the explicit closed form

fn,k =
1

n

(
2n

n− k − 1

)(
n+ k − 1

k

)
.

From the expression (8.2), it follows that the enumeration for trees is given by the classical large
Schröder numbers [42, A006318] and the refined version according to |F̂ | is [42, A088617].

Remark 8.16. For comparison, every face of the complex attached to the complex HHMPn dis-
cussed in the introduction is a cube, and intersections of faces are faces. These are indexed bijec-
tively by the words in RESeqn without any r+i , and a face F1 contains a face F2 if the word for F1

can be transformed to that for F2 by changing some letters ei to either r−i or r−i+1. The total number
of faces is 1 · 3 · 5 · · · (2n − 1) [42, A001147], refined according to dimension by the generating
polynomial (1)(2 + t)(3 + 2t) · · · (n+ (n− 1)t).

9. THE AFFINE PAVING OF QFln

We now describe a family of affine charts for QFln around each of its torus fixed points. We
begin in Section 9.1 by defining the charts in terms of the Bott manifold structure of the X(F̂ ) and

https://oeis.org/A234950
https://oeis.org/A006318
https://oeis.org/A088617
https://oeis.org/A001147
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showing that they partition QFln. Then in Section 9.2 we explicitly construct each chart and show
that our partition can be equivalently obtained by intersecting QFln with the Bruhat decomposi-
tion of Fln.

9.1. The paving. For each F ∈ Forestn, the Bott manifold structure of X(F ) from Section 5 gives
an affine chartC(F ) around the T -fixed point ForToNC(F ) ∈ X(F ). Explicitly,C(F ) is isomorphic
to an affine space A|F | of dimension |F | and decomposes into sub-torus-orbits of X(F ) as

C(F ) =
⊔

Ĥ∈Face(F )
ForToNC(F )∈I

Ĥ

X◦(Ĥ).(9.1)

Theorem 9.1. The affine charts form a partition of QFln:

(9.2) QFln =
⊔

F∈Forestn

C(F ).

Moreover, for any total ordering F1, F2, . . . , F|NCn | of Forestn that extends the pullback of the
Bruhat order via ForToNC, we have

⊔k
i=1C(Fi) =

⋃k
i=1X(Fi).

We prove the theorem after the following remark and lemma.

Remark 9.2. The decomposition in Theorem 9.1 can be interpreted as a partition of Complex(QFln)

by associating each C(F ) with the half-open subspace of the moment polytope for X(F ) around
the vertex ForToNC(F ); see Figure 7.

p1qp2qp3q

p321q

p1qp32q
p31qp2q

p21qp3q

C
` ˘C

` ˘

C
` ˘

C
` ˘

C
` ˘

FIGURE 7. The decomposition of Complex(QFl3) induced by our affine paving of
QFl3 as described in Remark 9.2; compare to Figure 4.

Lemma 9.3. Let F ∈ Forestn and Ĥ ∈ BNestFornf
n . Then ForToNC(Ĥ) = ForToNC(F ) if and only

if Ĥ ∈ Face(F ) and ForToNC(F ) ∈ I
Ĥ

.
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Proof. If ForToNC(Ĥ) = ForToNC(F ), then H corresponds to a pair of the form (F, S) by the
construction of Proposition 8.11. It follows from the definition of ≤re that Ĥ ∈ Face(F ) and
likewise ForToNC(F ) ∈ I

Ĥ
. Conversely, if Ĥ ∈ BNestFornf

n satisfies these two conditions, we
know that I

Ĥ
⊂ IF by Theorem 8.1. Since ForToNC(F ) is the Bruhat-maximum element of

IF by Proposition 8.10, it must be the Bruhat-maximum element of I
Ĥ

as well, which implies
ForToNC(Ĥ) = ForToNC(F ) by Proposition 8.10 again. �

Proof of Theorem 9.1. By Proposition 8.14, we have

QFln =
⊔

F̂∈BNestFornfn

X◦(F̂ ).(9.3)

By Lemma 9.3 and Equation (9.1), we have

C(F ) =
⊔

Ĥ∈BNestFornf

ForToNC(Ĥ)=ForToNC(F )

X◦(Ĥ).(9.4)

As ForToNC is surjective when restricted to Forestn, it follows immediately that Equation (9.4)
coarsens the partition in Equation (9.3) into the one in Equation (9.2).

We now show that
⋃k
i=1C(Fi) =

⋃k
j=1X(Fj) for any k. Since C(F ) ⊂ X(F ) for any F ∈

Forest, we only have to show that any F ∈ X(Fj) for some j ≤ k is included in C(Fi) for some
i ≤ k. We have that F ∈ X◦(Ĝ) for some Ĝ ∈ BNestFornf

n such that X◦(Ĝ) ⊂ X(Fj). By Theo-
rem 8.1, this implies that I

Ĝ
⊂ IFj . In particular, using the characterization of Proposition 8.10,

we have ForToNC(Ĝ) ≤ ForToNC(Fj) in Bruhat order. By our choice of total order we then have
ForToNC(Ĝ) = ForToNC(Fi) for some i ≤ j. Because of (9.4) we then have X◦(Ĝ) ⊂ C(Fi), and
thus F ∈ C(Fi), which concludes the proof. �

Remark 9.4 (Points over Fq). The definition of QFln and all arguments used so far make sense
over any field, not just C, and so using (9.2) and (9.3) we may count the number of points of QFln
over a finite field Fq. In this case C(F ) ' FIN(F )

q has cardinality q|F |. Summing over all F ∈ Forestn

we get

#QFln(Fq) =
∑

F∈Forestn

q|F | =
n−1∑
k=0

cn,kq
k

where cn,k = n−k
n+k

(
n+k
k

)
[41]. Using (9.3) we get the alternative expression

#QFln(Fq) =
∑

F∈BNestForn

(q − 1)|F | =

n−1∑
k=0

fn,k(q − 1)k

where the numbers fn,k were introduced in Section 8.3. These two expressions are polynomial in
q, and thus one can extract fn,k =

∑n
m=k

(
m
k

)
cn,m. This gives another proof that the numbers fn,k

are given by Borel’s triangle [42, A234950] as seen in Section 8.3.

https://oeis.org/A234950


THE QUASISYMMETRIC FLAG VARIETY 29

M(w) =



∗ 1 0 0 0 0

∗ 0 1 0 0 0

∗ 0 0 ∗ ∗ 1

∗ 0 0 ∗ 1 0

∗ 0 0 1 0 0

1 0 0 0 0 0


MNC(w) =



∗ 1 0 0 0 0

∗ 0 1 0 0 0

∗ 0 0 ∗ 0 1

0 0 0 ∗ 1 0

0 0 0 1 0 0

1 0 0 0 0 0


FIGURE 8. The Bruhat cell and noncrossing Bruhat cell for w = 612543.

9.2. Paving with noncrossing Bruhat cells. We now give a combinatorial description of our affine
paving for QFln. Throughout, we use the convention that a matrix M with entries in C ∪ {∗,+}
represents the set of all matrices whose entries are, depending on the corresponding entry of M ,
either a particular complex number (if in C) or taken freely from either C (if ∗) or C× (if +).

We first recall the combinatorial construction of Bruhat cells in Fln. The inversion set of w ∈ Sn is
Inv(w) = {(i, j) | i < j and w(i) > w(j)}. For w ∈ Sn, let M(w) be the matrix with 1’s in positions
(w(i), i), ∗’s in positions (w(j), i) for (i, j) ∈ Inv(w), and 0’s elsewhere; see for example Figure 8.
Then M(w) is isomorphic to an affine space where each ∗ represents a coordinate, and this gives a
complete set of representatives for the Bruhat cell BwB ⊆ Fln. In order to reproduce the standard
action on Fln, we have T act on elements ofM(w) by scaling the k, ` entry by the character χkχ−1

w(`).
Thus as a T -representation

(9.5) M(w) ∼=
⊕

(i,j)∈Inv(w)

Cχw(j)χ
−1
w(i)

.

In order to state a similar result for QFln, we introduce an important subset of the inversion set
of a noncrossing partition.

Definition 9.5. The noncrossing inversion set of w ∈ NCn is

InvNC(w) := {(i, j) ∈ Inv(w) : w(i, j) ∈ NCn}.

Definition 9.6. The noncrossing Bruhat cell forw ∈ NCn is the set represented by the matrixMNC(w)

with entries 1 in position (w(i), i) for each i ∈ [n], ∗ in position (w(j), i) for each (i, j) ∈ InvNC(w),
and 0 elsewhere. For F ∈ Forestn, we define

MNC(F ) := MNC(ForToNC(F )).

For w = ForToNC(F ), we have a canonical identification

MNC(w) ∼=
⊕

(i,j)∈InvNC(w)

Cχw(j)χ
−1
w(i)
⊂

⊕
(i,j)∈Inv(w)

Cχw(j)χ
−1
w(i)

∼= M(w).

See for example Figure 8. We now state the main result of the section.
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Theorem 9.7. For w ∈ NCn we have QFln ∩BwB = MNC(w)B and

(9.6) QFln =
⊔

w∈NCn

MNC(w)B.

Moreover, if for any total ordering w1, w2, . . . , w|NCn | of NCn that extends the Bruhat order we set

Xk =
k⋃
i=1

MNC(wi)B,

then each Xk is closed, X1 ⊆ X2 ⊆ · · · ⊆ X|NCn | = QFln, and Xk+1 \Xk = MNC(wk+1)B.

We will prove this result at the end of the section after some preparation.

Remark 9.8. The second part of Theorem 9.7 shows that the Xi form an affine paving of QFln; see
Section 11.1 for precise definitions.

Our first step is to extend a combinatorial characterization of the noncrossing inversion set
stated in [6, Remark 8.18]. For F̂ ∈ BNestForn, the spread of v ∈ IN(F̂ ) is the pair (i, j) consisting
of the leftmost leaf descendant i of v and the rightmost leaf descendant j of v. Figure 9 depicts a
bicolored nested forest in which each internal node is labeled by its spread. Note that the spread
of an internal node v is not necessarily the transposition τv assigned to each v ∈ IN(F̂ ) earlier in
Section 6.

(2, 3)(1,3) (6, 7)

(4, 9)

(8, 9)
(10, 12)

(1, 12)

(1,9)

(4, 5)

1 2 3 4 5 6 7 8 9 10 11 12

FIGURE 9. A bicolored nested forest with spreads recorded for each internal node

Proposition 9.9. If F̂ ∈ BNestFornf
n and w = ForToNC(F̂ ), then

{(i, j) ∈ InvNC(w) | w(i, j) ∈ I
F̂
} = {spreads (i, j) of black nodes v ∈ IN(F̂ )}.

In particular, if F ∈ Forestn then InvNC(w) is the set of all spreads for v ∈ IN(F ).

Proof. By Proposition 8.10, it is sufficient to show that the set of elements of I
F̂

that are adjacent
to w give the spreads of all black nodes in F̂ . We do so using induction on n. As n = 1 is
vacuous, assume that n > 1 and write F̂ = Ĝ · xk and u = ForToNC(Ĝ) with Ĝ ∈ BNestFornf

n−1.
We split into cases according to Lemma 8.9. First, suppose that either xk = r−k or that leaf k is
a right child of Ĝ (so in particular xk 6= ek). Then for any v ∈ IN(Ĝ) with spread (i, j) we have
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Ψ−k
(
u(i j)

)
= wΨ−k

(
(i j)

)
= w(i + δi≥k, j + δj≥k), and the node in IN(F̂ ) corresponding to v has

spread (i+ δi≥k, j + δj≥k) so the claim holds.
Now suppose xk 6= r−k and k is not a right child in Ĝ. If xk = r+k , Ψ+

k (u(ij)) = wsk(i + δi≥k, j +

δj≥k)sk = w(i+ δi≥k+1, j+ δj≥k+1), and we conclude as before. If xk = ek then the same reasoning
applies except that F̂ has one more black node than Ĝ, with spread (k, k + 1), and w has the
additional adjacent element wsk. �

We next give a recursive characterization of the charts in Fln determined by the MNC(F ) using
the building operations from Section 3.

Proposition 9.10. The representatives of the noncrossing Bruhat cells in Fln are characterized re-
cursively by MNC(r−1 )B = Fl1 and for F = G · ei ∈ Forestn,

MNC(F )B =

GiMNC(G)B tΨ−i MNC(G)B if leaf i is a right child in G

GiMNC(G)B tΨ+
i MNC(G)B otherwise.

We prove the proposition using a technical argument involving a modified version of the Gi

operation. Given a matrix M with column i equal to the jth basis vector for j < i, let G′iM be
obtained from Ψ−i M by setting the j, i-entry to +.

Example 9.11. We have

G2

a 1 b

c 0 d

e 0 f

 =


a 1 0 b

0 + 1 0

c 0 0 d

e 0 0 f

 and G′2

a 1 b

c 0 d

e 0 f

 =


a + 1 b

0 1 0 0

c 0 0 d

e 0 0 f


Lemma 9.12. If M is an (m− 1)× (m− 1) matrix whose ith column is ej for some j < i, then we
have an equality of sets (GiM)Bm = (G′iM)Bm.

Proof. For x ∈ C×, let (GiM)(x) and (G′iM)(x−1) denote the matrices obtained by setting the
newly introduced +’s to x and x−1, respectively. Let ci and ci+1 be the ith and i + 1st columns
of (GiM)(x). Then (G′iM)(x−1) is obtained from (GiM)(x) by performing the column operations
ci 7→ x−1ci followed by ci+1 7→ xci − xci+1. Both forward column operations correspond to right
multiplication by elements of Bm, so we have (GiM)(x)Bm = (G′iM)(x−1)Bm. We conclude as
x 7→ x−1 is a bijection on C∗. �

Proof of Proposition 9.10. Let w = ForToNC(F ) and u = ForToNC(G). By Lemma 8.9, we have
w = Ψ±i (u). Further, by Proposition 9.9, we have

InvNC(w) = {(j + δj≥i, k + δk≥i) | (j, k) ∈ InvNC(u)} ∪ {(i, i+ 1)}.
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Thus, if we write MNC(w;x) for the matrix obtained from MNC(w) by setting the (w(i+1), i) entry
equal to x, then we have

MNC(w; 0) =

Ψ−i MNC(u) if leaf i is a right child in G

Ψ+
i MNC(u) otherwise.

Moreover, MNC(w) = MNC(w; 0) tMNC(w; +), so we complete the proof by showing that

GiMNC(u)B = MNC(w; +)B.

If leaf i is not a right child inG, then w(i) > w(i+1) and we have a direct equalityMNC(w; +) =

GiMNC(u). If leaf i is a right child in G, then w(i) < w(i + 1) and MNC(w; +) = G′iMNC(u),
so we must use Lemma 9.12 to relate G′i and Gi. Indeed, as a right child i can never be the left
endpoint of an internal node, Proposition 9.9 implies that u has no noncrossing inversion ending
in i. Thus MNC(G) has no ∗’s in column i and the hypotheses of Lemma 9.12 are satisfied, giving
MNC(w; +)B = GiMNC(u)B. �

Proposition 9.13. Letw ∈ NCn, and letF be the unique forest in Forestn such thatw = ForToNC(F ).
We have MNC(F )B = C(F ), and as a consequence there is a T -equivariant isomorphism

C(F ) ∼= MNC(w) ∼=
⊕

(i,j)∈InvNC(w)

Cχw(j)χ
−1
w(i)

.

Proof. We show that C(F ) agrees with the recursive characterization of MNC(F )B given in Propo-
sition 9.10. As C((r−1 )n−k) = idSn−k ∈ Fln−k, this amounts to showing that for F = G · ei ∈ Forestn,

C(F ) =

GiC(G) tΨ−i C(G) if leaf i is a right child in G

GiC(G) tΨ+
i C(G) otherwise.

By the definition of Face(F̂ ) and the ≤re order, we have

Face(F̂ ) = {Ĥ ′ · xi | xi ∈ {r−i , r
+
i , ei} and Ĥ ′ ∈ Face(G)}.

If we furthermore write w = ForToNC(F ) and u = ForToNC(G), then by Lemma 8.9 we have
w = Ψε

i(u) for ε ∈ {+,−}. Thus

{Ĥ ∈ BNestForn | w ∈ IĤ} = {Ĥ ′ · xi | xi ∈ {rεi , ei}, Ĥ ′ ∈ BNestForn−1 and u ∈ I
Ĥ′}.

By intersecting the sets above, we arrive at the following description of C(F ):

C(F ) =
⊔

Ĥ′≤reG
u∈I

Ĥ

(
X◦(Ĥ · ei) tX◦(Ĥ · rεi)

)
=

⊔
Ĥ′≤reG
u∈I

Ĥ

(
GiX

◦(Ĥ) tΨε
iX
◦(Ĥ)

)
= GiC(G) tΨε

iC(G)

This completes the proof as by Lemma 8.9 ε = − if leaf i is a left child and + otherwise. �



THE QUASISYMMETRIC FLAG VARIETY 33

We can now complete the proof of Theorem 9.7.

Proof of Theorem 9.7. By Theorem 9.1, QFln is the disjoint union of the charts C(F ) for F ∈ Forestn.
By Proposition 9.13, these charts are exactly the MNC(w)B for w ∈ NCn, giving Equation (9.6).
As MNC(w)B ⊆ M(w)B = BwB, and the BwB form a partition of Fln by (2.1), it follows that
MNC(w)B = QFln ∩M(w)B.

Now for any w ∈ Sn, the Schubert variety Xw = BwB consists of all BuB with u ≤ w in Bruhat
order. It follows that Xk = QFln ∩

(⋃k
i=1X

wi
)

is closed, which concludes the proof. �

10. INTRINSIC CHARACTERIZATIONS OF QFln

We now give two intrinsic characterizations of QFln. These characterizations are independent
of one another and are presented in Sections 10.1 and 10.2.

10.1. Characterization with Plücker functions. This section proves Theorem B, which states that

QFln =
⋂

w∈Sn\NCn

{Plw = 0}.

The proof is given at the end of the section. We begin with a classical observation, which can be
found for instance in [35, Proposition 2.6].

Proposition 10.1. For F ∈ Fln, the set of torus fixed points in T · F is {wB | Plw(F) 6= 0}.

Every element of BwB has a unique representative h in the set M(w) defined in Section 9. Thus
when restricted to BwB, we can view the Plücker functions as polynomials in the matrix entries
which are not uniformly 0 or 1 across all of M(w), namely the hw(j),i for (i, j) ∈ Inv(w). Going
forward, we define a Zn-grading on such polynomials by setting

degree(hw(j),i) = ew(j) − ew(i),

where ek denotes the kth standard basis vector. This grading is the weight of the character of the
T -action on each entry of M(w) under the action of T as described in Section 9.

Observation 10.2. Let w ∈ Sn. Expressed in the entries of h ∈ M(w), Plu(h)/Plw(h) is a homoge-
neous polynomial of degree

∑
(u−1(i)− w−1(i))en+1−i for each u ∈ Sn.

Proof. We compute directly that Plw(h) = 1, so Plu(h)/Plw(h) = Plu(h) has denominator 1. The
claim now follows from the fact that the Plücker functions are T -equivariant and the weight of the
character by which T scales Plu(h)/Plw(h) is

∑
u−1(i)en+1−i −

∑
w−1(i)en+1−i. �

In order to perform a more granular analysis on the degree of each Plücker function, we estab-
lish some notation using the root system of type An−1. The positive roots in this system are the
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vectors ei − ej for 1 ≤ i < j ≤ n and the negative roots are ej − ei for 1 ≤ i < j ≤ n. Given
F ∈ Forestn, we define the polyhedral cone ConeF by

ConeF = R≥0{ej − ei | (i, j) a spread in F},

and for w ∈ NCn we define Conew = w · ConeF where F ∈ Forestn is the unique forest such that
w = ForToNC(F ). In view of Proposition 9.9

Conew = R≥0{ew(j) − ew(i) | (i, j) ∈ InvNC(w)}.

Spreads are characterized by that fact that if (i, j) is a spread in F ∈ Forestn, then no spread has
the form (j, k). Such sets (and their associated cones) were first studied in [23] and are commonly
known as noncrossing alternating forests; see for example [1]. The following result can be found
in [23, §6].

Proposition 10.3. For each w ∈ NCn, Conew is simplicial and the only roots it contains are the
generators ew(j) − ew(i) for (i, j) ∈ InvNC(w).

The sets (w(b), w(a)) for (a, b) a spread in F also appear in the literature as a generalization of
noncrossing alternating forests. Specifically, [31, §6] shows that these are canonically in bijection
with the set of c-clusters.

Proof of Theorem B. First, we take F ∈ QFln. By Theorem 6.1, the torus fixed points in T · F are all
noncrossing partitions. By Proposition 10.1, this means that the nonvanishing Plücker functions
of F are also indexed by elements of NCn.

Conversely, suppose that PluF = 0 for all u ∈ Sn \NCn. Let w ∈ Sn be such that F ∈ BwB and
let h ∈ GLn be the representative of F in M(w). As PlwF 6= 0 on BwB we conclude that w ∈ NCn.
We now claim that for each (a, b) ∈ Inv(w) \ InvNC(w) we have hw(b),a = 0.

We proceed by induction on w(a) − w(b). Let u = w(a b) and let α = (b − a)(ew(b) − ew(a)). We
consider the set S consisting of all multisubsetsM of Inv(w) with the property that

∑
(i,j)∈M ew(j)−

ew(i) = α so that by Observation 10.2 we have

Plu(h)/Plw(h) =
∑
M∈S

cM
∏

(i,j)∈M

hw(j),i for some cM ∈ Z.

We now describe some properties of the elements M ∈ S. First, by considering the first and
last nonzero coordinate in the sum

∑
(i,j)∈M ew(j) − ew(i) = α, every ew(j) − ew(i) ∈ M has either

w(j) − w(i) < w(b) − w(a) or (i, j) = (a, b). Second, by Proposition 10.3, M must contain at
least one element of the form ew(j) − ew(i) for (i, j) ∈ Inv(w) \ InvNC(w). Finally, a direct com-
putation of Plu(h)/Plw(h) shows that the coefficient of (hw(b),a)

b−a is nonzero: for i < a or i ≥ b,
det(hu(1),...,u(i)) = det(hw(1),...,w(i)) = ±1, while for a ≤ i < b, det(hu(1),...,u(i)) contains hw(b),a

with a coefficient of ±1. Thus by our assumption on Plu and our inductive hypothesis, we have
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0 = (hw(b),a)
b−a. This proves the claim. This shows h ∈MNC(w) and finally F ∈ QFln by Proposi-

tion 9.13. �

10.2. Characterization via equivalence of flags. We now give our second characterization of
QFln as flags that can be obtained from idFln , the standard coordinate flag {0} ⊂ {e1} ⊂ {e1, e2} ⊂
· · · ⊂ {e1, . . . , en}, via certain elementary operations.

Definition 10.4. Define ∼ to be the equivalence relation on complete flags generated by the rela-
tions ∼i for 1 ≤ i ≤ n− 1 given by F ∼i G if

(1) Fj = Gj for all j 6= i, and
(2) ei ∈ Fi+1 and Fi−1 ⊂ {xi = 0}.

We have that F ∼i G for 1 ≤ i ≤ n−1 if and only if there existsH ∈ Fln−1 such that F ,G ∈ PiH,
where Pi is defined in Section 3.2. In particular note that Ψ−i H ∼i Ψ+

i H.

Theorem 10.5. The quasisymmetric flag variety QFln ⊂ Fln is the equivalence class of ∼ contain-
ing the standard coordinate flag.

We prove this at the end of the subsection after a preparatory lemma.

Lemma 10.6. Let F̂ ∈ BNestForn. Suppose there exists i such that every element w ∈ I
F̂

satisfies
i ∈ {w(i), w(i+ 1)}. Then we have X(F̂ ) ⊂ PiX(Ĝ) for some Ĝ ∈ BNestForn−1.

Proof. We will prove the following statements, from which the conclusion follows immediately.

(i) If w(i) = i for all w ∈ I
F̂

, then F̂ = Ĝ · r−i for some Ĝ ∈ BNestForn−1.
(ii) If w(i+ 1) = i for all w ∈ I

F̂
, then F̂ c∼ Ĝ · r+i for some Ĝ ∈ BNestForn−1.

(iii) If i ∈ {w(i), w(i + 1)} for all w ∈ I
F̂

, but we are not in a scenario covered by Cases (i)
and (ii), then F̂ c∼ Ĝ · ei for some Ĝ ∈ BNestForn−1.

If we are in case (i), then NCPerm(F̂ ) ∈ I
F̂

has i as a fixed point, implying that the leaf labeled
i is a singleton tree in F̂ . This immediately yields F̂ = Ĝ · r−i .

Now suppose we are in a situation described in (ii). Let v ∈ IN(F̂ ) have canonical label i. Let P1

(respectively P2) be the path beginning from the leaf labeled i (respectively i+ 1) and terminating
in v. Observe that all but the final edge in P1 connect a right child to its parent node and similarly
all edges but the final edge in P2 connect a left child to its parent. We claim that v must be white.
Indeed, if v were black, then left edge deletion at v would result in an element in I

F̂
that has i and

i + 1 in different cycles. For similar reasons we infer that all nodes in P2 are necessarily white.
Thus we are in a situation depicted on the left in Figure 10 where the “half-filled” nodes could
be black or white. By performing colored Tamari rotation as in Definition 8.3, first along P1 and
then along P2 as in Figure 10, one can obtain a bicolored nested forest wherein v has left and right
children being leaves with labels i and i + 1. Then as described in Definition 4.2, there exists a
Ĝ ∈ BNestForn−1 satisfying F̂ = Ĝ · r+i .
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i i+1 i i+1

v

v

c∼ c∼

i i+1

v

FIGURE 10. Case (ii) (left) and a bicolored nested forest that is colored Tamari
equivalent. The half-filled nodes could be either black or white.

Finally we consider (iii). Let v ∈ IN(F̂ ) have canonical label i, like before. For the condition
in (iii) to hold, v must be black. Indeed if v were white then no element of I

F̂
has i as a fixed point.

For this same reason the left child of v is necessarily the leaf labeled i. As above, the path from the
leaf labeled i+ 1 to v can only contain white nodes, as this ensures that i and i+ 1 are in the same
cycle if i is not a fixed point. We use colored Tamari rotations exactly as in Case (ii) to obtain a
bicolored nested forest where v has left and right children given by i and i+ 1. Left edge deletion
at v now gives Ĝ ∈ BNestForn−1 satisfying F̂ = Ĝ · ei. Figure 11 outlines this case. �

i i+1 i i+1

v

v

c∼

FIGURE 11. Case (iii) (left) and a bicolored nested forest that is colored Tamari equivalent

Proof of Theorem 10.5. First we show that QFln is closed under these relations. Suppose first that
F ∈ QFln satisfies condition (2) in Definition 10.4 for a fixed i, which means that F ∈ PiFln−1.

We claim that in that case F ∈ PiQFln−1. Condition (2) is closed and invariant under the
action of T , so it is satisfied by all elements of the torus-orbit closure T · F . By Theorem 5.1,
T · F = X(F̂ ) for some F̂ ∈ BNestForn, so the conditions (2) also apply to the set of torus fixed
points I

F̂
⊂ NCn. This means that i is a fixed point or i, i+1 are in the same cycle for each element

of I
F̂

, so Lemma 10.6 guarantees the existence of Ĝ ∈ BNestForn−1 such that X(F̂ ) ⊂ PiX(Ĝ).
This proves the claim since F ∈ X(F̂ ) and X(Ĝ) ⊂ QFln−1.

Now if F ∼i H, then by condition (1) we get H ∈ PiX(Ĝ) ⊂ PiQFln−1 as well, and thus
H ∈ QFln.
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Conversely, we now show that we can reduce every element of QFln to idFln using these rela-
tions. We do this by induction on n, the case n = 2 being trivial.

Let F ∈ QFln. Since QFln = P1QFln−1 ∪ · · · ∪ Pn−1QFln−1 and every element of PiH is ∼i-
equivalent to Ψ−i H, there exist j ∈ {1, . . . , n − 1} and G ∈ QFln−1 such that F ∼j Ψ−j G. By the
inductive hypothesis we know that G ∼ idFln−1 .

We claim that for any i, H ∼i H′ in QFln−1 implies Ψ−j H ∼ Ψ−j H′ in QFln. To prove this, we let
K ∈ QFln−2 be such thatH,H′ ∈ PiK and consider different cases.

(i) If i ≥ j then by Lemma 4.6 we have Ψ−j PiK = Pi+1Ψ−j K and so Ψ−j H ∼i+1 Ψ−j H′.
(ii) If j ≥ i+ 2 then by Lemma 4.6 we have Ψ−j PiK = PiΨ−j−1K and so Ψ−j H ∼i Ψ−j H′.

(iii) Finally suppose j = i+ 1. By Lemma 8.2 we have Ψ+
i+1PiK = PiΨ+

i K. This in turn implies

Ψ−i+1H ∼i+1 Ψ+
i+1H ∼i Ψ+

i+1H
′ ∼i+1 Ψ−i+1H

′.

Thus Ψ−j H ∼ Ψ−j H′ in all cases and the claim is proved. By induction we get that if H ∼ H′ in
QFln−1 then Ψ−j H ∼ Ψ−j H′. We apply this to G and idFln−1 and get Ψ−j G ∼ Ψ−j idFln−1 = idFln ,
which concludes the proof since F ∼j Ψ−j G. �

11. THE GKM PRESENTATION OF H•Tn(QFln)

In this section we give a presentation of H•Tn(QFln) and H•(QFln) in terms of a certain combi-
natorially defined “graph cohomology ring,” and describe a free Z[tn]-basis for this ring. These
results will be used in the next section to give a Borel-type presentation.

We appeal to GKM theory, which is a technique for computing the equivariant cohomology ring
of a variety X under the action of an algebraic torus under suitable hypothesis. While originally
developed for rational cohomology by Goresky, Kottwitz, and MacPherson [25] with inspiration
from Chang and Skjelbred [17], we present a variant with stricter hypotheses that computes inte-
gral cohomology.

Throughout we use the case X = Fln as a motivating example.

11.1. The GKM ring. Without loss of generality we take T = Tn. As is standard in algebraic
combinatorics, we denote by ti the negative first Chern class −cT1 (Cχi) ∈ H2

Tn
(pt). We then have a

homomorphism of abelian groups

−cT1 (C(−)) : {Characters of T} → H2
Tn

(pt)

χa11 χ
a2
2 · · ·χann 7→ −(a1t1 + a2t2 + · · ·+ antn).

The equivariant cohomology ring of a point is freely generated by the ti and we identifyH•Tn(pt) =

Z[tn], so that all Tn-equivariant cohomology rings are Z[tn]-algebras.
For an edge labeled graph G with vertices V , edges E, and edge labels given by a function

χ : E → linear nonzero polynomials in Z[tn]/±,
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we define the graph cohomology ring for G to be the H•Tn(pt)-algebra

H•Tn(G) := {(fv)v∈V | χ(uv) divides fv − fu for all uv ∈ E} ⊂ Z[tn]⊕V

with multiplication defined pointwise.
We now describe sufficient conditions for H•Tn(G) to be the cohomology ring for a variety X .

Say that X has a good affine paving if there is a filtration ∅ = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X` = X by
closed subvarieties Xi such that for each i ≥ 1 the following hold.

(1) The set Xi \Xi−1 contains a unique T -fixed point pi, and there is a T -equivariant isomor-
phism of algebraic varieties Xi \Xi−1

∼= Vi for some linear T -representation Vi.
(2) The representation Vi decomposes into a direct sum of one-dimensional T -representations

Vi =
⊕
j∈Ai

Vi,j where Ai ⊂ {1, . . . , i− 1}

such that Vi,j = Vi,j ∪ {pj} and topologically Vi,j ∼= P1.
(3) For each j ∈ Ai, fi,j = −cT1 (Vi,j) ∈ H•Tn(G) satisfies:

(a) fi,j 6= ±fi,k for j 6= k, and
(b) fi,j is reduced, meaning that if fi,j = a1t1+a2t2+· · ·+antn, then gcd(a1, a2, . . . , an) = 1.

A good affine paving onX defines a GKM graph, which is an undirected, edge-labeled graphGX
with vertex set given by the fixed points XT = {p1, . . . , p`}. For each one-dimensional summand
Vi,j in (2), GX has an edge pipj , and this edge is labeled by −cT1 (Vi,j).

Example 11.1. Let X = Fln. For any total order w1, . . . , wn! of Sn that extends the Bruhat order,
Xk =

⋃k
i=1BwiB defines a good affine paving. Then Vi ∼= M(w) with pk = wkB, and following

Equation (9.5) we have j ∈ Ai if and only if wj = wi(a b) for (a, b) ∈ Inv(w) and fi,j = tw(b) − tw(a).
It follows that the GKM graph is obtained from Cayley(Sn) by labeling edges of the form w to
(i, j)w by tj − ti.

We now consider QFln. Let Cayley(NCn) denote the Hasse diagram of the Kreweras order on
NCn as defined in Section 2.2, which is an induced subgraph of Cayley(Sn).

Theorem 11.2. Theorem 9.7 gives a good affine paving of QFln, and its GKM graph is obtained
from Cayley(NCn) by labeling edges of the form w to (i, j)w by tj − ti.

Proof. Theorem 9.7 verifies condition (1) directly and shows that QFlTnn = {wB | w ∈ NCn}.
Conditions (2) and (3) then follow from the fact that our filtration is obtained by intersecting QFln
with a good affine paving for Fln. The same reasoning computes the edges and edge labels for the
GKM graph. �

Theorem 11.3. If X has a good affine paving, then:

(1) X has a T -invariant homology basis given by the classes [Xi \Xi−1] ∈ H•(X),



THE QUASISYMMETRIC FLAG VARIETY 39

(2) H•T (X) ∼= H•T (GX), the graph cohomology ring, and
(3) if H•T (X) is a free Z[tn]-module then H•T (X)/〈t1, . . . , tn〉 ∼= H•(X).

While variants of Theorem 11.3 appear as [28, Theorem 2.3] and [25, Theorem 1.2.2], we did not
find the exact statement required for QFln. Therefore we include a proof for completeness.

Proof. The first part follows from [21, see Example 1.9.1 and 19.1.11] (in fact the existence of the
filtration where each Xi \Xi−1 is isomorphic to an affine space suffices). The second part follows
from [28, Theorem 3.1]. The last part follows from the implication (iii) =⇒ (i) of [20, Theorem
1.1] after noting that (S1)n-equivariant cohomology is identical to Tn-equivariant cohomology
because C∗ ∼= R× S1 and R is contractible. �

Example 11.4. By Theorem 11.3, H•Tn(Fln) is isomorphic to the graph cohomology ring

H•Tn
(

Cayley(Sn)
)

= {(fw)w∈Sn | ti − tj divides fw − f(i j)w for all (i 6= j)} ⊆ Z[tn]⊕Sn .

Moreover, the [Xw] = [BwB] give a homology basis for H•(Fln).

From Theorem 11.2, we obtain the following corollary about QFln.

Corollary 11.5. We have

H•Tn(QFln) ∼= {
(
fw
)
w∈NCn

| tb − ta divides fw − f(a b)w whenever w, (a b)w ∈ NCn} ⊆ Z[tn]⊕NCn .

Further recall that the affine charts from Proposition 9.13 have closures X(F ) for F ∈ Forestn.

Corollary 11.6. The homology group H•(QFln) has a homology basis [X(F )] for F ∈ Forestn.

Remark 11.7. Simple generalizations of Theorem 11.3 exist to compute generalized cohomology
theories such as equivariant K-theory. However, determining a good basis for the resulting rings
is a combinatorially specific task which does not transfer easily between theories.

11.2. Flowup bases and double forest polynomials. The following definition characterizes a dis-
tinguished subset of H•Tn(G); the reader should compare this to the definition of generating family
by Guillemin–Zara [27, Definition 2.3] or that of canonical classes by Tymoczko [45, §2.2].

Definition 11.8. Let G = (V,E, χ) be a GKM graph. Given a partial ordering ≤ on V , a flowup
basis for H•Tn(G) is a collection of elements {fv | v ∈ V } ⊂ H•Tn(G) such that

(1) (fv)w = 0 if v 6≤ w, and
(2) (fv)v = ±

∏
uv∈E and u≤v χ(uv).

The following fact is classical and a key tool for producing Z[tn]-bases for H•Tn(G).

Proposition 11.9. Any flowup basis is a free Z[tn]-basis for H•Tn(G).

Proof. An outline of the classical proof can be found in [45, §2.2]. �
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In this section we describe a flowup basis for H•Tn(QFln) using the double forest polynomials
defined in [6]. For w ∈ Sn, let

(11.1)
evw : Z[tn][xn] → Z[tn]

f(xn; tn) 7→ f(tw(1), tw(2), . . . , tw(n); tn).

Example 11.10. Consider the graph cohomology ring for Fln from Example 11.4. Taking ≤ to be
the Bruhat order on Sn, we have a flowup basis with

(fv)w = evw

(
Sv(xn; tn)

)
, for v, w ∈ Sn

where Sv(xn; tn) is the double Schubert polynomial; see Section 12.1. The fact that conditions (1)
and (2) in Definition 11.8 are met is nontrivial but follows from the AJS–Billey theorem [2, 12].

The analogous statement for QFln makes use of the double forest polynomials defined in [6, §4],
which we denote by PF (xn, tn) ∈ Z[xn][tn] for each F ∈ Forestn. As with Schubert polynomials,
we postpone a precise definition of double forest polynomials to Section 12.2.

Theorem 11.11. Taking ≤ to be the Bruhat order restricted to NCn, double forest polynomials
define a flowup basis for the graph cohomology ring H•Tn(Cayley(NCn)). Specifically, for v, w ∈
NCn we have

(fv)w = evw (PF )

where F ∈ Forestn is the unique forest such that v = ForToNC(F ).

Proof. The claim follows from the analogue of the AJS–Billey theorem for double forest polynomi-
als proved in [6, §8]. In particular, [6, Theorem 8.14] shows that (fv)w = 0 whenever v 6≤ w, and [6,
Theorem 8.17] shows that (fv)v =

∏
(i,j)∈InvNC(v)(tv(j) − tv(i)). �

Figure 12 shows one element of the flowup basis for H•Tn(Cayley(NCn)).

12. THE BOREL PRESENTATION OF H•Tn(QFln)

12.1. Recollections on the equivariant cohomology of Flm. We begin by briefly reviewing key
aspects of the equivariant cohomology of the complete flag variety that are relevant to us. The
reader is referred to [3] for a more complete exposition.

The following is due to Borel [15]. The equivariant cohomology ring H•Tm(Flm) is generated by
the character lattice of Tm and the Chern classes cTm1 (Fi/Fi−1) ∈ H2

Tm
(Flm). We therefore have a

map

Z[tm][xm] → H•Tm(Flm)

xi 7→ −cTm1 (Fi/Fi−1)

ti 7→ −cTm1 (Cχi).
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FIGURE 12. The flowup basis element of H•T4(Cayley(NC4)) indexed by (4 3 1).
This is an evaluation of the double forest polynomial for F = F̂ (r−1 e1e1e2). For
clarity we have set αij := tj − ti.

The kernel of this map is the ideal ESym+
m = 〈f(x1, . . . , xm) − f(t1, . . . , tm) : f ∈ Symm〉, where

Symm denotes the ring of symmetric polynomials in xm. Thus going forward we identify

(12.1) H•Tm(Flm) ∼= Z[tm][xm]/ESym+
m .

In light of the GKM presentation of H•Tm(Flm) given in Example 11.4, Borel’s presentation has
the following meaning. The inclusion of each torus fixed point wB ∈ Flm gives a pullback map

evw : H•Tm(Flm)→ H•Tm(wB) ∼= Z[tm].

In Borel’s presentation, we have evw(xi) = tw(i) and evw(ti) = ti, so we can identify evw with the
map of the same name defined on polynomials in (11.1). In other words, the map∏

w∈Sm

evw : Z[tm][xm]→ Z[tm]⊕Sm

surjects onto the graph cohomology ring H•Tm(Cayley(Sm)) ⊆ Z[tm]⊕Sm .
Now let X be an algebraic variety with an action of Tm and Z ⊆ X a Tm-invariant subvariety.

For a cohomology class f ∈ H•Tm(X), we denote the Tm-equivariant degree of f on Z by∫
Z
f := κZ∗ (ι∗f) = κX∗ (1Zf) ∈ Z[tm].

where κZ denotes the unique map Z → pt, 1Z ∈ H•Tm(X) is the pushforward of 1 ∈ H•Tm(Z) along
the inclusion ι : Z → X , and the equality κZ∗ (ι∗f) = κX∗ (1Zf) is the push–pull formula.
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Borel’s presentation provides a simple way to compute the degree on a Schubert variety using
the divided difference operations ∂i : Z[tm][xm]→ Z[tm][xm] defined by

∂if(xm; tm) =
f(xm, tm)− f(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xm; tm)

xi − xi+1
.

Recall the forgetful map πi : Fln → GLm/Pi from Section 3.2. The following is due to Bernstein–
Gelfand–Gelfand [8] and Demazure [19]; see [3, Chapter 10, Lemma 6.5] for textbook treatment.

Proposition 12.1. The map (πi)
∗(πi)∗ : H•Tm(Flm)→ H•Tm(Flm) is given by f 7→ ∂if . Moreover, for

w ∈ Sm with w(i) < w(i+ 1), we have ∫
Xwsi

f =

∫
Xw

∂if.

The double Schubert polynomials are the unique family of polynomials {Sw(xm; tm) | w ∈ Sm}
such that each Sw(xm; tm) does not depend on xm and moreover satisfies

Sw(tm; tm) = δw,idSm and ∂iSw(xm; tm) =

Swsi(xm; tm) if w(i) > w(i+ 1),

0 otherwise.

We therefore have a Tm-equivariant Kronecker duality between double Schubert polynomials and
the homology basis of Schubert cycles [Xw] described in Example 11.4, as we have∫

Xw

Sv(xm; tm) = δw,w′ .

In the following subsections, we tell a parallel story for QFlm using equivariantly quasisym-
metric polynomials and double forest polynomials.

Remark 12.2. Borel’s presentation for ordinary cohomology is H•(Flm) ∼= Z[xm]/Sym+
m, which

can be recovered from the equivariant version by setting ti 7→ 0, as is formalized in Theorem 11.3.

12.2. Borel’s theorem for equivariant quasisymmetry. In order to state our analogue of Borel’s
theorem, we review several aspects of equivariant quasisymmetry from [6]. In Section 12.3 we
will give geometric interpretations which motivate these definitions. We define the equivariant
Bergeron–Sottile maps

R−i f = f(x1, . . . , xi−1, ti, xi, xi+1, . . . ; t)

R+
i f = f(x1, . . . , xi−1, xi, ti, xi+1, . . . ; t),

and the equivariant quasisymmetric divided difference

Eif =
R+
i f − R−i f

xi − ti
= R−i ∂if = R+

i ∂if.
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The double forest polynomials are then the unique family of polynomials {PF (xn; tn) | F ∈ Forestn}
such that each PF (xn; tn) does not depend on xn and moreover satisfies

PF (tn; tn) = δF,∅ and EiPF =

PG(xn; t[n]/{i}) if F = G · ei,

0 otherwise

where t[n]/{i} = (t1, . . . , ti−1, ti+1, . . . , tn).

Remark 12.3. While it is not immediately obvious from the definition, [6, Corollary 4.8] shows
that double forest polynomials have the following stability property: for each F ∈ Forestn−1, we
have PF (xn−1; tn−1) = PF ·r−n (xn; tn) as polynomials.

The ring of equivariantly quasisymmetry polynomials EQSymn is

EQSymn = {f(xn; tn) ∈ Z[tn][xn] | R−i f = R+
i f for 1 ≤ i ≤ n− 1} ⊆ Z[tn][xn],

which is a subring of Z[tn][xn]. We also denote EQSym+
n = 〈f(xn; tn)− f(tn; tn) | f ∈ EQSymn〉.

Theorem 12.4. We have
H•Tn(QFln) ∼= Z[tn][xn]/EQSym+

n ,

and moreover the double forest polynomials PF (xn; tn) where F ∈ Forestn give a free Z[tn]-basis
for this ring.

Our proof primarily relies on results from Section 11, but we make use of one result which is
deferred to Appendix A for ease of exposition.

Proof. By Theorem 11.3, we know that H•Tn(QFln) is isomorphic to the graph cohomology ring
H•Tn(Cayley(NCn)) ⊆ Z[tn]NCn . We prove the theorem by showing that the map

evNC : Z[tn][xn] → Z[tn]NCn

f(xn; tn) 7→
(

evw(f)
)
w∈NCn

induces the desired isomorphism onto the graph cohomology ring.
The image of evNC is contained in the graph cohomology ring, as for any permutation w, tb− ta

divides evw(f)− ev(a b)w(f). Moreover, by Theorem 11.11, the double forest polynomials map to a
free (flowup) basis of H•Tn(Cayley(NCn)), so evNC is surjective.

What remains is to show that ker(evNC) = EQSym+
n , which is Theorem A.1 in Appendix A. �

We finally consider ordinary cohomology, proving Theorem A. As in the introduction write
QSym+

n for the ideal generated by quasisymmetric polynomials with no constant term.

Corollary 12.5. We have
H•(QFln) ∼= Z[xn]/QSym+

n .

Moreover, the forest polynomials PF (xn; 0) where F ∈ Forestn give a free Z-basis for this ring.
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Proof. By Theorem 11.3, we can obtain H•(QFln) from H•Tn(QFln) by performing a change of
scalars along the homomorphism Z[tn] → Z given by ti 7→ 0. Applying the base change to our
Borel presentation, we have a canonical identification between the images of Z[tn][xn], EQSymn,
EQSym+

n , and PF (xn; tn) with Z[xn], QSymn, QSym+
n , and PF (xn; 0). �

12.3. Geometric realizations of R±i and Ei. We now show that the equivariant Bergeron–Sottile
maps correspond to equivariant cohomology operations that are adjoint to the building maps Ψi,j

and Pi defined in Section 3.

Fact 12.6. Let γ : T → T ′ be a coordinate projection between two algebraic tori T and T ′. For X a
variety with a T -action, we have

H•T (X) = H•T (pt)⊗H•
T ′ (pt) H

•
T ′(X).

Furthermore, if Φ : X → Y is a T ′-equivariant map of varieties with a T ′-action, then Φ∗ :

H•T (Y ) → H•T (X) and Φ∗ : H•T (X) → H•T (Y ) are given by extending the corresponding maps
on T ′-equivariant cohomology by the identity map on H•T (pt).

As in Definition 3.2 we write γi : Tm → Tm−1 for the ith coordinate projection and Flγim−1 for
Flm−1 with the action of Tm induced by γi. With Fact 12.6, the GKM presentation of the Tm−1-
equivariant cohomology of Flm−1 implies that

H•Tm(Flγim−1) ∼= {(gw)w∈Sm−1 |tj+δj≥i − tk+δk≥i divides gw − g(j,k)w, ∀(j 6= k)} ⊂ Z[tm]⊕Sm−1

and the Borel presentation similarly implies

H•Tm(Flγim−1) ∼=
Z[tm][xm−1]

〈f(xm−1)− f(t1, . . . , ti−1, ti+1, . . . , tm) | f ∈ Symm−1〉
.

The isomorphism between these two presentations is given by

f 7→
(
f(tw(1)+δw(1)≥i , . . . , tw(m−1)+δw(m−1)≥i ; tm)

)
w∈Sm−1

.

Proposition 12.7. The pullback map Ψ∗i,j : H•Tm(Flm)→ H•Tm(Flγim−1) sends tk 7→ tk for all k, and

xk 7→

xk−δk>j k 6= j

ti k = j.

Proof. We have that Ψ∗i,jtk = tk holds since Ψi,j is a Tm-equivariant map, so it suffices to show
the result for xk. To avoid notational overlap we will let xγi1 , . . . , x

γi
m−1 denote the xi generators in

Flγim−1. It suffices to show that for all w ∈ Sm−1

evw(Ψ∗i,jxk) =

evw(xγik−δk>j ) k 6= j

ti k = j.



THE QUASISYMMETRIC FLAG VARIETY 45

Note that

Ψi,j(w)(k) =


w(k) + δw(k)≥i k < j

ti k = j

w(k − 1) + δw(k−1)≥i k > j.

For w ∈ Sm−1 we have evw(xγi` ) = γ∗i tw(`) = tw(`)+δw(`)≥i , and therefore for k 6= j we have

evw(xγik−δk>j ) = tΨi,j(w)(k).

On the other hand, because evw and evΨi,j(w) are pullbacks under the inclusions {w} ↪→ Flγim−1

and {Ψi,j(w)} ↪→ Flm, we have

evw(Ψ∗i,jxk) = evΨi,j(w)(xk) = tΨi,j(w)(k) =

evw(xγik−δk>j ) k 6= j

ti k = j.
�

Proposition 12.8. The maps (Ψ±i )∗ : H•Tm(Flm)→ H•Tm(Flγim−1) are given by

(Ψ±i )∗f = R±i f.(12.2)

The map (Ψ±i )∗(πi)
∗(πi)∗ : H•Tm(Flm)→ H•Tm(Flγim−1) is given by

(Ψ±i )∗(πi)
∗(πi)∗f = Eif.(12.3)

Proof. Specializing the computation of Ψ∗i,j in Proposition 12.7 to j = i, i + 1 gives (12.2). Since
(πi)

∗(πi)∗ computes ∂i by Proposition 12.1, we obtain (12.3) from the identity Eif = R±i ∂if . �

Theorem 12.9. Let Z ⊂ Flγim−1 be a Tm-invariant subvariety. Then for f ∈ H•Tm(Flm), we have
equalities of Tm-equivariant degrees

(12.4)
∫

Ψ±i Z
f =

∫
Z
R±i f and

∫
PiZ

f =

∫
Z
Eif.

Proof. As the Ψ±i are closed embeddings we have 1Ψ±i Z
= (Ψ±i )∗1Z ∈ H•Tm(Flm). The first degree

equation now comes from∫
Ψ±i Z

f =

∫
Flm

(
(Ψ±i )∗1Z

)
f =

∫
Fl
γi
m−1

1Z(Ψ±i )∗f =

∫
Z
R±i f,

where we used the push-pull formula in all three equalities. For the second degree equation,
because the πiΨi are closed embeddings, we have

1PiZ = 1π−1
i πiΨiZ

= π∗i (πiΨi)∗1Z = π∗i (πi)∗(Ψ
−
i )∗1Z ∈ H•Tm(Flm).

Therefore using a similar argument as above,∫
PiZ

f =

∫
Flm

(
π∗i (πi)∗(Ψ

−
i )∗1Z

)
f =

∫
Fl
γi
m−1

1Z(Ψ−i )∗(πi)
∗(πi)∗f =

∫
Z
Eif,

where the last equality uses (12.3). This establishes the second part of (12.4). �
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12.4. The degree on X(F̂ ) using the ?-monoid. We now describe a combinatorial procedure for
computing the degree on the X(F̂ ) varieties using the ?-monoid S from [6, §9.2]. For each A ⊆ [n],
writing A = (i1 < · · · < ik) we define a map

γA := γi1 · · · γik : Tn → Tn−|A|,

the coordinate projection away from i1, . . . , ik. To compose these maps, we define an operation on
subsets A,B ⊂ [n] with |A|+ |B| ≤ n:

A ? B = {([n] \B)i | i ∈ A} ∪B,

where ([n] \ B)i denotes the ith element of [n] \ B in increasing order. The following proposition
is straightforward and we omit the proof.

Proposition 12.10. For A,B ⊆ [n] with |A|+ |B| ≤ n:, γA ◦ γB = γA?B . In particular, γi ◦ γA = γi?A.

We let Fl[n]/A denote FlγAn−|A|, and let X(Ĝ)[n]/A denote X(Ĝ) ⊂ FlγAn−|A| equipped with the torus
action of Tn induced by γA. Taken in conjunction with Fact 12.6, this allows us to transfer our
results about the Tm-varieties Flm and Flγim−1 to results about the Tn-varieties Fl[n]/A and Fl[n]/(i?A).

For A ⊆ [n], we denote ti,A = t([n]\A)i and t[n]/A = (t1,A, t2,A, . . . , tn−|A|,A). We have isomor-
phisms

H•Tn(Fl[n]/A) ∼=
Z[tn][xn−|A|]

〈f(xn−|A|)− f(t[n]/A) : f ∈ Symn−|A|〉
and a GKM presentation

H•Tn(Fl[n]/A) ∼=
{

(gw)w∈Sn−|A| | tj,A − tk,A divides gw − g(j,k)w for all (j 6= k)
}
⊂ Z[tn]⊕Sn−|A|

with the isomorphism between the Borel presentation and the GKM presentation given by

f 7→ (f(tw(1),A, . . . , tw(n−|A|),A; t1, . . . , tn))w∈Sn−|A| .

For f ∈ Z[tn][xn] define

R−i,Af(xn; tn) = f(x1, . . . , xi−1, ti,A, xi, xi+1, . . . , xn−1; tn)

R+
i,Af(xn; tn) = f(x1, . . . , xi−1, xi, ti,A, xi+1, . . . , xn−1; tn)

Ei,Af(xn; tn) =
R+
i,Af(xn; tn)− R−i,Af(xn; tn)

xi − ti,A
.

Definition 12.11. For A ⊆ [n] and Ω ∈ RESeqn−|A|, let

[ΦΩ]A =


id if Ω = ∅

[ΦΩ′ ]i?A ◦ R±i,A if Ω = Ω′ · r±i
[ΦΩ′ ]i?A ◦ Ei,A if Ω = Ω′ · ei.

For Ω ∈ RESeqn we write [ΦΩ] = [ΦΩ]∅.
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As was shown in [6, Theorem 10.5], the operation [ΦΩ] only depends on the colored Tamari
equivalence class of the bicolored nested forest F̂ (Ω) associated to Ω, we we can write [Φ

F̂
] for

F̂ ∈ BNestForn without ambiguity.

Theorem 12.12. For F̂ ∈ BNestForn and f ∈ H•Tn(Fln), we have∫
X(F̂ )

f = [Φ
F̂

]f.

In particular, the double forest polynomials PF (xn; tn) are Kronecker dual to the homology basis
[X(F )] of H•Tn(QFln) given in Corollary 11.6.

Proof. By Theorem 12.9, we have that for A ⊂ [n] and F̂ = Ĝ · xi ∈ BNestForn−|A|, we have∫
X(F̂ )[n]/A

f =


∫
X(Ĝ)[n]/(i?A)

R±i,Af if xi = r±i ,∫
X(Ĝ)[n]/(i?A)

Ei,Af if xi = ei

after which the theorem follows recursively from the definition of [Φ
F̂

]; see [6, §10] for more details
on applying these operators to double forest polynomials. �

Example 12.13. Let Ω = r−1 r
+
1 e2e1r

+
2 e3. Then

[ΦΩ] = R−1,{1,2,3,4,5} R
+
1,{1,2,3,5} E2,{1,2,3} E1,{2,3} R

+
2,{3} E3.

A polynomial a(tn) ∈ Z[tn] is called Graham-positive if it lies in Z≥0[t2 − t1, . . . , tn − tn−1]. As
shown by Graham [26], for any T -invariant subvariety X ⊂ Fln, the decomposition

[X] =
∑

aw(tn) [Xw]

into Schubert cycles has Graham-positive coefficients aw(tn) =
∫
X Sw(xn; tn). The Graham-positivity

of [Φ
F̂

]Sw(xn; tn) was shown through purely combinatorial means in [6, Theorem 11.4], which we
can now interpret geometrically.

Corollary 12.14 ( [6, Theorem 11.4]). For F ∈ Forestn, the coefficient

aw(tn) =

∫
X(F̂ )

Sw(xn; tn) = [Φ
F̂

]Sw(xn; tn)

is Graham positive.

Remark 12.15. In [6, Theorem 11.6] we also show that the product of two double forest polyno-
mials has a Graham positive expansion as a sum of double forest polynomials for combinatorial
reasons. While the analogous result for double Schubert polynomials has a geometric explanation
due to Graham [26], we do not have a geometric explanation for this positivity. We also show
in [6, Theorem 11.4] that [Φ

F̂
]PG(xn; tn) is Graham positive, and we also do not have a geometric

explanation for this positivity.
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APPENDIX A. DOUBLE FOREST POLYNOMIALS

The purpose of this appendix is to give an alternative description for the ideal EQSym+
n as the

kernel of the map

evNC =
∏

w∈NCn

evw : Z[tn][xn]→ Z[tn]⊕NCn .

Theorem A.1. We have EQSym+
n = ker(evNC) and as a consequence

Z[tn][xn] = EQSym+
n ⊕

⊕
F∈Forestn

Z[tn]PF (xn; tn).(A.1)

The proof appears at the end of the appendix.

Remark A.2. Theorem A.1 belongs to a family of results known as “Orbit Harmonics.” In [5], the
first two authors show that Q⊗Z QSCoinvn is the associated graded of the coordinate ring for the
set of noncrossing partitions, considered as points using one-line notation. Specializing ti 7→ i in
Theorem A.1, we recover this result and find a new cohomological interpretation for it.

We begin by extending the definition of forest polynomials to a basis of the full polynomial ring
Z[tn][xn]. First define

Forest =
⊔
m≥0

Forestm
/
{F ∼ G if F ∈ BNestForm and G = F · (r−m+1)k},

so that we identify two forests if they differ only by some number of trailing isolated leaves. There
is an obvious bijection between the internal nodes of any two forests identified in this manner, so
we can speak of the internal nodes of F ∈ Forest without ambiguity. Say that an internal node v of
F ∈ Forest is terminal if both of its children are leaves, and let

LTer(F ) = {i | F has a terminal node with children i and i+ 1},

so that i ∈ LTer(F ) if and only if F = G · ei for some G ∈ Forest. We then define

LTForestn = {F ∈ Forest | LTer(F ) ⊆ [n]}.

We now consider double forest polynomials indexed by LTForestn. Recall that as described in
Remark 12.3, we have PF (xm; tm) = PF ·(r−m+1)k(xm+k; tm+k) for all m, k ≥ 0 and F ∈ Forestm.
Thus each class F ∈ LTForestn defines a unique forest polynomial in any set of x and t variables
(xm; tm) such that m ≥ max suppF .

Definition A.3. For F ∈ LTForestn, the n-truncated double forest polynomial is defined to be

PF (xn; tn) :− PF (xn, 0, . . . , 0; tn, 0, . . . , 0),

where the right-hand side is the specialization of the unique forest polynomial defined by F .
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The truncated forest polynomials have the property that

PF (tn; tn) = δF,∅ and EiPF =

PG(xn; t[n]/{i}, 0) if F = G · ei,

0 otherwise,

for 1 ≤ i ≤ n, where E1, . . . ,En−1 are as defined in Section 12.2 and

Enf(xn; tn) =
f(xn; tn)− f(x1, . . . , xn−1, tn; tn)

xn − tn
.

In [6, Corollary 4.7 (2)] we show that

(A.2) Z[tn][xn] =
⊕

F∈LTForestn

Z[tn]PF (xn; tn).

Thus as a consequence, we obtain a Z-basis of Z[xn] consisting of (single) forest polynomials

PF (xn) :− PF (xn; 0).

We prove in [6, Corollary 4.6] that these are the same forest polynomials studied in [39, 41].

Theorem A.4 ([39, Theorem 9.7], [41, Theorem 3.7]). The forest polynomials PF (xn; 0) with F ∈
LTForestn and n ∈ LTer(F ) are a Z-basis for QSym+

n .

We also define the set of zigzag forests to be

ZigZagn = {F ∈ LTForestn | LTer(F ) = {n}}.

The PF (xn; tn) for F ∈ ZigZagn are called double fundamental quasisymmetric polynomials, and in [6,
§4 and §7] we show that they form a basis for EQSymn. Via [39], [6] also show that the PF (xn; 0)

are the classical fundamental quasisymmetric basis for QSymn.

Proof of Theorem A.1. Theorem 11.11 shows that

Z[tn][xn] = ker(evNC)⊕
⊕

F∈Forestn

Z[tn]PF (xn; tn),

so we only need to show that EQSym+
n = ker(evNC). By (A.2), it suffices to show the inclusions

(A.3)
⊕

∅6=F∈LTForestn\Forestn

Z[tn]PF (xn; tn) ⊆ EQSym+
n ⊆ ker(evNC).

For the second inclusion in Equation (A.3) we use the fact, proved in [6, Theorem 7.1], that if
f(xn; tn) ∈ EQSymn then evw f = evid f for all w ∈ NCn, so clearly

EQSym+
n = {f(xn; tn)− f(tn; tn) | f ∈ EQSymn} ⊆ ker(evNC).

We now establish the first inclusion by showing that for all F ∈ LTForestn \ Forestn we have
PF (xn; tn) ∈ EQSym+

n . We proceed by induction on |F |. Our base case is |F | = 1, wherein
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the assumption n ∈ LTer(T ) implies that F = (r−1 )n−1 · en, so that PF (xn; tn) ∈ EQSymn as
F ∈ ZigZagn (alternatively as PF (xn; tn) = x1 + · · ·+ xn − t1 − · · · − tn).

Now assume that |F | > 1. By [39, Theorem 9.7], the (single) forest polynomial PF (xn) lies in
QSym+

n , which is generated by the fundamental quasisymmetric polynomials PG(xn) for ∅ 6= G ∈
ZigZagn. One may then write

PF (xn) =
∑

∅6=G∈ZigZagn

fG(xn)PG(xn).

As the double fundamental quasisymmetric polynomial PG(xn; tn) lies in EQSym+
n for ∅ 6= G ∈

ZigZagn, the difference

PF (xn; tn)−
∑

∅6=G∈ZigZagn

fG(xn)PG(xn; tn)(A.4)

can be written as a Z[tn]-linear combination of double forest polynomials PH(xn; tn) with H ∈
LTForestn \ Forestn. Furthermore, the difference (A.4) contains no monomials consisting entirely
of x-variables, so each H must have |H| < |F |. By induction, we have now expressed PF (xn; tn)

as an element of EQSym+
n , completing the proof. �
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