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ABSTRACT. We develop a quasisymmetric analogue of the theory of Schubert cycles, building off
of our previous work on a quasisymmetric analogue of Schubert polynomials and divided differ-
ences. Our constructions result in a natural geometric interpretation for the ring of quasisymmetric
coinvariants.
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1. INTRODUCTION

Let Poln := Z[x1, . . . , xn], the ring of polynomials in n variables. A ubiquitous family of polyno-
mials in algebraic combinatorics is the ring of quasisymmetric polynomials QSymn ⊂ Poln, which
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are variable truncations of the quasisymmetric functions pioneered by Gessel [20] and Stanley
[55]. These polynomials are by definition those that satisfy a weak form of variable symmetry:
for any sequence a1, . . . , ak ≥ 1 and increasing sequence 1 ≤ i1 < · · · < ik ≤ n, the coefficient
of xa1

1 · · · x
ak
k is the same as the coefficient of xa1

i1
· · · xak

ik
. Note that without the increasing stipu-

lation we recover the familiar notion of symmetric polynomials Symn ⊂ Poln, and so we have
containments Symn ⊂ QSymn ⊂ Poln.

A significant gap in our understanding of quasisymmetric polynomials is the subject of a re-
search program [3, 5, 41, 50, 49] which seeks to answer the following question.

Question 1.1. What is the quasisymmetric analogue of Schubert calculus?

The combinatorial side of Schubert calculus consists of the interplay between Schubert poly-
nomials {Sw | w ∈ Sn}, divided differences ∂i ∈ End(Poln) which recursively characterize Sw,
and the symmetric coinvariants Coinvn := Poln / Sym+

n where Sym+
n is the ideal generated by

homogenous positive degree symmetric polynomials. These correspond on the geometric side to
Schubert cycles Xw ⊂ Fln in the complete flag variety, Bott–Samelson resolutions, and the coho-
mology ring H•(Fln).

The ring of quasisymmetric coinvariants is defined to be QSCoinvn := Poln /QSym+
n , where

QSym+
n is the ideal generated by homogenous positive degree quasisymmetric polynomials. An

obstruction to answering Question 1.1 is that QSCoinvn is less well-behaved than Coinvn. For
example, as shown by Aval-Bergeron-Bergeron [3] (see also [41]), the graded ranks are given by

rank(QSCoinv(i)
n ) =

n− i
n + i

(
n− i

i

)
,

for i = 0, . . . , n− 1. This sequence is neither unimodal nor symmetric, so in particular implies that
QSCoinvn is not the cohomology ring of a smooth projective variety.

In a previous paper [41] we developed the combinatorial and algebraic sides of the quasisym-
metric story, by describing quasisymmetric divided differences Ti that interact with forest polynomials
PF and the quasisymmetric coinvariants QSCoinvn in an analogous way to how the usual divided
differences ∂i interact with Schubert polynomials Sw and the symmetric coinvariants Coinvn. One
interesting feature of these quasisymmetric divided differences is that the role of the nil-Hecke re-
lations ∂2

i = 0, ∂i∂j = ∂j∂i for |i − j| ≥ 2 and ∂i∂i+1∂i = ∂i+1∂i∂i+1 is played by the Thompson
monoid relations

TiTj = TjTi+1

for i > j. This implies that composites of Ti operators are naturally indexed by certain leaf-labelled
plane binary forests. The relevant parts of this combinatorial theory are recalled in Section 3.1.

1.1. The geometry of quasisymmetric coinvariants. Here we complete this story, and in par-
ticular give a natural answer to Question 1.1, by describing a quasisymmetric analogue of the
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geometric theory of Schubert cycles. To obtain the clearest geometric picture, we have to extend
in Section 3.2 the combinatorial considerations in [41] on composites of Ti operators to cover com-
posites of both Ti operators and the Bergeron–Sottile maps Rj, so named in ibid. because of their
relevance in the seminal paper [6] that developed Pieri rules for Schubert calculus. These lead us
to a new combinatorial object we call the augmented Thompson monoid which governs the combina-
torics of certain nested plane binary forests.

We will show that the distinct composite operations Πn
Ω : Poln → Z of appropriately supported

sequences Ω of n operations of the form Ti or Rj are naturally indexed by nested plane binary
forests F̂ ∈ F̂orn. To such an F̂ we show that there is an associated toric variety X(F̂) ⊂ Fln

which we call a quasisymmetric Schubert cycle, with the property that the degree map on X(F̂)
is computed using this composite operation. Our first main theorem (Theorem A) shows that the
subcollection of X(F̂) where F̂ does not involve any nesting are dual to the forest polynomials in
the same way that Schubert cycles are dual to Schubert polynomials.

To the sequence Ω itself, we construct a toric Richardson variety X(Ω) ⊂ Fln we call a qua-
sisymmetric Bott-Samelson variety. This toric variety is inductively constructed as an iterated
P1-bundle (i.e. as a “Bott manifold”) in such a way that the degree map on X(Ω) is computed
as the composite operation ΠΩ via taking successive degrees of the P1-bundle (Theorem 2.2).
Furthermore, we show that there is a natural map X(Ω) → X(F̂) (in fact an isomorphism) that
geometrically computes the degree map on X(F̂) via pullback to X(Ω), as Bott-Samelson varieties
do for Schubert varieties.

The X(Ω) fit together into a toric complex

HHMPn :=
⋃

Ω∈RTSeqn

X(Ω) ⊂ Fln

we call the Ω-flag variety, whose top-dimensional pieces were first studied by Haruda–Horiguchi–
Masuda–Park [24] and later by Lian [36]. Our second main theorem (Theorem B) shows that under
the restriction map ψ∗ : H•(Fln)→ H•(HHMPn), we have

QSCoinvn
∼= ψ∗(H•(Fln)) ⊂ H•(HHMPn),

which gives the desired geometric interpretation of the quasisymmetric coinvariants.
A curious feature of HHMPn is that unlike in the classical story, each X(F̂) appears isomor-

phically multiple times within HHMPn (once for each Ω ∈ Trim(F̂)). This is ultimately why the
containment of QSCoinvn in H•(HHMPn) is not an equality.

1.2. Applications. We give some applications of our theory beyond answering Question 1.1. One
such application of our theory comes from the fact that the top dimensional X(Ω) show up in the
study of the permutahedral toric variety in [24, 36]. Because we have a good understanding of the
degree map on X(Ω) we can deduce new results about the degree map, which is combinatorially
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the “divided symmetrization” of Postnikov [52, §3]. This also lets us better understand the q-
divided symmetrization from [44] and explains the remarkable interactions with quasisymmetric
polynomials.

Another application comes from the fact that the degree map on Richardson varieties such as
our toric varieties X(Ω) computes generalized Littlewood–Richardson (LR) coefficients cv

u,w, the
structure coefficients for Schubert polynomial multiplication

SuSw = ∑ cv
u,wSv.

By manufacturing operators via composites of Ti and Rj that extract interesting combinatorial
invariants from Schubert polynomials, our theory implies that these quantities are themselves
generalized LR coefficients, and hence have geometric significance.

As a final application, we give a geometric explanation for a well-known formula of Gessel
[20, Theorem 3] for the coefficients in the expansion of a symmetric polynomial f ∈ Symn into
fundamental quasisymmetric polynomials. It makes use of the Hall inner product with skew
Schur polynomials associated to ribbon shapes, and we relate these inner products to the degrees
on some of our varieties X(Ω).

Outline of Paper. We detail the main results in the paper in Section 2, and only give a brief out-
line here. Section 3 contains the combinatorial description of the augmented Thompson monoid,
which describes the composites of T and R operators. This extends the combinatorics of the
Thompson monoid from [41] which dealt only with T operators. In Section 4 we describe a geo-
metric interpretation of the T and R operators in the flag variety, and introduce the subvariety
HHMP. In Section 5, using a pair of permutations associated to a sequence of T and R opera-
tors, we study the toric Richardson varieties X(Ω) which are the primary geometric objects we
consider. In Section 6 we relate for Ω ∈ Trim(F̂) the toric varieties X(Ω) to torus-orbit closures
X(F̂) ⊂ Fln we call quasisymmetric Schubert cycles, and show a subset of our quasisymmetric
Schubert cycles are dual to the forest polynomials. In Section 7 we show that the X(Ω) assemble
into a toric complex HHMPn such that its cohomology ring naturally contains QSCoinvn.

In Section 8 we apply our results to generalized LR coefficients. In Section 9 we apply our results
to general torus-orbit closures and divided symmetrization. Finally, in Section 10 we show how we
can use the projection of our quasisymmetric Schubert cycles to Grassmannians to recover a result
of Gessel on extracting the coefficients of a symmetric polynomial in the basis of fundamental
quasisymmetric polynomials.

In Appendix A we collect some combinatorial proofs related to nested forests and in Appen-
dix B we collect some combinatorial proofs related to the permutations defining the Richardson
varieties X(Ω). Finally in Appendix C we compute the moment polytopes of these varieties and
give a different perspective on the existence of the quasisymmetric Bott–Samelson resolutions.
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2. RESULTS

We start by recalling the classical story of Schubert cycles, Schubert polynomials, and divided
differences. Let B, B−, T ⊂ GLn denote the upper triangular, lower triangular, and diagonal
matrices, and let Fln = GLn/B denote the complete flag variety. We will denote the Schubert
cycles Xv = BvB and the opposite Schubert cycles Xu = B−uB. For permutations u ≤ v in
the Bruhat order we denote the Richardson variety Xv

u = Xv ∩ Xu. Recall the Borel presen-
tation [12] of the cohomology ring of the complete flag variety as the symmetric coinvariants
H•(Fln) = Coinvn := Z[x1, . . . , xn]/ Sym+

n , where x1, . . . , xn are the Chern roots of the tautolog-
ical quotient flag, and Sym+

n is the ideal generated by positive degree symmetric polynomials in
x1, . . . , xn. A basis of H•(Fln) is given by the fundamental classes [Xw] of the Schubert cycles.

We can compute the degree map on the Schubert cycles Xw by the following geometric obser-
vation of Bernstein–Gelfand–Gelfand [8] and Demazure [17]. Fix a reduced word decomposition
w = si1 · · · sik of w by adjacent transpositions si = (i, i + 1) ∈ Sn, and denote wj = si1 · · · sij . Then
there is a commutative diagram

BS(i1, . . . , ik) BS(i1, . . . , ik−1) · · · BS() = {pt}

Xwk Xwk−1 · · · Xid = {pt}

where the bottom row are certain rational maps which are generically P1-bundles, and the top
row is a resolution of this sequence of rational maps by an iterated P1-bundle BS(i1, . . . , ik) known
as the Bott–Samelson resolution [13, 23, 17]. The divided difference operators ∂1, ∂2, . . . , ∂n−1 ∈
End(Poln) defined by

∂i f =
f − f (x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn)

xi − xi+1
(2.1)

interact in an important way with symmetric polynomials. For example

f ∈ Symn ⇐⇒ ∂1 f = · · · ∂n−1 f = 0,

and they descend to H•(Fln) = Coinvn since for g ∈ Symn we have ∂i(gh) = g∂i(h). The Bott–
Samelson resolution has the property that degBS(i1,...,ij)

f = degBS(i1,...,ij−1)
∂ij f for f ∈ H•(Fln).

These considerations then imply

degXw f = degBS(i1,...,ik)
f = degBS(i1,...,ik−1)

∂ik f = · · · = degBS() ∂i1 · · · ∂ik f = ev0 ∂w f ,

where ev0 g = g(0, 0, . . .) is the constant term operator and ∂w = ∂i1 · · · ∂ik is the composite op-
erator. For two choices of reduced word w = si1 · · · sik = si′1

· · · si′k
, the fact that degXw can be
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computed with the Bott–Samelson resolution associated to either sequence gives a geometric in-
terpretation of the identity ev0 ∂i1 · · · ∂ik = ev0 ∂i′1

· · · ∂i′k
. Algebraically, the divided difference op-

erators satisfy the nil-Hecke relations ∂2
i = 0, ∂i∂i+1∂i = ∂i+1∂i∂i+1, and ∂i∂j = ∂j∂i for |i− j| ≥ 2,

and the identity can also be shown using these local relations via Coxeter word combinatorics.
The Schubert polynomials of Lascoux–Schützenberger [33] are a family of homogenous poly-

nomials {Sw : w ∈ Sn} ⊂ Poln with Sid = 1 that satisfy

∂iSw =

Swsi i ∈ Des(w)

0 otherwise.

They also satisfy ev0 ∂vSw = δv,w, so they descend to the Kronecker dual basis to the cycles
{Xw | w ∈ Sn} in H•(Fln) under the Poincaré pairing. In fact, as the fundamental classes of
opposite Schubert cycles Xw are also a dual basis, we have Sw = [Xw] in H•(Fln).

2.1. The quasisymmetric operations Ri, and Ti. As in [41], we define the Bergeron–Sottile maps
R1, . . . ,Rn ∈ End(Poln) and the quasisymmetric divided difference T1, . . . ,Tn−1 ∈ End(Poln) by

Ri f := f (x1, . . . , xi−1, 0, xi, xi+1, . . . , xn−1)(2.2)

Ti f := Ri∂i f = Ri+1∂i f =
1
xi
(Ri+1 f − Ri f ).(2.3)

These maps were shown to interact in an important way with quasisymmetric polynomials – for
example, it was shown in [41, Theorems 2.6 and 2.10] that for f ∈ Poln we have equivalences

f ∈ QSymn ⇐⇒ R1 f = · · · = Rn f ⇐⇒ T1 f = · · · = Tn−1 f = 0.

Unlike the ∂i operators, the Ri and Ti operators naturally decrease the number of variables of a
polynomial. For Xn ∈ {R1,T1,R2,T2, . . . ,Rn−1,Tn−1,Rn} we have Xn(Poln) ⊂ Poln−1,. These de-
scend to maps Xn : Coinvn → Coinvn−1 and Xn : QSCoinvn → QSCoinvn−1 since for g ∈ QSymn
(or g ∈ Symn) we have Xn(gh) = (R1g)Xn(h) and R1 preserves symmetry and quasisymmetry.

As it is natural to compose the ∂i operators in an order which makes a reduced word, this
variable decreasing property of Xi leads to a natural class of composites of Tj and Rj to consider.
We denote by RTSeqn for the set of words Ω = x1x2 · · · xn with letters

xi ∈ {r1, t1, r2, t2, . . . , ri−1, ti−1, ri}.

Note the slight redundancy that x1 = r1 necessarily; this will be useful from an algebraic view-
point. Denote Πn

Ω = X1X2 · · ·Xn : Poln → Z for the composite linear functional under ri 7→
Ri, ti 7→ Ti, which we may view also as a linear functional on Coinvn, or QSCoinvn. While ∂w and
ev0 ∂w are different operators, we have Πn

Ω = ev0 Πn
Ω for Ω ∈ RTSeqn because the codomain is Z.

Just as a reduced word w = si1 · · · sik describes a way of reducing a permutation to the identity
by applying adjacent transpositions, we will show that a sequence Ω = x1 · · · xn ∈ RTSeqn can



THE GEOMETRY OF QUASISYMMETRIC COINVARIANTS 7

be viewed as describing a way of trimming a “plane nested binary forest” F̂ = F̂(Ω) ∈ F̂orn

(Definition 3.8) down to the empty forest via certain elementary transformations. We let

Trim(F̂) := {Ω ∈ RTSeqn | F̂(Ω) = F̂}

denote the set of all such sequences which trim the forest F̂ (Definition 3.14), analogous to the set
of reduced words of w ∈ Sn.

Using commutation relations between Ti and Rj we will show that the operators Πn
Ω for Ω ∈

Trim(F̂) are all equal to a common operator Πn
F̂
, with F̂ representing a sequencing order for certain

function compositions. This generalizes an analogous result in [41] describing composites TF =

Ti1Ti2 · · ·Tik in terms of certain plane binary forests F ∈ Forn.

Example 2.1. In our theory, we have Ω = r1t1t2t1r2 and Ω′ = r1t1t1r2t4 both belong to Trim(F̂)
with F̂ depicted in the figure below. One can check directly for f ∈ Z[x1, x2, x3, x4, x5] that

R1T1T2T1R2 f = R1T1T1R2T4 f ,

i.e. Π5
Ω = Π5

Ω′ , which follows by applying the commutation relation T2T1 = T1T3 followed by
the commutation relation T3R2 = R2T4.

1 2 3 4 5

2.2. A quasisymmetric Schubert cycle. Write |Ω|t for the number of xi which are equal to tj for
some j. To each element Ω ∈ RTSeqn we will associate a pair of permutations u(Ω), v(Ω) in Sn

such that u(Ω) ≤ v(Ω) in Bruhat order and |Ω|t = `(v(Ω))− `(u(Ω)) (Definition 5.1). We define
the |Ω|t-dimensional “Ω-Richardson variety” by

X(Ω) := Xv(Ω)
u(Ω)
⊂ Fln.

The maximal dimension X(Ω) come from sequences Ω = r1ti1 · · · tin−1 ∈ RTSeqn, and give the
smooth toric Richardson varieties considered in [24, 36]:

{Xucn
u | u ∈ Sn and u(n) = n}

where cn = n12 · · · (n− 1) is the backwards long cycle in Sn. The remaining X(Ω′) are the torus-
orbit closures contained in one of these maximal X(Ω).

The following is the quasisymmetric analogue of the BGG/Demazure geometric interpretation
of divided differences.

Theorem 2.2 (Theorem 5.3). If Ω = Ω′x ∈ RTSeqn and f ∈ H•(Fln) then the following are true.

(1) If x = ri then X(Ω) ∼= X(Ω′) and degX(Ω) f = degX(Ω′) Ri f .
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(2) If x = ti then there is a P1-bundle X(Ω)→ X(Ω′) and degX(Ω) f = degX(Ω′) Ti f .

In particular, we have degX(Ω) f = Πn
Ω f .

To each F̂ ∈ F̂orn, we will show there is a torus-orbit closure X(F̂) ⊂ Fln which has the property
that for any Ω ∈ Trim(F̂) we have

X(F̂) = u(Ω)−1 · X(Ω).

We note that X(F̂) need not by a toric Richardson variety. Let πΩ : X(Ω) → X(F̂) be the iso-
morphism induced by multiplication by u(Ω)−1. Letting Ω = x1 · · · xn ∈ RTSeqn, if we define
Ωi = x1 · · · xi ∈ RTSeqi and F̂i = F̂(Ωi), then there is a commutative diagram

X(Ωn) X(Ωn−1) · · · X(Ω0) = {pt}

X(F̂n) X(F̂n−1) · · · X(F̂0) = {pt}

πΩn πΩn−1 πΩ0

which for f ∈ H•(Fln) lets us compute

degX(F̂) f = degX(Ωn)
f = degX(Ωn−1)

Xn f = · · · = degX(Ω0)
X1 · · ·Xn f = Πn

Ω f .

For Ω, Ω′ ∈ Trim(F̂) this gives a geometric interpretation of the equality Πn
Ω f = Πn

Ω′ f .
The analogies to the classical theory are therefore the following.

(1) The varieties X(F̂) ⊂ Fln correspond to the Schubert varieties Xw ⊂ Fln.
(2) πΩ : X(Ω) ∼= X(F̂) for Ω ∈ Trim(F̂) corresponds to a Bott–Samelson resolutions of Xw.

We note that in the classical case, the Bott–Samelson resolution rarely maps isomorphically onto
the corresponding Schubert variety.

Example 2.3. Consider Ω = r1t1t2t1r2 and Ω′ = r1t1t1r2t4, which both belong to Trim(F̂) as in Ex-
ample 2.1. Writing permutations in one line notation we have the toric varieties X(Ω) = X51243

21435
and X(Ω′) = X52341

32415 , and X(Ω′) = 23145 · X(Ω).

2.3. Duality with forest polynomials. We cannot find a Kronecker dual basis to the X(F̂) because
there are linear relations between the fundamental classes, corresponding to nontrivial relations
between Πn

F̂
functionals arising from the identity

TiRi+1 = Ri+1Ti + RiTi+1.

It turns out that we obtain nice duality statements if we restrict to the subset of indexed forests
Forn ⊂ F̂orn where nesting does not occur.

To see this, we note that Theorem 2.2 has particular significance in terms of the work from [41]
on the interaction between the homogenous family of forest polynomials {PF : F ∈ For} and the
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operators Ti. Similarly to the way that Schubert polynomials interact with the ∂i operators, the
forest polynomials satisfy

TiPF =

PF/i i ∈ LTer(F)

0 otherwise,

where LTer(F) is a certain subset of the leaf labels of F and F/i is a certain “trimmed” forest (see
Definition 3.5). Just as the Schubert polynomials {Sw | w ∈ Sn} descend to a basis of Coinvn, the
forest polynomials {PF | F ∈ Forn} descend to a basis of QSCoinvn.

Furthermore, the distinct composites TG of the Ti operators are indexed by G ∈ For and
ev0 TFPG = δF,G. It is this observation that allows us to identify a subfamily of the X(F̂) as
dual to the forest polynomials.

Theorem A. For F ∈ Forn an indexed forest, we have degX(F) f = ev0 TF f , and there is a duality

degX(F) PG = δF,G.

Furthermore, for any Ω ∈ RTSeqn, the fundamental class [X(Ω)] ∈ H•(Fln) is uniquely a nonneg-
ative linear combination of the fundamental classes {[X(F)] | F ∈ Forn}.

Consequently, the subset {X(F) | F ∈ Forn} of the quasisymmetric Schubert cycles are to forest
polynomials {PF | F ∈ Forn} as the Schubert cycles {Xw | w ∈ Sn} are to Schubert polynomials
{Sw | w ∈ Sn}.

2.4. The Ω-flag variety. We now describe the quasisymmetric analogue of the flag variety. The
toric Richardson varieties X(Ω) fit together into a complex of smooth toric varieties

HHMPn =
⋃

Ω∈RTSeqn

X(Ω).

we call the Ω-flag variety. As HHMPn is composed of isomorphic copies of X(F̂), one for each Ω ∈
Trim(F̂), we call HHMPn the Ω-flag variety. It can also be defined recursively as flags satisfying
certain simple conditions (see Theorem 7.2). This complex of toric varieties was considered before
in [24]. In [36] it was shown that HHMP arises as a toric degeneration of a general T-orbit closure
in Fln (the permutahedral variety). The moment polytopes of the top-dimensional X(Ω) give a
subdivision of the permutahedron

Permn−1 = conv{σ · (n, n− 1, . . . , 1) | σ ∈ Sn}

into (n− 1)! combinatorial cubes [24], which we call the HHMP-subdivision, and which by what
we have said earlier has the property that the lower dimensional faces are indexed by the moment
polytopes of lower dimensional X(Ω′) with Ω′ ∈ RTSeqn. As we will see later, the facial structure
of this subdivision (and hence the poset structure of the toric complex) is identified with the unit
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cube subdivision of [1, 2] × [1, 3] × · · · × [1, n − 1], where to a sequence x1 · · · xn ∈ RTSeqn we
associate the cuboid Y2 × · · · ×Yn where Yi = {j} if xi = rj and Yi = [j, j + 1] if xi = tj.

'
123

321

213

231

312

r1r1r1

r1r2r1 r1r2r2 r1r2r3

r1r1r3r1r1r2

r1r2t2

r1t1r3

r1r1t2r1r1t1

r1t1r1

r1t1r2

r1t1t1 r1t1t2

r1r2t1
132

FIGURE 1. Unit cube subdivision for n = 3 where we have indicated the face label-
ings by RTSeq3 on the right, and nested forests on the left.

Not only does HHMPn contain the quasisymmetric Schubert cycles, but our next main theorem
shows its cohomology ring naturally contains QSCoinvn.

Theorem B. Under the inclusion ψ : HHMPn → Fln, we have

ψ∗(H•(Fln)) ' QSCoinvn.

2.5. Applications.

2.5.1. Generalized Littlewood–Richardson coefficients. The generalized LR coefficients cv
u,w are the

structure coefficients for Schubert polynomial multiplication

SuSw = ∑ cv
u,wSv.

Geometrically these can be realized as cv
u,w = degXv

u
Sw, so we can identify

cv(Ω)
u(Ω),w = Πn

ΩSw.

We will give a combinatorially nonnegative interpretation to these generalized LR coefficients for
all Ω. By using well-chosen sequences Ω appearing in [41, 42], we arrive at the following results.

Theorem 2.4 (Theorem 8.6). Let w ∈ Sn. The coefficients of

(1) A monomial xc1
1 · · · x

cn
n in the monomial expansion of Sw

(2) A slide polynomial coefficient in the slide polynomial expansion Sw = ∑ aiFi

(3) A forest polynomial coefficient in the m-forest polynomial expansion Sw = ∑ aFP
m
F

are all generalized LR coefficients cv(Ω)
u(Ω),w for some Ω ∈ RTSeqN with N possibly larger than n,

with an explicit combinatorially nonnegative rule for computing them.
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In [35] it was shown that the coefficient of a monomial arises in a different way as a generalized
LR coefficient, and it would be interesting to compare these results. The second and third results
are new, and as we will see also generalize to the m-forest polynomials of [41] and the m-slide
polynomials of [42].

2.5.2. Divided symmetrization. Harada–Horiguchi–Masuda–Park [24] and Lian [36] showed that
for a general x ∈ Fln we have the equality

[T · x] = [HHMPn].(2.4)

On the other hand, by the work of Anderson–Tymoczko [1] we have

degT·x f (x1, . . . , xn) = ∑
σ∈Sn

f (xσ(1), . . . , xσ(n))

(xσ(1) − xσ(2)) · · · (xσ(n−1) − xσ(n))
,

realizing the degree map of classes from H•(Fln) on T · x as “divided symmetrization” (DS hence-
forth), first studied by Postnikov [52, §3]. We can combine these results with Theorem A to obtain
a new factorized expression for DS.

Theorem 2.5. For f ∈ Poln homogenous of degree n− 1, we have

∑
σ∈Sn

f (xσ(1), . . . , xσ(n))

(xσ(1) − xσ(2)) · · · (xσ(n−1) − xσ(n))
= T1(T1 + T2) · · · (T1 + · · ·+ Tn−1) f .

Expanding out the expression on the right fully, each term corresponds to the degree on a dis-
tinct maximal toric Richardson variety in HHMPn. This factorized form of DS explains many of its
interesting properties that have been observed in the past, particularly the interaction with qua-
sisymmetric polynomials, and we show that the q-analogue T1(T1 + qT2) · · · (T1 + qT2 + · · · +
qn−1Tn−1) recovers the q-divided symmetrization 〈 f 〉qn considered in [44].

One corollary of the DS identity is that for any n-variable Schubert polynomial Sw(x1, . . . , xn),
the DS 〈Sw〉n is a polynomial all of whose coefficients are nonnegative. Through computer exper-
imentation, we make the following conjecture.

Conjecture 2.6 (Conjecture 9.8). The q-divided symmetrization 〈Sw〉qn of a Schubert polynomial
Sw(x1, . . . , xn) is Hall-Littlewood P-positive.

2.5.3. A formula of Gessel. Finally, we use our theory to give a geometric explanation for a for-
mula of Gessel [20, Theorem 3] which, given a symmetric polynomial f (x1, . . . , xn), determines
the coefficients of the expansion

f (x1, . . . , xn) =
n

∑
k=1

∑
ik ,...,in≥1

aik ,...,inFik ,...,in(x1, . . . , xn)

where Fik ,...,in(x1, . . . , xn) is the fundamental quasisymmetric polynomial whose reverse lexico-
graphic leading term is xik

k · · · x
in
n . This formula is in terms of the Hall inner product with skew
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Schur polynomials associated to ribbon shapes. We geometrically interpret it as a degree map on
Grassmannian Richardson varieties associated to these shapes, and show that a certain subset of
our X(Ω) project onto these Grassmannian Richardson varieties. Using our theory of degree maps
on X(Ω) shows that Gessel’s formula follows directly follows from a more general formula

f (x1, . . . , xn) =
n

∑
k=1

∑
ik ,...,in≥1

(ev0 T
ik
k · · ·T

in
n f )Fik ,...,in(x1, . . . , xn)

proved in [41] that works for f ∈ QSymn an arbitrary quasisymmetric polynomial.

3. COMPOSITES OF R AND T VIA NESTED FORESTS

We first recall the results of [41] about the combinatorics the Thompson monoid, its faithful
polynomial representation given by i 7→ Ti, and the forest polynomials PF. We then generalize
the combinatorics to what we call the augmented Thompson monoid and (marked) nested forests.
Finally, we fix n and restrict the previous constructions to obtain operators Πn

F̂
on any of the spaces

Poln, Coinvn, QSCoinvn that depend on a certain forest F̂ ∈ F̂orn in the collection of nested forests
supported on {1, . . . , n}.

To avoid disrupting the exposition and keeping our overarching goal in mind we relegate the
proofs of combinatorial results in this section to Appendix A.

3.1. Composites of T via indexed forests, and forest polynomials. In this section we recall the
relationship between the T operators, plane binary forests, and forest polynomials from [41]. Let
Pol = Z[x1, x2, . . .] =

⋃
n Poln. The quasisymmetric divided differences T1,T2, . . . ∈ End(Pol) defined

as in (2.3) satisfy the elementary commutation relations

TiTj = TjTi+1 for i > j,(3.1)

which imply that i 7→ Ti is a representation of the Thompson monoid

ThMon = 〈1, 2, . . . | i · j = j · (i + 1) for i > j〉.

It is a classical fact in the theory of Thompson groups [4, 15, 16, 57] that ThMon is isomorphic to a
monoid For of forests of plane binary trees. Hence one can define operators TF for F ∈ For.

Definition 3.1. A plane binary tree is a binary tree where each internal (i.e. non-leaf) node v has a
left child vL and a right child vR. An indexed forest F is a sequence of plane binary trees T1, T2, . . .
where Ti = ×, the trivial plane binary tree, for all but finitely many i. We denote the set of indexed
forests by For.

The leaves of a plane binary tree are naturally ordered, so there is a canonical identification of
the leaves of F ∈ For with N. Denoting IN(F) for the internal nodes of F, the totality of nodes of
F may thus be identified with IN(F) tN.
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Definition 3.2. We define a monoid structure on For by taking the composition F · G to be the
plane forest obtained by identifying the i’th leaf of F with the i’th root of G.

For ∧ the unique binary tree with one internal node, we denote

i := × · · · ×︸ ︷︷ ︸
i−1

∧×× · · · .

Theorem 3.3 ([41]). The map i 7→ i induces a monoid isomorphism ThMon → For.

This result allows us to tacitly identify i with i from now on. Since i 7→ Ti is a representation of
ThMon on Pol, the composite operation Ti1 · · ·Tik only depends on the forest i1 · · · ik ∈ For.

Definition 3.4. For F ∈ For, we define TF := Ti1 · · ·Tik for any sequence i1, . . . , ik with F = i1 · · · ik.

An internal node of F is terminal if both of its children are leaves. The left leaves of terminal
nodes form the set LTer(F). Equivalently, LTer(F) is the set of i such that F = G · i for some
(necessarily unique) forest G ∈ For. For i ∈ LTer(F) we write F/i ∈ For for the unique forest with
F = (F/i) · i.

Definition 3.5 ([41, Theorem 6.1]). The forest polynomials {PF | F ∈ For} are the unique family
of homogenous polynomials in Pol with P∅ = 1 and

TiPF =

PF/i i ∈ LTer(F)

0 otherwise.

These polynomials were introduced combinatorially by the first and third authors in [45, 48] but
we shall have no need for the explicit description. The recursive characterization in Definition 3.5
then implies [41, Corollary 6.6] that the forest polynomials are dual to the functionals ev0 TG in
the sense that

ev0 TG PF = δG,F.

As was shown in [41, Corollary 6.7], because the maps End(Pol) → Z given by Φ 7→ ev0 ΦPF
separate the linear functionals TG, the map Z[ThMon]→ End(Pol) is a faithful representation (i.e.
the TF operators are Z-linearly independent).

We define Forn to be the subset of F ∈ For where the leaves of all nontrivial trees lie in {1, . . . , n}.

Theorem 3.6 ([41, Proposition 6.8 and Theorem 9.7]). The forest polynomials are a Z-basis for Pol,
and every polynomial f ∈ Pol can be uniquely written as

f = ∑
F∈For

aFPF.

with aF = ev0 TF f . Additionally, the forest polynomials {PF | F ∈ Forn} lie in Z[x1, . . . , xn]

and descend to a Z-basis of QSCoinvn. Finally, for f ∈ Poln we have f ∈ QSym+
n if and only if

ev0 TF f = 0 for all F ∈ Forn.
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3.2. Composites of R and T via marked nested forests. We now generalize the forest combina-
torics of Section 3.1 to include the Bergeron–Sottile maps R1,R2, . . . ∈ End(Pol) defined as in (2.2).
These satisfy the further commutation relations

TiRj = RjTi+1 for i ≥ j(3.2)

RiTj = TjRi+1 for i > j(3.3)

RiRj = RjRi+1 for i ≥ j.(3.4)

Together with (3.1) these relations therefore define the following abstract monoid.

Definition 3.7. The augmented Thompson monoid T̃hMon is the quotient of the free monoid on the
alphabet {1, 2, . . .} t {1◦, 2◦, . . .} by the relations

i · j = j · (i + 1) if i > j(3.5)

i · j◦ = j◦ · (i + 1) if i ≥ j(3.6)

i◦ · j = j · (i + 1)◦ for i > j(3.7)

i◦ · j◦ = j◦ · (i + 1)◦ for i ≥ j.(3.8)

We define the polynomial representatiof the augmented Thompson monoid to be the representa-
tion Pol given by i 7→ Ti and i◦ 7→ Ri.

We define here the monoid F̃or of “marked nested binary forests”, which extends the monoid
of indexed forests defined in Section 3.1. We start by defining nested binary forests, which are
already an extension of indexed forests.

A finite partition π of N is a set partition of N such that all blocks have finite size, and all but
finitely many blocks are singletons; equivalently, {i} is a block for all i large enough. We say π is
noncrossing if for any two blocks B, B′ ∈ π we never have a < c < b < d with a, b ∈ B and c, d ∈ B′.

Definition 3.8. A (plane, binary) nested forest is a family of plane binary trees (TB)B∈π where π is a
finite noncrossing partition of N, and each tree TB for B ∈ π has |B| leaves.

We denote by F̂or the set of nested forests. The subset B in the definition is called the sup-
port of TB. An example of of nested forest is given in Figure 2; the non-singleton supports are
{2, 3}, {4, 5, 9, 11}, {6, 7, 8} and {13, 14, 15}. If all supports of F ∈ F̂or are intervals {a, a + 1, . . . , b},
then we retrieve the notion of indexed forests: these intervals are ordered from left to right, giving
trees T1, T2, . . . as in [41, Definition 3.1].

This notion will mostly be sufficient for the rest of the article. In order to build a monoid iso-
morphic to the one generated by the Ti and Ri however, we need to enrich this structure with a
notion of marks on the roots of these trees.

This requires some extra notions on noncrossing partitions. Two blocks B, B′ in a noncrossing
partition π are either:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

FIGURE 2. A nested forest.

• aligned: the elements of B are smaller than the elements of B′ (or the opposite), or
• nested: there are two elements a < b of B such all elements of B′ are between a and b.

The outer blocks of π are those that are not nested under any other block. Outer blocks are pairwise
aligned, and thus are totally ordered from left to right. We call a tree in a forest an outer (resp.
nested) tree if its support is an outer (resp. nested) block.

Definition 3.9. A marked nested forest is a nested forest where a finite number of tree roots are
marked, and these include the roots of all nested trees. We write F̃or for the set of all marked
nested forests.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2

3

4

5 6

17 18

FIGURE 3. A marked nested forest.

Figure 3 depicts a marked nested forest with circles denoting the marking on the roots. Note
that the roots of the trees with supports {6, 7, 8} and {10} are necessarily marked since the trees
are nested, while the marks on all other roots can be picked arbitrarily.

For F̃ ∈ F̃or we write F̂ ∈ F̂or for the nested forest obtained by forgetting the markings. As an
example, note that the nested forest in Figure 2 is the F̂ for the F̃ in Figure 3.

Remark 3.10 (Indexed forests as marked nested forests). If a marked nested forest has no marks,
then all blocks are outer blocks, and this entails that they are integer intervals {a, a + 1, . . . , b}. As
we saw above this is naturally equivalent to the notion of indexed forests from [41].

Note that the unmarked roots of (outer) trees are naturally ordered from left to right, and so we
may canonically identify the unmarked roots by N and talk about the “i’th unmarked root”. We
then have the following generalization of [41, Definition 4.1], recalled in Definition 3.2.
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Definition 3.11. Let F̃, G̃ ∈ F̃or. Define a monoid structure on F̃or by letting F̃ · G̃ be obtained by
identifying the i’th leaf of F̃ with the i’th unmarked root of G̃.

We can describe F̃or recursively using this product. The “empty forest” ∅ := ××× · · · is made
of unmarked trivial trees ×. For ∧ the unmarked binary tree with one root and two leaves and ⊗
the trivial binary tree whose only node is marked, consider the elementary forests

i =× · · · ×︸ ︷︷ ︸
i−1

∧×× · · · and i◦ = × · · · ×︸ ︷︷ ︸
i−1

⊗×× · · ·

Then, given F̃ ∈ F̃or, i ∈N, we obtain

• F̃ · i by taking the i’th leaf and giving it two children.
• F̃ · i◦ by inserting a trivial marked tree ⊗ between the (i− 1)’st and the i’th leaves of F̃ (if

i = 1 then we add ⊗ before the first leaf of F̃).

Theorem 3.12. The map i 7→ i, i◦ 7→ i◦ induces an isomorphism T̃hMon ∼= F̃or.

The proof is in Appendix A. This result allows us to tacitly identify i, i◦ with i, i◦ from now on.

3.3. RTSeq and composites ΠΩ of T and R operators. We now study the polynomial represen-
tation of the augmented Thompson monoid on Pol given by i 7→ Ti and i◦ 7→ Ri. The following
definition will be useful for indexing sequences of Ri and Ti operators, and to avoid confusing
such sequences with composite operators.

Definition 3.13. Let RTSeq denote the set of sequences Ω = x1 · · · xk with k ≥ 0 and

xi ∈ {rj, tj | j ∈ Z>0}.

We write |Ω| = k and let |Ω|t be the number of xi equal to tj for some j. We write up(ri) = Ri,
up(ti) = Ti, and the composite operator associated to the sequence Ω ∈ RTSeq to be

ΠΩ := up(x1) · · ·up(xn) ∈ End(Pol).

Viewing RTSeq as the free monoid on the alphabet {rj, tj | i ∈ N}, there is a natural monoid

surjection RTSeq → T̃hMon ∼= F̃or sending ti 7→ i and ri 7→ i◦, and hence to each Ω ∈ RTSeq we
can associate an element F̃(Ω) ∈ F̃or. Recursively, F̃(∅) = ∅ and for Ω = Ω′x we have

F̃(Ω) =

F̃(Ω′) · j if x = tj

F̃(Ω′) · j◦ if x = rj.

Definition 3.14. For F̃ ∈ F̃or, we define

Trim(F̃) = {Ω ∈ RTSeq | F̃(Ω) = F̃} ⊂ RTSeq.
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Proposition 3.15. Under the polynomial representation, the image of Ω in T̃hMon is ΠΩ. In par-
ticular, for Ω, Ω′ ∈ Trim(F̃), we have ΠΩ = ΠΩ′ .

Proof. The first part follows by definition of the polynomial representation on Ω, and the second
follows from the fact that F̃(Ω) is by construction the image of Ω under the composite RTSeq →
T̃hMon ∼= F̃or. �

Definition 3.16. For F̃ ∈ F̃or, we define ΠF̃ := ΠF̃(Ω) for any Ω ∈ Trim(F̃).

Remark 3.17. A more conceptual proof of the commutation relations (3.1) and (3.2)–(3.4) follows
from the observations in [41]: if we define

(1) T : Pol⊗2
1 → Pol1 by T f (x, y) = f (x,0)− f (0,x)

x , and
(2) R : Pol1 → Pol0 by R( f (x)) = f (0),

then under the identification Pol = Pol⊗∞
1 we have

Ti = id⊗i−1⊗T ⊗ id⊗∞ and Ri = id⊗i−1⊗R ⊗ id⊗∞ .

The commutation relations are then the universal relations satisfied by compositions of the shifts
of any fixed operators Pol⊗2

1 → Pol1 and Pol1 → Pol0, irrespective of the particular definitions.
The marked nested forest F̃ may be seen as a composition tree for two-to-one and one-to-zero
operations acting on consecutive variables, with a marking indicating the application of a one-to-
zero operation, and then ΠF̃ is the associated composition of these operations.

The polynomial representation of the augmented Thompson monoid is not faithful as a linear
representation Z[T̃hMon]→ End(Pol), because of the presence of the nontrivial relation

TiRi+1 = RiTi+1 + Ri+1Ti(3.9)

which will play an important role later on. As the first part of the next theorem shows however, it
is however faithful as a monoid representation.

Theorem 3.18. Let F̃, F̃′ ∈ F̃or. Then

(1) F̃ = F̃′ if and only if ΠF̃ = ΠF̃′ , and
(2) F̂ = F̂′ if and only if ev0 ΠF̃ = ev0 ΠF̃′ .

Corollary 3.19. The distinct operators ΠΩ for Ω ∈ RTSeq are indexed by F̃ ∈ F̃or and we can index
the distinct operators ev0 ΠΩ by F̂ ∈ F̂or.

The proof is given in Appendix A.
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3.4. Fully supported forests and RTSeqn. To conclude this section, we classify the nested and
marked nested forests arising from a subset RTSeqn ⊂ RTSeq.

Definition 3.20. We denote by RTSeqn ⊂ RTSeq for the subset of sequences Ω = x1 · · · xn with the
restriction that xi ∈ {r1, t1, r2, t2, . . . , ri−1, ti−1, ri}.

Note that for Ω ∈ RTSeqn we always have x1 = r1.
Let us write

Πn
Ω : Poln → Z

for the restriction of ΠΩ to Poln. This functional descends to Coinvn and QSCoinvn by the discus-
sion in Section 2, and we write by abuse of notation Πn

Ω : Coinvn, QSCoinvn → Z.

Proposition 3.21. Let Ω ∈ RTSeqn, and write F̃ = F̃(Ω). Then

(1) the (n + 1)’st leaf of F̃ onwards belong to trivial trees, and
(2) all root nodes of the trees of F̃ supported on {1, . . . , n} are marked.

Conversely, if F̃ ∈ F̃or satisfies these two properties then F̃ = F̃(Ω) for Ω ∈ RTSeqn.

This is proved in Appendix A. It follows that for Ω ∈ RTSeqn we have F̂(Ω) = F̂(Ω′) if and
only if F̃(Ω) = F̃(Ω′), so there is no need to remember marked roots. Let F̂orn denote the set of
nested forests where the (n + 1)’st leaf onwards belong to trivial trees.

Definition 3.22. For F̂ ∈ F̂orn, we define

Trim(F̂) = {Ω ∈ RTSeqn | F̂(Ω) = F̂} ⊂ RTSeqn,

and we define Πn
F̂
= Πn

Ω for any Ω ∈ Trim(F̂). As with Πn
Ω, by abuse of notation, we also denote

by Πn
F̂

the induced maps Coinvn → Z and QSCoinvn → Z.

This notion Πn
F̂

naturally encompasses the operations ev0 TF used to extract the coefficients of
forest polynomials as discussed in Section 3.1.

Corollary 3.23. For F ∈ Forn we have ev0 TF = Πn
F.

Proof. Suppose F = i1 · · · ik. For f ∈ Poln, we have TF ∈ Poln−|F|, and we can write ev0 TF = Πn
Ω

where Ω = r
n−|F|
1 ti1 · · · tik . The nested forest associated to Ω is F, so ΠΩ = Πn

F. �

We conclude by giving a visual depiction of Ω ∈ Trim(F̂). For a sequence Ω = x1 · · · xn ∈
RTSeqn, define the trimming diagram of Ω as follows: replace a letter ri (resp. ti) in position j in Ω
by the elementary diagram on the left (resp. right) below, and concatenate such diagrams from
top to bottom.

· · · · · ·· · · · · ·
21 i− 1 i j − 1

· · · · · ·
21 i− 1 i i+ 1 j − 1
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We note that the initial r1 of Ω does not contribute any edges. A trimming diagram for a particu-
lar Ω ∈ RTSeq13 is given on the left in Figure 4. The highlighted elementary diagram corresponds
to the letter in the fifth position being a t2. It is easy to see that the nested forest F̂ such Ω ∈ Trim(F̂)
is the blue forest obtained after contracting all red edges. This is illustrated on the right.

1 2 3 4 5 6 7 8 9 10 11 12 13

FIGURE 4. Trimming diagram for r4
1t2r3r4t6t2t7r1t6r5 ∈ RTSeq13 and the associated

nested forest.

In Appendix C we will show that removing the blue edges from the trimming diagram yields
a GZ diagram whose associated polytope is the moment polytope for the Ω-Richardson varieties
X(Ω) we will be discussing in subsequent sections.

4. GEOMETRIC REALIZATIONS OF R AND T

Denote the tautological flag subbundle on Fln by {0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn. Consider
the projection map

πi : Fln → Fl1,...,i−1,i+1,...,n

forgetting the i’th subspace, which realizes Fln as the P1-bundle given P(Vi+1/Vi−1) on the par-
tial flag variety. The following folklore facts describe how pullback and pushforward along πi

interacts with cohomology.

Fact 4.1.

(1) Pullback (πi)
∗ induces an injection H•(Fl1,...,i−1,i+1,...,n) ↪→ H•(Fln) = Coinvn whose im-

age is the subring generated by x1, . . . , xi−1, xi + xi+1, xixi+1, xi+2, . . . , xn, i.e. the subring
generated by polynomials symmetric in xi, xi+1,

(2) Pushforward (πi)∗ : H•(Fln)→ H•(Fl1,...,i−1,i+1,...,n) is given by f 7→ ∂i f .

We recall the thrust of the BGG computation in the following geometric fact.

Fact 4.2. If w ∈ Sn and i 6∈ Des(w), then Xwsi → πi(Xwsi) is birational onto its image, and Xw =

π−1
i πi(Xwsi) is a P1-bundle over πi(Xw) = πi(Xwsi).
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From this fact we see that

degXw f (x1, . . . , xn) = degπi(Xw) ∂i f = degXwsi ∂i f .

In this section we carry out this computation with certain Richardson varieties that will later
allow us to geometrically interpret the composite operators Πn

Ω for Ω ∈ RTSeqn. For 1 ≤ i ≤ n,
define the map ε i : Sn−1 → Sn on permutations by

ε i(w)(j) =


w(j) + 1 j < i

1 j = i

w(j− 1) + 1 j > i.

Concretely this inserts a 1 in the i’th available position in the one-line notation for w and increases
all other values by 1, so e.g. ε3(143652) = 2514763.

4.1. A geometric realization of R. The geometric description of the Bergeron–Sottile maps Ri

comes from the seminal paper [7] of the Pieri rule for Schubert varieties, in particular the map
Ψi – we make no claims of originality. For 1 ≤ i ≤ n, let Ψi : Fln−1 → Fln denote the map

(Ψi(V))j =

{0} ⊕ Vj if j < i

C⊕ Vj−1 if j ≥ i.

Theorem 4.3. For f ∈ Poln we have

Ψ∗i f = Ri f .

Proof. We have

Ψ∗i (Vj) =

Vj if j < i

C⊕ Vj−1 if j ≥ i.

Therefore

Ψ∗i (x1 + · · ·+ xj) = c1(Ψ∗i (Vj)
∨) = c1((Vj−δj≥i)

∨) = x1 + · · ·+ xj−δj≥i = Ri(x1 + · · ·+ xj).

Since Ψ∗i and Ri agree on the generators x1, . . . , xn of H•(Fln), they are equal. �

Theorem 4.4. For u ≤ v in Sn−1, the map Ψi is an isomorphism Xv
u → Xεi(v)

εi(u)
. In particular,

deg
X

εi(v)
εi(u)

f = degXv
u
Ri f .

Proof. Xv
u and Xεi(v)

εi(u)
are irreducible of the same dimension `(v)− `(u) = `(ε i(v))− `(ε i(u)). Since

Ψi is a closed embedding, it suffices to show that Ψi(Xv
u) ⊂ Xεi(v)

εi(u)
.
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For V ∈ Xv
u, let w1, . . . , wn−1 be a basis of Cn−1 such that for all j we have 〈w1, . . . , wj〉 = Vj and

〈w(v′)−1(1), . . . , w(v′)−1(j)〉 = 〈e1, . . . , ej〉 for all j for some v′ ≤ v. Then the vectors w̃1, . . . , w̃n ∈ Cn

with

w̃j =


{0} ⊕ wj j < i

e1 j = i

{0} ⊕ wj−1 j > i

are a basis of Cn such that 〈w̃1, . . . , w̃j〉 = Ψi(V)j and 〈w̃εi(v′)−1(1), . . . , w̃εi(v′)−1(j)〉 = 〈e1, . . . , ej〉 so

Ψi(V) ∈ Xεi(v′) ⊂ Xεi(v). Similarly Ψi(V) ∈ Xεi(u) and the result follows since Xεi(v)
εi(u)

= Xεi(v) ∩
Xεi(u). �

Recall that a toric Richardson variety in Fln is a Richardson variety which is also a torus-orbit
closure under the left action of torus of diagonal matrices (C∗)n on GLn/B = Fln.

Corollary 4.5. If Xv
u is a toric Richardson variety, then so is Xεi(v)

εi(u)
.

Proof. For (t1, . . . , tn) ∈ (C∗)n this follows because (t1, . . . , tn) ·Ψi(V) = Ψi((t2, . . . , tn)V). �

4.2. A geometric realization of T. To realize Ti geometrically we will compose the geometric
realization of Ri from the previous subsection with π−1

i πi, as in the BGG realization of ∂i. This
happens to interact well with the Richardson varieties produced in the previous subsection.

Proposition 4.6. Xεi+1(v)
εi(u)

= π−1
i πi

(
Xεi+1(v)

εi(u)

)
and πi

(
Xεi+1(v)

εi(u)

)
= πi

(
Xεi(v)

εi(u)

)
Proof. By Fact 4.2 we have Xεi+1(v) = Xεi(v)si = π−1

i πiXεi(v) because i 6∈ Des(ε i(v)). Since Xεi(u) =

w0,nXw0,nεi(u), where w0,n denotes the longest permutation in Sn, we may apply Fact 4.2 again to
conclude that Xεi(u) = π−1

i πiXεi(u) because i 6∈ Des(ε i(u)).
Combining these, we obtain the equality

π−1
i πiX

εi(v)
εi(u)

= Xεi(u) ∩ π−1
i πiXεi(v) = Xεi(u) ∩ Xεi+1(v) = Xεi+1(v)

εi(u)
,

where we note that the first equality follows just from the πi-saturatedness π−1
i πiXεi(u) = Xεi(u).

This implies both desired statements. �

Theorem 4.7. For f ∈ Poln and 1 ≤ i ≤ n− 1 we have

deg
X

εi+1(v)
εi(u)

f = degXv
u
Ti f .(4.1)

Proof. We have

deg
X

εi+1(v)
εi(u)

f = deg
πi(X

εi+1(v)
εi(u)

)
∂i f = deg

πi(X
εi(v)
εi(u)

)
∂i f = deg

X
εi(v)
εi(u)

∂i f = degXv
u
Ri∂i f = degXv

u
Ti f .

Here the first and third equalities follow from Fact 4.1, the second equality follows from Propo-
sition 4.6, the fourth equality follows from Theorem 4.4, and the fifth equality follows from the
identity Ri∂i = Ti. �



22 PHILIPPE NADEAU, HUNTER SPINK, AND VASU TEWARI

Note that πi

(
Xεi+1(v)

εi(u)

)
= πi

(
Xεi(v)

εi(u)

)
= (πi ◦Ψi)(Xv

u), and πi ◦Ψi|Xv
u

is an isomorphism onto its

image since Ψi is a closed embedding and πi : Xv
u → πi

(
Xεi(v)

εi(u)

)
is an isomorphism. This allows

us to make the following definition.

Definition 4.8. For u ≤ v permutations in Sn−1 and 1 ≤ i ≤ n− 1, let Φi : Xεi+1(v)
εi(u)

→ Xv
u denote

the composite map (πi ◦Ψi)
−1 ◦ πi.

Theorem 4.9. For u ≤ v permutations in Sn−1 and 1 ≤ i ≤ n − 1, the map Φi : Xεi+1(v)
εi(u)

→ Xv
u

realizes Xεi+1(v)
εi(u)

as the P1-bundle P(C⊕ (V (n−1)
i /V (n−1)

i−1 )) on Xv
u.

Proof. The map πi makes Xεi+1(u)
εi(v)

a P1-bundle P
(
V (n)

i+1/V (n)
i−1

)
over πi

(
Xεi(v)

εi(u)

)
. Under the isomor-

phism πi ◦Ψi : Xv
u
∼= πi

(
Xεi(v)

εi(u)

)
, we see that V (n)

i+1/V (n)
i−1 corresponds to the vector bundle

Ψ∗i π∗i

(
V (n)

i+1/V (n)
i−1

)
= Ψ∗i

(
V (n)

i+1/V (n)
i−1

)
=
(

C⊕ V (n−1)
i

)
/
(
{0} ⊕ V (n−1)

i−1

)
= C⊕

(
V (n−1)

i /V (n−1)
i−1

)
.

�

Corollary 4.10. If Xv
u is a toric Richardson variety, then so is Xεi+1(v)

εi(u)
.

Proof. The action of (C∗)n on a triple (x, a, s) where x ∈ Xεi(v)
εi(u)

, a ∈ C and s ∈
(
V (n−1)

i /V (n−1)
i

)
x

is
given by

(t1, . . . , tn) · (x, a, s) = ((t2, . . . , tn) · x, t1 · a, (t2, . . . , tn) · s).

For generic x, we can use t2, . . . , tn to move x to any point in the base and then for a, s 6= 0 we can
use t1 to change the fiber to any a′, s′ 6= 0. �

5. Ω-RICHARDSON VARIETIES

We will want to iterate the results of the previous section, which will involve iteratively apply-
ing the maps (u, v) 7→ (ε j(u), ε j(v)) and (u, v) 7→ (ε j(u), ε j+1(v)) for varying j. Let S∞ =

⋃
Sn

denote the group of permutations of {1, 2, . . .} that fix all but finitely many elements, with Sn

identified with the subgroup fixing all i ≥ n + 1. Then we may view ε i : S∞ → S∞.

Definition 5.1. For Ω ∈ RTSeq we define u(Ω), v(Ω) ∈ S∞ recursively as follows. If |Ω| = 0 then
we set u = v = id. If |Ω| ≥ 1 then writing Ω = Ω′x, we define

(u(Ω), v(Ω)) =

(ε ju(Ω′), ε jv(Ω′)) if x = rj

(ε ju(Ω′), ε j+1v(Ω′)) if x = tj.

Appendix B collects relevant combinatorial results about u(Ω) and v(Ω). We shall recall them
wherever necessary.
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It is immediate that for Ω ∈ RTSeqn the permutations u(Ω) and v(Ω) are in Sn. We are now
ready to introduce a class of Richardson varieties X(Ω) which will play the quasisymmetric ana-
logue of the Bott–Samelson varieties.

Definition 5.2. For Ω ∈ RTSeqn we define the Ω-Richardson variety to be

X(Ω) := Xv(Ω)
u(Ω)
⊂ Fln.

The dimension of this variety is given by

dim X(Ω) = `(v(Ω))− `(u(Ω)) = |Ω|t .(5.1)

By Proposition B.4, the minimal dimension X(Ω) are in bijection with the T-fixed points Xu
u of

Fln, and the maximal dimension X(Ω), i.e. those with |Ω|t = n− 1, are exactly those of the form
Xucn

u for u ∈ Sn satisfying u(n) = n and cn = n1 · · · (n− 1) the backwards long cycle, which are
precisely the toric Richardson varieties considered in [24, 36].

Recall that for any f ∈ H•(Fln), the Bott–Samelson resolution BS(i1, . . . , ik) → Xw has the
property that degBS(i1,...,ik)

f = degBS(i1,...,ik−1)
∂ik f , and

degXw f = degBS(i1,...,ik)
f = degBS(i1,...,ik−1)

∂ik f = · · · = degBS() ∂i1 · · · ∂ik f = ev0 ∂w f .

Theorem 5.3 (Theorem 2.2). Let f (x1, . . . , xn) ∈ H•(Fln) and Ω ∈ RTSeqn. Then writing Ω = Ω′x,
the following are true.

(1) If x = ri then X(Ω) ∼= X(Ω′) and degX(Ω) f = degX(Ω′) Ri f .
(2) If x = ti then X(Ω) → X(Ω′) is a P1-bundle given as a projectivization P(C⊕ L), and

degX(Ω) f = degX(Ω′) Ti f .

Furthermore

degX(Ω) f (x1, . . . , xn) = Πn
Ω f .

Proof. The result follows from Theorem 4.4 and the second result follows from Theorem 4.9 and
Theorem 4.7. The final result follows from iteratively applying these first two results. �

Recall that an algebraic variety X is called a Bott manifold if there is a sequence of maps (called
a Bott tower)

Xm → Xm−1 → · · · → X0 = {pt}

where Xi = P1(C⊕L) for some line bundle L on Xi−1 [21, §2]. Bott manifolds are always smooth
toric varieties whose moment polytopes are combinatorial cubes [40] (i.e. a polytope whose face
poset is isomorphic to the face poset of a cube). We will now see that X(Ω) are in fact Bott man-
ifolds, and are smooth torus-orbit closures under the T-action on Fln. The following result may
also be deduced from [34] on smooth toric Bruhat interval polytopes, but it will be important for
us to identify explicitly the way the Bott manifold structure is realized on X(Ω).
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Theorem 5.4. The Ω-Richardson variety X(Ω) is a Bott manifold and a smooth toric Richardson
variety.

Proof. Let Ω = x1 · · · xn ∈ RTSeqn and Ωi = x1 · · · xi. Then by Theorem 5.3 there are maps

X(Ω) = X(Ωn)→ X(Ωn−1)→ · · · → X(Ω0) = {pt}

such that each map is either an isomorphism or realizes X(Ωi) = P(C⊕L) for some line bundle
L on X(Ωi−1), which shows that it is a Bott manifold. Furthermore, iteratively applying Corol-
lary 4.5 and Corollary 4.10 to this sequence shows that X(Ω) is in fact a smooth torus-orbit under
the T-action on Fln. �

We now show that the sub-torus-orbit closures in X(Ω) are themselves of the form X(Ω′).

Theorem 5.5. The torus-orbit closures contained inside X(Ω) are exactly X(Ω′) with Ω′ obtained
by replacing some subset of the ti appearing in Ω with either ri or ri+1.

Proof. Because X(Ω) is toric, by [56] the sub-torus-orbit closures are the Richardson varieties con-
tained in X(Ω). These are the X(Ω′) as described in Corollary B.7. Each of these is smooth since
X(Ω) is smooth, and the moment polytope of X(Ω′) is a face of the moment polytope of X(Ω)

which is therefore a combinatorial cube, so the result follows. �

We now give a more concrete interpretation of the Ω-Richardson varieties by describing a
parametrization of the open torus orbit in X(Ω), which for the maximal dimension X(Ω) recovers
the description from [36, Section 4.2].

Definition 5.6. For Ω ∈ RTSeqn, let M(Ω) be an n× n matrix filled with 0, 1, ∗ defined recursively

as follows. Set M(∅) to be the unique 0× 0 matrix, and for M(Ω′) =
[
v1 · · · vn−1

]
let

M(Ω′ri) =

[
0 · · · 0 1 0 · · · 0
v1 · · · vi−1 0 vi · · · vn−1

]
,

M(Ω′ti) =

[
0 · · · ∗ 1 0 · · · 0
v1 · · · vi 0 vi+1 · · · vn−1

]
.

Example 5.7. The matrices for r1, r1t1, r1t1t1, r1t1t1r2 and r1t1t1r2t4 are

[
1
]

,

[
∗ 1
1 0

]
,

∗ 1 0
∗ 0 1
1 0 0

 ,


0 1 0 0
∗ 0 1 0
∗ 0 0 1
1 0 0 0

 ,


0 0 0 ∗ 1
0 1 0 0 0
∗ 0 1 0 0
∗ 0 0 1 0
1 0 0 0 0

 .

Theorem 5.8. The open torus in X(Ω) is parametrized by replacing the |Ω|t-many ∗ that appear
in M(Ω) with elements of C∗.
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Proof. Assume by induction that the open torus in X(Ω′) is given by this description, and let
A =

[
w1 · · · wn−1

]
be a matrix representing a point in this open torus-orbit. Then[

0 · · · 0 1 0 0 · · · 0
w1 · · · wi−1 0 wi wi+1 · · · wn−1

]
represents Ψi(A) so applying this for all points in the open torus of X(Ω′) shows that the new
open torus in X(Ω′ri) is M(Ω′ri) as desired. Applying π−1

i πi to Ψi(A) corresponds to replacing
the i’th and (i + 1)’st column of this matrix with two linear combinations. In GLn/B two matrices
are the same if we can obtain one from the other by scaling columns and adding multiples of one
column to a future column. Doing this we can put every such matrix either into the form[

0 · · · 0 ∗ 1 0 · · · 0
w1 · · · wi−1 wi 0 wi+1 · · · wn−1

]
or

[
0 · · · 0 1 0 0 · · · 0

w1 · · · wi−1 0 wi wi+1 · · · wn−1

]
with ∗ ∈ C. The first matrix with ∗ = 0 is gives a point in the boundary torus-orbit closure
X(Ω′ri+1), the second matrix gives a point in the boundary torus-orbit closure X(Ω′ri), so the
remaining points where ∗ ∈ C∗ in the first matrix lie in the open torus-orbit of X(Ω′ti). �

From M(Ω) one can read off the sequence in Ω ∈ RTSeqn by reversing the recursive pro-
cess used to build M(Ω). The following non-recursive characterization of the matrices M(Ω) is
straightforward to show.

Theorem 5.9. A square matrix filled with 0, 1, ∗ is of the form M(Ω) if and only if

• The 1’s form a permutation matrix
• There is at most one ∗ per row.
• Every ∗ appears above the 1 in its column and to the left of the 1 in its row.
• For every 0 between ∗ and 1 in a row, all the entries below this 0 are also 0.


0 0 0 ∗ 1
0 1 0 0 0
∗ 0 1 0 0
∗ 0 0 1 0
1 0 0 0 0



1 2 3 4 5

1 2 3 4 5

FIGURE 5. Recovering F̂(Ω) from M(Ω)

We conclude by describing how to directly recover the nested forest F̂(Ω) from M(Ω). The
forest F̂(Ω) has internal nodes the nonzero entries of M(Ω) and leaves {1, . . . , n}. For each row
containing an ∗ and a 1, we do the following. Connect the 1 and ∗, and then connect each of these
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to the nearest ∗ above them in the same column provided it exists; otherwise connect to the leaf i
where i is the column number. This is illustrated in Figure 5 using the last matrix in Example 5.7.

6. THE QUASISYMMETRIC SCHUBERT CYCLES X(F̂) AND BOTT MANIFOLD STRUCTURES

We now define the quasisymmetric Schubert cycles associated to F̂ ∈ F̂orn. In order to define
them, we will need to prove the following theorem.

Theorem 6.1. If F̂ ∈ F̂orn and Ω, Ω′ ∈ Trim(F̂), then

u(Ω)−1X(Ω) = u(Ω′)−1X(Ω).

Given this theorem, the following is well-defined.

Definition 6.2. We define the quasisymmetric Schubert cycle associated to F̂ ∈ F̂orn to be X(F̂) =

u(Ω)−1X(Ω) for any Ω ∈ Trim(F̂).

Proof of Theorem 6.1. First, note that the set of row vectors in M(Ω) is determined by F̂. Indeed,
there is a row with exactly one 1 in position i exactly when there is a tree in F̂ whose leftmost leaf is
i, and there is a row with a ∗ in position i and a 1 is position j if there is an internal node v with the
property that the leftmost leaf descendent of its left child vL is i and the leftmost leaf descendent
of its right child vR is j.

By induction, v(Ω) is the permutation matrix obtained by selecting the rightmost entry from
each row of M(Ω). Therefore v(Ω)−1X(Ω) is obtained by permuting the rows in the matrix
model in the unique way so that the rightmost entries lie on the main diagonal, which shows
v(Ω)−1X(Ω) = v(Ω′)−1X(Ω′).

By induction, u(Ω)−1v(Ω) is the product of the backwards cycles on the support sets of the
trees in F̂. Therefore u(Ω)−1v(Ω) = u(Ω′)−1v(Ω′), and so u(Ω)−1X(Ω) = u(Ω′)−1X(Ω′) as
desired. �

The following is analogous to the fact that for f ∈ H•(Fln) we have degXw f = ev0 ∂w f .

Corollary 6.3. For F̂ ∈ F̂orn, we have

degX(F̂) f = Πn
F̂ f .

Proof. If Ω ∈ Trim(F), then for any f ∈ H•(Fln) we have degX(Ω) f = Πn
Ω f = Πn

F̂
f . �

Fix some Ω = x1 · · · xn ∈ Trim(F̂), and let Ωi = x1 · · · xi. Then under the isomorphism X(Ω)→
X(F̂), if F ∈ H•(Fln) we can compute using the Bott manifold structure on X(Ω)

degX(F̂) f = degX(Ωn)
f = degX(Ωn−1)

up(xn) f = · · · = degX(Ω0)
up(x1) · · ·up(xn) f = Πn

F̂ f .

In this way, the isomorphisms X(Ω)→ X(F̂) play an analogous role as the Bott–Samelson resolu-
tions play for Schubert varieties outlined in Section 2.
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The fundamental classes of the quasisymmetric Schubert cycles X(F̂) satisfy linear relations
among them, but by passing to the subset indexed by indexed forests Forn ⊂ F̂orn we obtain a
duality with the family of forest polynomials.

Theorem 6.4. For F ∈ Forn ⊂ F̂orn and f ∈ Poln we have degX(F) f = ev0 TF f . In particular,

degX(F) PG = δF,G,

i.e. the forest polynomials {PG | G ∈ Forn} ⊂ H•(Fln) are Kronecker dual to the fundamental
classes {[X(F)] | F ∈ Forn} ⊂ H•(Fln).

Proof. Because F ∈ Forn, we can express F = F̂(Ω) for Ω = rn−∑ ci
1 tc1

1 · · · t
ck
k where F = 1c12c2 · · · kck .

This means that ev0 ΠΩ = ev0 r
n−∑ ci
1 tc1

1 · · · t
ck
k = ev0 TF. Therefore

degX(F) PG = ev0 TFPG = δF,G. �

We now show that the remaining fundamental classes are nonnegative linear combinations of
the fundamental classes associated to the non-nested forests.

Theorem 6.5. For Ĥ ∈ F̂orn, we have

[X(Ĥ)] = ∑
F∈Forn

aF[X(F)] ∈ H•(Fln)

for nonnegative integers aF.

Proof. Let Ω ∈ RTSeqn have F̂(Ω) = Ĥ so that [X(Ω)] = [X(Ĥ)]. Note that

TiRi+1 = RiTi+1 + Ri+1Ti.

If tiri+1 in Ω and Ω1, Ω2 are the sequences where these two letters are replaced with riti+1 and
ri+1ti respectively, then Ω1, Ω2 ∈ RTSeqn and Πn

Ω = Πn
Ω1

+Πn
Ω2

. This implies [X(Ω)] = [X(Ω1)] +

[X(Ω2)] by Poincaré duality. Applying this repeatedly allows us to move all ri to the left of all tj

to express

[X(Ω)] = ∑ aΩ′ [X(Ω′)]

where each Ω′ = ri1 · · · riktj1 · · · tj` , and so F̂(Ω′) ∈ Forn. �

7. THE Ω-FLAG MANIFOLD

We are now ready to define our quasisymmetric analogue of the flag variety. Rather than take
the union of the X(F̂), which turns out to be a much more combinatorially opaque object as a toric
complex, we instead take the union of the X(Ω) with Ω ∈ RTSeqn, each of which as we have
already shown is isomorphic to some X(F̂).
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Definition 7.1. We define the Ω-flag variety to be

HHMPn =
⋃

Ω∈RTSeqn

X(Ω) ⊂ Fln.

This also has a natural intrinsic recursive characterization.

Theorem 7.2. We have HHMP1 = Fl1, and for n > 1 we have HHMPn is the set of all V ∈ HHMPn

such that there is W ∈ HHMPn−1 and i ∈ {1, . . . , n− 1} such that Vj = {0} ⊕Wj for j < i and
Vj = C⊕Wj−1 for j > i.

Proof. This recursive description claims that HHMPn = Φ1(HHMPn−1) ∪ · · · ∪Φn−1(HHMPn−1)

where Φi is the operator from Definition 4.8. By induction, it remains to prove⋃
1≤ij≤j

Φin−1 · · ·Φi1(Fl1) = HHMPn.

Because Ψ1(Fl0) = Fl1, by the recursive construction of the X(Ω), we see that the left hand side is
the union of all X(Ω) with Ω ∈ RTSeqn of the form r1ti1 · · · tin−1 . But by Theorem 5.5, every other
X(Ω′) with Ω′ ∈ RTSeqn is a subvariety of the X(Ω) with Ω ∈ RTSeqn obtained by replacing
each xi = rj beyond the first one with either tj or tj−1 so that the index lies in {1, . . . , i}, so we
conclude. �

Example 7.3. HHMP1 = Fl1 is a point, and HHMP2 = Fl2.
For V = (0 ⊂ V1 ⊂ V2 ⊂ C3) ∈ Fl3, we have V ∈ HHMP3 if V2 contains Ce1 or if V1 is contained
in Ce2 ⊕ Ce3. Note that both can be true, and this occurs precisely for flags with V1 ∈ Ce2 ⊕ Ce3

and V2 = Ce1 ⊕ V1.

7.1. A cubical complex. We now describe the structure of the toric complex HHMPn. In [24] it
was shown that the images of the top-dimensional X(Ω) appearing in HHMPn under the moment
map Fln → Rn/〈(1, . . . , 1)〉 give a subdivision of the permutahedron

Permn := conv{w · (n, . . . , 1) | w ∈ Sn}

into combinatorial cubes.
As a consequence of the RTSeqn-encoding for the combinatorial cubes appearing in this subdi-

vision, this subdivision is combinatorially isomorphic to a unit cube subdivision of a particular
cuboid (a fact that does not appear to have been previously observed).

Definition 7.4. For Ω = x1 · · · xn ∈ RTSeqn, let �Ω be defined as the box Y2 × · · · ×Yn where

Yi =

[j, j + 1] xi = tj

{j} xi = rj.
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'

FIGURE 6. The HHMP subdivision and the unit cube subdivision for n = 4

Theorem 7.5. There is a face preserving bijection from the image of HHMPn under the moment
map to the unit cube subdivision of the (n − 1)-dimensional cuboid [1, 2] × [1, 3] × · · · × [1, n],
mapping the polytope Pv(Ω)

u(Ω)
to the box �Ω.

Proof. For a toric variety X, the faces of the moment polytope are the images of the sub-torus-orbit
closures of X. For any X(Ω) with Ω ∈ RTSeqn, these sub-torus-orbit closures were identified in
Theorem 5.5 to be the X(Ω′) with Ω′ obtained by replacing some subset of the tj with either rj or
rj+1. By construction this happens precisely when �Ω′ ⊂ �Ω, and we conclude. �

See Figure 6 demonstrating the HHMP-subdivision and the unit cube subdivision for n = 4.

7.2. Quasisymmetric coinvariants in H•(HHMPn). We now prove the following.

Theorem 7.6. [Theorem A] The image of H•(Fln) in H•(HHMPn) under the natural restriction
map is isomorphic to QSCoinvn.

First, we show that the normalization H̃HMPn of HHMPn knows QSCoinvn. Because X(Ω) are
smooth, H̃HMPn is the disjoint union ⊔

Ω∈RTSeqn
|Ω|t=n−1

X(Ω).

Proposition 7.7. The image of H•(Fln) in H•(H̃HMPn) is isomorphic to QSCoinvn.

Proof. The statement is equivalent to showing that QSym+
n is the kernel of the map

Z[x1, . . . , xn]→ ∏
Ω∈RTSeqn
|Ω|t=n−1

H•(X(Ω)).

By the Minkowski weight description of the cohomology ring of smooth toric varieties [18], a
cohomology class of degree k vanishes if and only if its restriction to every sub-torus-orbit closure
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is 0. Indeed, [18, Proposition 1.1] tells us that this cohomology ring is generated by the sub-torus-
orbit closures. Since the sub-torus-orbit closures occurring in some X(Ω) are of the form X(Ω′)
with Ω′ ∈ RTSeqn and degX(Ω′) f = ΠΩ′ f for f ∈ Z[x1, . . . , xn], we have reduced to showing that

f ∈ QSym+
n ⇐⇒ Πn

Ω′ f = 0 for all Ω′ ∈ RTSeqn.

The forward direction follows because, as mentioned in Section 2, the operator ΠΩ′ descends to
QSCoinvn. For the reverse direction we note that ΠF̂ f = 0 for all F̂ ∈ F̂orn, so we apply this fact
to the subset of indexed forests Forn ⊂ F̂orn. By Corollary 3.23 we have ev0 TF = Πn

F for F ∈ Forn

and we conclude. �

To show that H•(HHMPn) contains the quasisymmetric coinvariants, we will show that

H•(HHMPn)→ H•(H̃HMPn)

is an injection. This is a topological statement, and we show this using a spectral sequence.

Definition 7.8. Let Fn be the topological space obtained by gluing n copies of the sphere P1 in
a line. Formally, if we define points si for 1 ≤ i ≤ n − 1 belonging to the i’th sphere and ti for
1 ≤ i ≤ n− 1 belonging to the (i + 1)’st sphere, with si+1 6= ti for 2 ≤ i ≤ n− 1, then we define F
to be the quotient

F = P1 t · · · tP1︸ ︷︷ ︸
n

/ ∼

by the equivalence relation ∼ identifying si with ti.

Proposition 7.9. Suppose that X is a (not necessarily reducible) algebraic variety with trivial first
fundamental group π1(X) and all even dimensional cohomology groups. Suppose Y1, . . . , Yk → X
are P1-bundles with distinguished sections si : X → Yi for i = 1, . . . , k− 1 and ti : X → Yk+1 for
i = 1, . . . , k− 1 such that si+1 and ti are disjoint for 2 ≤ i ≤ n− 1. Let Y be the space obtained by
identifying the sections si and ti for each 1 ≤ i ≤ n− 1. Then the pullback map

H•(Y)→ H•(Y1 t · · · tYk)

is an injection.

Proof. Y → X is a fiber bundle with fiber Fk, which has H0(F) = Z and H2(F) = Zk. Because
π1(X) = 0 there are no nontrivial local systems on X, so Hi(X; H j(F)) = 0 if i, j are not both even,
so the first page of the Serre spectral sequence degenerates and we have as abelian groups⊕

i,j

Hi(X; H j(F))) ∼= H•(Y).

The same reasoning for Y1 t · · · tYk → X shows that⊕
i,j

Hi(X; H j(S2 t · · · t S2))) ∼= H•(Y).
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Finally, the map H•(Y) → H•(Y1 t · · · t Yk) is induced by the natural maps Hi(X; H j(F)) →
Hi(X; H j(P1 t · · · tP1)). Because H j(F) and H j(P1 t · · · tP1) are free abelian groups, this map
is given by the composite

Hi(X; H j(F)) ∼= Hi(X)⊗ H j(F)→ Hi(X)⊗ H j(S2 t · · · t S2) ∼= Hi(X; H j(S2 t · · · t S2)),

and the middle map is an injection because H j(F) ↪→ H j(S2 t · · · t S2) is an injection of free
abelian groups. �

We are now ready to prove Theorem 7.6.

Proof of Theorem 7.6. By Proposition 7.7, it suffices to show that the pullback map H•(HHMPn)→
H•(H̃HMPn) is an injection. First we show that π1(HHMPn) is trivial by induction. For 1 ≤ i ≤
n− 1 let

Yi =
⋃

Ω=x1···xn with xn∈{ri ,ti ,ri+1}
X(Ω),

and note that this is a P1-bundle over HHMPn−1 by the map (Ψi ◦ πi)
−1πi, which has distin-

guished sections coming from Ψi and Ψi+1. This realizes HHMPn as an Fn−1-bundle over HHMPn−1.
As π1(Fn−1) is trivial we have by the long exact sequence on homotopy groups that π1(HHMPn) =

π1(HHMPn−1), which is trivial by the inductive hypothesis.
Now we prove that H•(HHMPn)→ H•(H̃HMPn) is an injection by induction. By the inductive

hypothesis we have an injection H•(HHMPn−1) ↪→ H•(H̃HMPn−1), so because HHMPn−1 is a
disjoint union of smooth projective varieties we have that the even-dimensional cohomology of
HHMPn−1 vanishes.

The variety HHMPn arises as the Y from Proposition 7.9 applied to the P1-bundles Y1, . . . , Yn−1 →
Y, so we conclude that H•(HHMPn)→ H•(Y1 t · · · tYn−1) is an injection. Let

Ỹi =
⊔

Ω=x1···xn with xn∈{ri ,ti ,ri+1}
X(Ω).

Note that Ỹi is the P1-bundle Yi → HHMPn−1 pulled back along the normalization H̃HMPn−1 →
HHMPn−1. By induction H•(HHMP) ↪→ H•(H̃HMPn−1) is an injection on cohomology, so by the
projective bundle formula we have the pullback map H•(Yi) → H•(Ỹi) is an injection. Therefore
we have the composite pullback map

H•(HHMPn) ↪→ H•(Y1 t · · · tYn) ↪→ H•(Ỹ1 t · · · t Ỹn) ↪→ H•(H̃HMPn),

is an injection as desired. �
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8. APPLICATIONS TO GENERALIZED LITTLEWOOD–RICHARDSON COEFFICIENTS

In this section we show the combinatorial aspects of Theorem 2.2 and its application to general-
ized LR coefficients cv

u,w by recasting various coefficients of interest in algebraic combinatorics as
generalized LR coefficients. Recall that the cv

u,w are defined by the equation

SuSw = ∑
v

cv
u,wSv,

or equivalently as

cv
u,w = ev0 ∂v(SuSw).

We have ev0 ∂v(Su f ) = 0 if u 6≤ v in the Bruhat order on S∞, so in particular in this case cv
u,w = 0

for all w. Coming up with a combinatorial rule for the cv
u,w is a major open problem in combinato-

rial algebraic geometry; see [19, 25, 26, 32, 29, 30, 51] for various results in special cases.
If we want to show combinatorially for fixed u ≤ v that cv

u,w is nonnegative for all w, then this
is equivalent to showing combinatorially that the operator

f 7→ ev0 ∂v(Su f )

is nonnegative on Schubert polynomials. We will show for (u, v) = (u(Ω), v(Ω)) for Ω ∈ RTSeq
that we can combinatorially realize this nonnegativity by a recursive procedure, and then give
certain pairs of (u, v) where cv

u,w computes interesting combinatorial invariants of Sw. As we shall
need them we record here the twisted Leibniz relations satisfied by the divided difference operators:

∂i( f g) = f ∂i(g) + ∂i( f )(si · g)

for all f , g ∈ Pol, so in particular if f is symmetric in variables {xi, xi+1} then ∂i( f g) = f ∂i(g).
The results in this section rest on the following proposition. We shall give two proofs, one

geometric and the other combinatorial. The latter is to emphasize the fact that the generalized LR
coefficient computation of this section can be made entirely combinatorial.

Proposition 8.1. For u, v ∈ S∞ we have

ev0 ∂ε j(v)(Sε j(u) f ) = ev0 ∂v(SuRj f ),(8.1)

ev0 ∂εi+1(v)(Sεi(u) f ) = ev0 ∂v(SuTi f ).(8.2)

Furthermore, for Ω ∈ RTSeq we have

ev0 ∂v(Ω)(Su(Ω) f ) = ev0 ΠΩ f .(8.3)

Geometric Proof of Proposition 8.1. Because ev0 ∂v(Su f ) = degXv
u

f , these results follow directly from
Theorem 5.3. �
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Combinatorial Proof of Proposition 8.1. First, we establish (8.1). For j = 1 we first note that if v =

si1 · · · sik is a reduced word then ε1(v) = si1+1 · · · sik+1 is a reduced word for ε1(v). Therefore
because ∂iR1 = R1∂i+1, we have ∂vR1 = R1∂ε1(v). Furthermore, because Su is characterized by
the property that ev0 ∂vSu = δu,v and ev0 ∂vR1Sε1(u) = ev0 R1∂ε1(v)Sε1(u) = δε1(u),ε1(v) = δu,v we
conclude that R1Sε1(u) = Su. Therefore,

ev0 ∂v(Su(R1 f )) = ev0 ∂v(R1(Sε1(u) f ) = ev0 R1∂ε1(v)(Sε1(u) f ) = ev0 ∂ε1(v)(Sε1(u) f ).

Now, assume the result for j, we will show the result for j + 1 ≥ 2. Since ε j+1(v) = ε j(v)sj we
know that ∂ε j+1(v) = ∂ε j(v)∂j. Thus we compute first that

ev0 ∂ε j+1(v)(Sε j+1(u) f ) = ev0 ∂ε j(v)∂j(Sε j+1(u) f ).

Now applying the twisted Leibniz rule to the right-hand side we get

ev0 ∂ε j+1(v)(Sε j+1(u) f ) = ev0 ∂ε j(v)((∂jSε j+1(u)) sj f ) + ev0 ∂ε j(v)(Sε j+1(u)∂j f ).

Now consider the second term on the right-hand side. Since ε j(v) 6≥ ε j+1(u) (as j = (ε j(v))−1(1) <
(ε j+1(u))−1(1) = j + 1) we have the vanishing

ev0 ∂ε j(v)(Sε j+1(u)∂j f ) = 0.

For the first term, using ε j+1(u) = ε j(u)sj, we know that ∂jSε j+1(u) = Sε j(u). Thus it remains to
compute ev0 ∂ε j(v)(Sε j(u) sj f ). By our inductive hypothesis we have

ev0 ∂ε j(v)(Sε j(u) sj f ) = ev0 ∂v(Su Rjsj f ) = ev0 ∂v(Su Rj+1 f ),

as desired.
Now we establish (8.2). Like before we have ∂εi+1(v) = ∂εi(v)∂i and so we get

ev0 ∂εi+1(v)(Sεi(u) f ) = ev0 ∂εi(v)∂i(Sεi(u) f )

Since Sεi(u) is symmetric in variables {xi, xi+1}, the twisted Leibniz rule simplifies to give

ev0 ∂εi+1(v)(Sεi(u) f ) = ev0 ∂εi(v)(Sεi(u) ∂i f ) = ev0 ∂v(SuRi∂i f ) = ev0 ∂v(SuTi f ),

where the last two equalities use (8.1) and Ti = Ri∂i respectively.
Finally, iterating (8.1) and (8.2) yields (8.3), thereby concluding the proof. �

Theorem 8.2. For Ω ∈ RTSeq we have

cv(Ω)
u(Ω),w = ev0 ΠΩSw

Proof. This follows from Proposition 8.1 as cv
u,w = ev0 ∂v(SuSw). �
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We now show that these LR coefficients are combinatorially nonnegative with an explicit com-
binatorial rule for computing them. To do this, we remind the reader of Sottile’s Pieri rule for the
Schubert polynomial expansion of x1 · · · xkSw [53, Theorem I] phrased in terms of the k-Bruhat
order introduced by Bergeron–Sottile [6, Section 3].

Fix k a positive integer. We say that u is covered by v in k-Bruhat order if v = usij if i ≤ k < j
and `(v) = `(u) + 1, in which case we write u ≺v(j) v. Here sij denotes the transposition swapping
i and j. A saturated chain u ≺i1 u1 ≺ · · · ≺ip up = v in k-Bruhat order is said to be decreasing if

i1 > · · · > ip. If a decreasing chain from u to v exists then it is unique – we write u
ck,p→ v and write

ck as a shorthand for ck,k. Sottile [53] established that

(8.4) cv
s1···sk ,w =

{
1 w

ck−→ v
0 otherwise.

Example 8.3. Let w = 15243 and k = 3, which means s1s2s3 = 2341 in one line notation. One can
check that

S2341S15243 = S263415 +S264135,

and the terms on the right-hand come from the following decreasing chains in 3-Bruhat order:
152436 ≺6 162435 ≺4 164235 ≺2 264135 and 152436 ≺6 162435 ≺3 163425 ≺2 263415.

Equation 8.4 was used [6] in the computation of the Schubert expansion of RiSw – we rederive
this result emphasizing that by following the combinatorial proof above one could avoid all geo-
metric considerations. From this result we also compute the Schubert expansion of TiSw.

Proposition 8.4. Given a positive integer i and w ∈ S∞ we have

RiSw = ∑
w

ci−1→ εi(v)

Sv(8.5)

TiSw =δi∈Des(w) ∑
wsi

ci−1→ εi(v)

Sv(8.6)

Proof. Noting that Sid = 1 and ε i(id) = s1 · · · si−1, we compute the coefficient of Sv in the Schu-
bert expansion of RiSw as

ev0 ∂vRiSw = ev0 ∂εi(v)(Sεi(id)Sw) = cεi(v)
s1···si−1,w.

where the first equality follows by Proposition 8.1. Since Ti = Ri∂i we infer (8.6) from (8.5). �

Example 8.5. Take w = 146352 and i = 4. We get the following expansions

R4Sw = S346215, T4Sw = S246315

from the decreasing chains 1465327 ≺7 1475326 ≺5 1574326 ≺4 4571326 = ε4(346215) and
1463527 ≺7 1473526 ≺5 1573426 ≺3 3571426 = ε4(246315) respectively.
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Before stating the central result in this section, we recall here that the basis of slide polynomials
was introduced and studied in Assaf–Searles [2]. This family of polynomials is precisely the family
that appears in the seminal work of Billey–Jockusch–Stanley [10] describing Schubert polynomials
combinatorially via reduced pipe dreams. One consequence of our next result is a new proof of
the nonnegativity of the slide expansion of Schubert polynomials, which can be considered either
geometric or combinatorial depending on how one reads Proposition 8.1.

Theorem 8.6. [Theorem 2.4] Let w ∈ Sn. The coefficients of

(1) A monomial xc1
1 · · · x

cn
n in the monomial expansion of Sw

(2) A slide polynomial coefficient in the slide polynomial expansion Sw = ∑ aiFi

(3) A forest polynomial coefficient in the m-forest polynomial expansion Sw = ∑ aFP
m
F

are all generalized LR coefficients cv(Ω)
u(Ω),w for some Ω ∈ RTSeqN with N possibly larger than n,

with an explicit combinatorially nonnegative rule for computing them.

Proof. We note that if Ω ∈ RTSeq, if N is sufficiently large then r
N−|Ω|
1 Ω ∈ RTSeqN and

ev0 Π
r

N−|Ω|
1 Ω

= ev0 R
N−|Ω|
1 ΠΩ = ev0 ΠΩ

so it suffices to find such an Ω ∈ RTSeq rather than RTSeqN . Having established the explicit com-
binatorial rules for RiSw and TiSw, we conclude that ΠΩSw, and hence ev0 ΠΩSw, has an explicit
combinatorial rule for computing it. Therefore it remains to show that each of these quantities
can be computed as ev0 ΠΩSw for some Ω. But this follows from results [42] wherein we find
extractors Ω for the families under consideration here. �

9. DIVIDED SYMMETRIZATION

Divided symmetrization (henceforth DS) is the map 〈〉n : Poln → Symn given by

〈 f 〉n = ∑
π∈Sn

π

(
f

∏1≤i≤n−1(xi − xi+1)

)
.(9.1)

It was introduced by Postnikov [52, Section 3] in the context of volume polynomials of permu-
tahedra. This operator was then shown [43, 46] to come up naturally when expressing the class
of the permutahedral toric variety, i.e. the closure T · x of a generic torus orbit in the flag variety
Fln, in terms of Schubert classes. Indeed, by work of Anderson–Tymoczko [1] we know that the
constant term of divided symmetrization computes degT·x f , so by the Kronecker duality between
Schubert polynomials Sw and Schubert cycles Xw we have

[T · x] = ∑
w∈Sn

`(w)=n−1

〈Sw〉n[Xw].(9.2)

The main result of [43] is that 〈 f 〉n for any homogenous polynomial f of degree n− 1 can be com-
puted from the knowledge of the representative in QSCoinvn of f expressed in the distinguished
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monomial basis of Aval–Bergeron–Bergeron [3]. For this purpose forest polynomials were intro-
duced in [48]. We now come full circle and demonstrate how our T operators arise from grouping
terms on the right-hand side of (9.1) appropriately.

In contrast to previous work that has primarily focused on understanding DS in degree n− 1,
we give a formula that works in all degrees and is amenable to combinatorics.

9.1. DS via a generalized trim. For 1 ≤ i ≤ n define the map Ri,n : Poln → Poln by

f (x1, . . . , xn) 7→ f (x1, . . . , xi−1, xn, xi, . . . , xn−1).

It is simply the action of the permutation with a single nontrivial cycle (n, n− 1, . . . , i). Note that
after the specialization xn = 0, we obtain the operator Ri on Poln. The following analogue of Ti is
now natural: For 1 ≤ i ≤ n− 1 define Ti,n : Poln → Poln by

Ti,n( f ) =
Ri+1,n f − Ri,n f

xi − xn
= Ri+1,n∂i f = Ri,n∂i f .

We recall the divided symmetrization operator f 7→ 〈 f 〉n on Poln defined by

〈 f (x1, . . . , xn)〉n = ∑
σ∈Sn

f (xσ(1), . . . , xσ(n))

(xσ(1) − xσ(2)) · · · (xσ(n−1) − xσ(n))
.

For 1 ≤ j ≤ n let cycj,n ∈ Sn be the cycle (n, n− 1, . . . , n− j + 1), and subsequently define the
group algebra element τn := ∑1≤j≤n cycj,n. We then have the following factorization in the group
algebra (over Z) of Sn:

∑
σ∈Sn

σ = τ2τ3 · · · τn.(9.3)

Theorem 9.1. For f ∈ Poln we have

〈 f 〉n = T1,2(T1,3 + T2,3) · · · (T1,n + · · ·+ Tn−1,n) f .(9.4)

In particular, if f is homogenous of degree n− 1 then

〈 f 〉n = T1(T1 + T2) · · · (T1 + · · ·+ Tn−1) f = ∑
F∈Forn
|F|=n−1

|Trim(F)|TF f .

Proof. Let Dn := (x1 − x2)(x2 − x3) · · · (xn−1 − xn). Begin by noting thanks to (9.3) that

〈 f 〉n = τ2τ3 · · · τn

(
f

Dn

)
.(9.5)

Note that τ2 · · · τn−1 only acts on variables x1 through xn−1. Let us consider τn( f /Dn).
Writing τn as ∑1≤j≤n cycj,n, we have

τn

(
f

Dn

)
=

1
Dn−1

(
− R1,n f
(x1 − xn)

+ ∑
2≤i≤n−1

(xi − xi−1)Ri,n f
(xi−1 − xn)(xi − xn)

+
Rn,n f

(xn−1 − xn)

)
.(9.6)
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Rewriting xi − xi−1 as (xi − xn)− (xi−1 − xn) for 2 ≤ i ≤ n− 1 then yields

τn

(
f

Dn

)
=

1
Dn−1

(
− R1,n f
(x1 − xn)

+
n−1

∑
i=2

Ri,n f
(xi−1 − xn)

−
n−1

∑
i=2

Ri,n f
(xi − xn)

+
Rn,n f

(xn−1 − xn)

)
,(9.7)

which given the definition of the operator Ti,n translates to

τn

(
f

Dn

)
=

1
Dn−1

(
∑

1≤i≤n−1
Ti,n( f )

)
.(9.8)

The desired identity (9.4) is obtained by immediate recursion using (9.5).
When deg( f ) ≤ n− 1, then 〈 f 〉n ∈ Z. In particular, setting xn = 0 in (9.8) does not impact the

final result, and so we get

〈 f 〉n = T1(T1 + T2) · · · (T1 + · · ·+ Tn−1) f .(9.9)

To conclude, observe that

T1(T1 + T2) · · · (T1 + · · ·+ Tn−1) = ∑
(i1,...,in−1)

ij≤j

Ti1 · · ·Tik .(9.10)

The set of sequences over which the sum ranges is closed under the relation TaTb = TbTa+1 where
b < a. Furthermore the subset of weakly increasing sequences (i1, . . . , ik) subject to ij ≤ j contains
precisely the trimming sequences for indexed forests F in Forn with |F| = n− 1. It then follows

�(9.11) T1(T1 + T2) · · · (T1 + · · ·+ Tn−1) = ∑
F∈Forn
|F|=n−1

|Trim(F)|TF.

Remark 9.2. Setting ti = xn−i, then the part of the above computation showing

〈 f 〉n = 〈(T1,n + · · ·+ Tn−1,n) f 〉n−1

is in fact exactly the computation one would do using the Atiyah–Bott localization formula to
show that under the projection map π : XPermn−1 → XPermn−2 induced by the map on normal fans
obtained by forgetting the first coordinate, we have π∗ f = (T1,n + · · ·+ Tn−1,n) f . 1

The following corollary generalizes the nonnegativity of aw to higher degree Schuberts.

Corollary 9.3. For any Schubert polynomial Sw ∈ Poln we have 〈Sw〉n is a polynomial with
coefficients that are combinatorially nonnegative.

Proof. It suffices to show that Ti,n applied to Sw is a combinatorially nonnegative combination of
Schubert polynomials. To do this, note that Ti,n = Ri,n∂i so it suffices to show this result for Ri,n.
But this follows from one of the main results of Bergeron–Sottile [7, Theorem 5.1], which expresses

Sw(x1, . . . , xi−1, z, xi, . . .) = ∑ ai,vziSv

1
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for combinatorially nonnegative coefficients ai,v (computed using chains in k-Bruhat order for var-
ious k). �

9.2. Strict positivity of 〈Sw〉n via trims. We use Theorem 9.1 to give a straightforward combi-
natorial proof of the strict positivity 〈Sw〉n > 0 for w ∈ Sn, answering [24, Problem 6.6]. This
strict positivity was established earlier in [46] by expressing 〈Sw〉n as a sum of normalized mixed
Eulerian numbers [52, §16] and using positivity of mixed volumes. A combinatorial proof of non-
negativity was then given in [48] via a parking procedure applied to reduced words of w, but strict
positivity via this method is unclear.

Fix w ∈ Sn with `(w) = n− 1. By Theorem 9.1 we have

(9.12) 〈Sw〉n = ∑
ij≤j

Ti1 · · ·Tin−1Sw.

It suffices to construct a sequence of positive integers i = (i1, . . . , in−1) satisfying ij ≤ j for 1 ≤ j ≤
n− 1 such that TiSw > 0.

Lemma 9.4. For w ∈ Sn, if there is 1 ≤ i ≤ n− 1 such that w−1(1) < i ≤ w−1(n), then the Schubert
expansion of RiSw contains some Sv with v ∈ Sn−1.

Proof. By Proposition 8.4, it suffices to show there is a decreasing chain in the (i− 1)-Bruhat order
for some v ∈ Sn−1 as follows:

w = w0 ≺b1 w1 ≺ · · · ≺bi−1 wi−1 = ε i(v).

We describe how to create this chain.
Let a1, . . . , ai−1 be the numbers w(1), . . . , w(i− 1) written in decreasing order. Since w−1(1) < i,

we must have ai−1 = 1. For 1 ≤ j ≤ i− 1, take

wj := wj−1sajbj(9.13)

where bj is the first number in the list wj−1(i), . . . , wj−1(n) such that aj ≤ bj. The existence of b1

follows because n ∈ {w(i), . . . , w(n)} and the existence of bj is clear for j ≥ 2 because aj−1 ∈
{wj−1(i), . . . , wj−1(n)}. We also have wj−1 ≺bj wj in the (i− 1)-Bruhat order by construction. The
numbers b1, b2, . . . are a decreasing sequence since if bj < bj+1 then bj+1 must have appeared later
than bj in the list wj−1(i), . . . , wj−1(n), so in the list wj(i), . . . , wj(n) we know that aj appears before
bj+1 which contradicts that bj+1 is the first number in this list larger than aj−1.

All transpositions sajbj in (9.13) lie in Sn, so wi−1 ∈ Sn. Additionally, ai−1 = 1 implies wi−1 =

wi−2s(1,wi−1(i)), which means wi−1(i) = 1. Therefore wi−1 = ε i(v) for some v ∈ Sn−1. �

Theorem 9.5. Let w ∈ Sn with `(w) = n − 1. Then there exists a sequence i = (i1, . . . , in−1) of
positive integers satisfying ij ≤ j and TiSw > 0. In particular aw > 0.
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Proof. We claim that there is a descent i ∈ Des(w) such that (wsi)
−1(1) ≤ i ≤ (wsi)

−1(n). Indeed,
because `(w) = n− 1 we know that w−1(1) ≤ w−1(n)− 1. If this is an equality then i = w−1(1)
works. Otherwise w−1(1) < w−1(n) and we can take

• i = w−1(1)− 1 if w−1(1) 6= 1
• i = w−1(n) if w−1(n) 6= n
• Any i ∈ Des(w) if w−1(1) = 1 and w−1(n) = n.

By Lemma 9.4 this implies that TiSw = Ri∂iSw contains a summand Sv with v ∈ Sn−1. Iterating
this produces the desired sequence. �

9.3. q-divided symmetrization. Let ∆n := ∏1≤i<j≤n(xi − xj) and ∆̂q
n := ∏1≤i+1<j≤n(qxi − xj).

Recall from [44, Definition 4.1] the q-DS operator f 7→ 〈 f 〉qn on Poln defined by

〈 f (x1, . . . , xn)〉qn = ∑
σ∈Sn

σ

(
f (x1, . . . , xn) · ∆̂q

n

∆n

)
.

This clearly recovers ordinary DS at q = 1. The first and third authors, by leveraging a connection
[44, Theorem 4.11] between q-DS and coefficient extraction in the q-Klyachko algebra, showed that
several known results involving DS q-deformed rather nicely.

We then have the following result that helps us completely understand q-DS in degree n − 1.
Compare this with the analogous statement in Theorem 9.1.

Theorem 9.6. For f ∈ Poln homogenous of degree n− 1 we have

〈 f 〉qn = T1(T1 + qT2) · · · (T1 + qT2 + · · ·+ qn−2Tn−1) f .

Proof. Using (9.3) again we may write

〈 f 〉qn = τ2τ3 · · · τn

(
f · ∆̂q

n

∆n

)
(9.14)

We have

(9.15)

τn

(
f · ∆̂q

n

∆n

)
=

∆̂q
n−1

∆n−1

( R1,n f
xn − x1

n−1

∏
i=2

qxn − xi

xn − xi
+

n−1

∑
j=2

(qxj−1 − xj)Rj,n f
(xj−1 − xn)(xn − xj)

j−2

∏
i=1

qxi − xn

xi − xn

n−1

∏
i=j+1

qxn − xi

xn − xi

+
Rn,n f

xn−1 − xn

n−2

∏
i=1

qxi − xn

xi − xn

)
.

Since 〈 f 〉qn ∈ Z[q] given that deg( f ) = n − 1 we may set xn = 0 throughout in the preceding
equality without impacting the eventual result. We then obtain

τn

(
f · ∆̂q

n

∆n

)
|xn=0 =

∆̂q
n−1

∆n−1

(
− R1 f

x1
+

n−1

∑
j=2

qj−2 Rj f
xj−1

−
n−1

∑
j=2

qj−1Rj f
xj

+ qn−2 Rn f
xn−1

)
(9.16)
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which upon rearranging terms and using the definition of T operators becomes

τn

(
f · ∆̂q

n

∆n

)
|xn=0 =

∆̂q
n−1

∆n−1

(
∑

1≤j≤n−1
qj−1Tj f

)
.(9.17)

Recursing using (9.14) concludes the proof. �

Observe that our statement of Theorem 9.6 only concerns the case deg( f ) = n− 1, even though
it is largely in the same spirit as the proof of Theorem 9.1. Indeed, in contrast to the fact that
the term within parentheses on the right-hand side in (9.7) is already a polynomial, we see that
the analogous term in (9.15) is not necessarily a polynomial. This deficit is precisely what the
specialization xn = 0 fixes as the resulting expression is then a polynomial.

Remark 9.7. As in Theorem 9.1 we may express the operator T1(T1 + qT2) · · · (T1 + qT2 + · · ·+
qn−2Tn−1) as a q-weighted sum of TF for F ∈ Forn with |F| = n− 1. One writes

T1(T1 + qT2) · · · (T1 + qT2 + · · ·+ qn−2Tn−1) = ∑
i=(i1,...,in−1)

ij≤j

qi1+···+in−1−(n−1)Ti1 · · ·Tin−1 .(9.18)

Collecting terms according to the indexing sequences (i1, . . . , ik) that trim a common indexed for-
est F, we get one term for each decreasing labeling of F. Let us denote the set of such labelings by
Dec(F). By reading such a labeling κ in inorder one obtains a permutation in Sn−1 that we shall
continue to call κ. Tracking the q-weight tells us that

∑
i=(i1,...,in−1)

ij≤j

qi1+···+in−1−(n−1)Ti1 · · ·Tin−1 = ∑
F∈Forn
|F|=n−1

(
∑

κ∈Dec(F)
qinv(κ)

)
TF,(9.19)

where inv(κ) is the number of inversions of κ. To complete this remark we note that when F ∈ Forn

with |F| = n− 1 then |Trim(F)| in (9.11) is the specialization at xi = 1 for all i [48, Proposition
3.14], whereas ∑κ∈Dec(F) qinv(κ) in (9.19) is the specialization of PF at xi = qi−1 for all i.

We conclude this section by speculating a bit more on the case where deg( f ) exceeds n − 1.
Recall that the P-Hall–Littlewood polynomial Pλ(x1, . . . , xn; q) [38] for a partition (λ1, . . . , λn) is
obtained by normalizing the following symmetric polynomial

∑
σ∈Sn

σ

(
xλ1

1 · · · x
λn
n ∏

1≤i<j≤n

xi − qxj

xi − xj

)
.

Thus it is a common generalization of monomial symmetric polynomials and Schur polynomials,
recovering the former at q = 1 and the latter at q = 0. We conjecture the following generalization
of Corollary 9.3 which we have verified on all permutations up until S8.
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Conjecture 9.8. For any Schubert polynomial Sw ∈ Poln we have

〈Sw〉qn = ∑
λ=(λ1≥···≥λn)

bλ,w(q)Pλ(x1, . . . , xn; q−1),

where the bλ,w(q) are Laurent polynomials in q with nonnegative integer coefficients.

At q = 1 this recovers the nonnegative expansion involving monomial symmetric polynomials.
We also note that the appearance of q−1 is simply a reflection of the fact that our definition of
q-DS employed factors qxi − xj (keeping with the choice in [44]) rather than xi − qxj used in the
definition of the P-Hall–Littlewoods. With this latter choice, Conjecture 9.8 becomes a P-Hall–
Littlewood positivity statement with coefficients in N[q]. The conjecture is already nontrivial in
the simplest case where Sw is a dominant monomial xλ1

1 · · · x
λn
n where λ1 ≥ · · · ≥ λn, i.e. when w

is a 132-avoiding permutation. The q = 1 case is due to Postnikov [52, Theorem 4.3] and is a simple
consequence of a famous result of Brion [14] on integer point transforms of integral polytopes. We
are unaware of a generalization that incorporates the parameter q.

10. A GEOMETRIC PERSPECTIVE ON A FORMULA OF GESSEL

We now give a geometric interpretation for a result of Gessel on extracting the coefficients for
the expansion of a symmetric polynomial in Symn into fundamental quasisymmetric polynomials
in QSymn.

In [41, Corollary 8.6] the present authors showed that for any polynomial f ∈ Poln, there is a
decomposition into fundamental quasisymmetric polynomials given by

f (x1, . . . , xn) = ∑
k

∑
ak ,...,an≥1

(ev0 T
ak
k T

ak+1
k+1 · · ·T

an
n f )Fak ,...,an(x1, . . . , xn)

where Fak ,...,an(x1, . . . , xn) for ak, . . . , an ≥ 1 is the fundamental quasisymmetric polynomial2 whose
reverse lexicographic leading monomial is xak

k · · · x
an
n .

Recall that the Schubert cells Yλ and the opposite Schubert cells Yµ of Gr(n; N) are indexed by
partitions λ, µ of integers into at most n parts with the largest part of size at most N − n. If λ ≥ µ

coordinate-wise, then there is an associated Grassmannian Richardson variety Yλ
µ ⊂ Gr(n; N). We

show that certain Ω-Richardson varieties with Ω ∈ RTSeqN push forward to the Grassmannian
Richardson varieties associated to ribbon shapes.

Definition 10.1. The ribbon shape λ/µ indexed by (ak, . . . , an) for ak, . . . , an ≥ 1 is the one which
associated to partitions

λ = (an + · · ·+ ak − (n− k), . . . , an + an−1 − 1, an) of length n− k + 1, and

µ = (an + · · ·+ ak+1 − (n− k), · · · , an + an−1 − 2, an − 1) of length n− k.

2The indexing on fundamental quasisymmetric polynomials is different from [41].
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These are the skew shapes whose rows reading from top to bottom are of lengths ak, . . . , an, and
such that there is exactly one square in the same column in two consecutive rows. For instance
take k = 2, n = 5, and suppose that (a2, . . . , a5) = (2, 1, 1, 3). Then the corresponding λ and
µ equal (7 − 3, 5− 2, 4− 1, 3) = (4, 3, 3, 3) and (5 − 3, 4− 2, 3− 1) = (2, 2, 2) respectively. See
Figure 7 which demonstrates the ribbon λ/µ with shaded cells corresponding to µ.

FIGURE 7. The ribbon corresponding to (a2, . . . , a5) = (2, 1, 1, 3) according to Definition 10.1

For fixed N ≥ n denote the forgetful map π : FlN → Gr(n; N). We will show the following
theorem.

Theorem 10.2. For any N ≥ k + ∑ ai, let Ω = rN−k−∑ ai
1 tak

1 · · · t
an
n−(k−1)r

k−1
1 ∈ RTSeqN . Then

π∗(X(Ω)) = Yλ
µ ⊂ Gr(n; N)

where λ/µ is the ribbon indexed by (ak, . . . , an).

As a corollary of this geometric fact we show how to recover a formula of Gessel for the co-
efficient of the fundamental quasisymmetric polynomial Fak ,...,an(x1, . . . , xn) in the fundamental
quasisymmetric polynomial expansion of f .

Corollary 10.3 ([20, Theorem 3]). For ak, . . . , an ≥ 1, the coefficient of Fak ,...,an(x1, . . . , xn) in f ∈
Symn is 〈sλ/µ, f 〉Hall where λ/µ is the ribbon shape for (ak, . . . , an) and 〈, 〉Hall is the Hall inner
product on Symn.

Proof. The Hall inner product with a skew Schur function sλ/µ computes the degree of f on the
Grassmannian Richardson variety Yλ

µ ⊂ Gr(n; N). The pullback π∗ : H•(Gr(n; N)) → H•(FlN)

identifies H•(Gr(n; N)) with the subalgebra of H•(FlN) = CoinvN generated by Symn. Therefore

〈sλ/µ, f 〉Hall = degYλ
µ

f = degGr(n;N) π∗[X(Ω)] f = degFlN
[X(Ω)] f = ΠN

Ω f = ev0 T
ak
k · · ·T

an
n f ,

where in the last step we used that Tai
i−(k−1)R

k−1
1 = Rk−1

1 Tai
i and ev0 R

N−1−∑ ai
1 = ev0. �

Remark 10.4. To emphasize the contrast to the geometric approach here, we briefly remark on
Gessel’s proof3 in [20]. Given a symmetric function f , the coefficient of a fixed monomial sym-
metric function mλ equals 〈 f , hλ〉Hall where hλ is the complete homogenous symmetric function

3which while phrased in the language of (quasi)symmetric functions, restricts to the finite variable case stated earlier
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associated with λ. Observing that the coefficient of mλ is in fact equal to the coefficient of the
monomial quasisymmetric function Mα for any sequence α of positive integers that rearranges to
λ, we see that the monomial quasisymmetric expansion may thus be easily obtained. The punch-
line then relies on the observation that the expansion of a monomial quasisymmetric function
in terms of fundamental quasisymmetric functions is the same as an expansion (going back to
MacMahon [39]) of skew ribbon Schurs in terms of homogenous symmetric functions.

We prove Theorem 10.2 in the rest of this section. For w ∈ SN , define g(w) to be the n-
Grassmannian permutation obtained by sorting the first n and the last N− n entries in the one-line
notation of w. Then we always have π(Xv

u) ⊂ Yg(v)
g(u) . Note that π(Xv

u) is a projected Richardson vari-
ety in the sense of [28], or projection variety in the sense of [9]. In fact, since π is a map into Gr(n; N),
we obtain positroid varieties.

Proposition 10.5. π|Xv
u

: Xv
u → Yg(v)

g(u) is birational if and only if u ≤n v and `(v)− `(u) = `(g(v))−
`(g(u)). (Here ≤n stands for comparison in the n-Bruhat order.)

Proof. As recalled in [54, Proposition 1.24], the map π|Xv
u

: Xv
u → π(Xv

u) is birational if and only if

u ≤n v. The result follows because Xv
u and Yg(v)

g(u) are irreducible and we have dim Xv
u = `(v)− `(u)

and dim Yg(v)
g(u) = `(g(v))− `(g(u)). �

Lemma 10.6. Letting Ω = rN−k−∑ ai
1 tak

1 · · · t
an
n−(k−1)r

k−1
1 ∈ RTSeqN as in the statement of Theo-

rem 10.2 we have

u(Ω) = 1 · · · (k− 1)pk+1 · · · pnk · · ·

v(Ω) = 1 · · · (k− 1)pk · · · pnk · · ·

where pi = k + ∑n
j=i aj and the tails of unlisted numbers are in increasing order. Furthermore we

have u(Ω) ≤n v(Ω).

Proof. The first half of the claim rests on the elementary observation that for a sequence c2, . . . , cm ≥
1 we have

εcm
m · · · ε

c2
2 (id) = b2b3 · · · bm1 · · ·

where bi = 1+∑m
j=i ci and the tail of unlisted numbers is given by the numbers in N \ {b2, . . . , bm}

listed in increasing order.
For the second half, it is not hard to see that u(Ω) ≤n v(Ω) from the characterization [6, Section

3.1] that for u, v permutations, we have u ≤n v if

(1) i ≤ n < j implies u(i) ≤ w(i) and u(j) ≥ w(j), and
(2) if i < j, u(i) < u(j), and v(i) > v(j), then i ≤ n < j.

We leave the details to the reader. �
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Proof of Theorem 10.2. We set u := u(Ω) and v := v(Ω) for brevity. Lemma 10.6 implies that

g(u) = 1 · · · (k− 1)kpn · · · pk+1 · · · ,

g(v) = 1 · · · (k− 1)pn · · · pkk · · · .

We have `(g(u)) = `(u) − (n − k + 1) and `(g(v)) = `(v) − (n − k + 1), so we conclude by
Proposition 10.5 that π|Xv

u
: Xv

u → Yg(v)
g(u) is birational, and in particular π∗(Xv

u) = Yg(v)
g(u) . It remains

to identify Yg(v)
g(u) .

The Lehmer codes of g(u) and g(v) are

lcode(u(Ω)) = (0k−1, 0, an − 1, an + an−1 − 2, . . . , an + · · ·+ ak+1 − (n− k))

lcode(v(Ω)) = (0k−1, an, an + an−1 − 1, . . . , an + · · ·+ ak − (n− k), 0).

This implies that the skew shape λ/µ associated to u and v is the ribbon indexed by (ak, ak+1, . . . , an),
and we conclude. �

Example 10.7. Consider the fundamental quasisymmetric polynomial F2,1,1,3(x1, x2, x3, x4). Then
for N = 9 we have Ω = t2

1t2t3t
3
4 ∈ RTSeq9. The permutations u(Ω), v(Ω) are equal to 65412378 · · ·

and 86541237 · · · . On sorting the first four letters in each, we get the 4-Grassmannian permuta-
tions g(u) and g(v) equaling 14562378 · · · and 45681237 · · · with Lehmer codes (0, 2, 2, 2, 0, . . . )
and (3, 3, 3, 4, 0, . . . ), which yields the ribbon shape indexed by (2, 1, 1, 3).

APPENDIX A. NESTED FOREST COMBINATORICS

Here we gather the proofs of various statements of Section 3.

Lemma A.1. The forests of the form i and i◦ generate the monoid F̃or.

Proof of Lemma A.1. Let G̃ be a nontrivial forest. If the i’th leaf is the trivial marked tree ⊗, then
G̃ = F̃ · i◦ where F̃ is obtained by deleting ⊗. Otherwise, consider a tree in G̃ which has no forests
nested underneath it, so its support is a contiguous discrete interval {a, a + 1, . . . , b}, and let v be
an internal node of this tree which is farthest from the root. Then its children are two consecutive
leaves i, i + 1, and we can write G̃ = F̃ · i where F̃ is obtained by deleting the two children of v
(making v a leaf).

We conclude by induction on the sum of the number of marked nodes and the number of inter-
nal nodes of G̃. �

We recall the usual code map on plane forests.

Definition A.2. Let Codes denote finite supported sequences of natural numbers. For each plane
forest F, define the code of F, c(F) = (c1, c2, . . .) ∈ Codes to be sequence defined by taking ci to be
the number of internal nodes of F whose leftmost leaf descendent is labeled i ∈N.
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For marked nested plane forests, we will need to augment the code map. Let C̃odes denote
the set of infinite sequences indexed by N whose elements are pairs (ε, i) with ε ∈ {0, 1} and
i ∈ {0, 1, 2, . . .}, such that only finitely many terms are not (0, 0).

We define the augmented code map

c̃ : F̃or→ C̃odes.

as follows: c̃(F)i = (ε, c) where c is the number of non-leaf nodes such that iteratively taking
left children leads to the i’th leaf, and ε = 1 if the highest such node is the root of its connected
component and is marked, and ε = 0 otherwise.

We note that by its construction, we have

c̃(1◦ε1 · 1a1 · 2◦ε2 · 2a2 · · · ) = ((ε1, a1), (ε2, a2), . . .).(A.1)

Proof of Theorem 3.12. We directly check the relations

i · j = × · · · ×︸ ︷︷ ︸
j−1

∧× · · · ×︸ ︷︷ ︸
i−j−1

∧× · · · =j · i + 1 for i > j(A.2)

i · j◦ = × · · · ×︸ ︷︷ ︸
j−1

⊗× · · · ×︸ ︷︷ ︸
i−j

∧× · · · =j◦ · i + 1 for i ≥ j,(A.3)

i◦ · j = × · · · ×︸ ︷︷ ︸
j−1

∧× · · · ×︸ ︷︷ ︸
i−j−1

⊗× · · · =j · (i + 1)◦ for i > j,(A.4)

i◦ · j◦ = × · · · ×︸ ︷︷ ︸
j−1

⊗× · · · ×︸ ︷︷ ︸
i−j

⊗× · · · =j◦ · (i + 1)◦ for i ≥ j.(A.5)

so there is a monoid morphism T̃hMon → F̃or given by i 7→ i and i◦ 7→ i◦. Because F̃or is generated

by the elements i and i◦, the morphism T̃hMon → F̃or is surjective.

Using the relations in T̃hMon, we may write any element as 1ε1◦ 1a12ε2◦ 2a2 · · · with each ε i ∈ {0, 1}.
Indeed, let m ∈ T̃hMon, and consider any factorization of m in the generators. The relations of
Definition 3.7 for j = 1 and i > 1 are i · 1 = 1 · (i + 1), i · 1◦ = 1◦ · (i + 1), i◦ · 1 = 1 · (i + 1)◦
i◦ · 1◦ = 1◦ · (i + 1)◦. Using those we can obtain a factorization of m where the occurrences of
1 and 1◦ form a prefix. Using the extra relations 1 · 1◦ = 1◦ · 2, 1◦ · 1◦ = 1◦ · 2◦, we can in fact
have this prefix be of the form 1ε1◦ 1a1 . It is then easily concluded by induction that we can have the
desired factorization, as the relations j > 1 are just shifts of the ones for j = 1.

Now these special factorizations map to distinct elements of F̃or via the morphism, because
of (A.1). We conclude that the morphism is injective, and thus T̃hMon ∼= F̃or.

Finally, the augmented code map is surjective by (A.1), and injective because T̃hMon → F̃or is
surjective and we have just shown that the composite T̃hMon → F̃or→ C̃odes is injective. �
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Proof of forward implications of Theorem 3.18. The first forward implication was already proved. Now
note that if F̃ = F̃(Ω), then the forest F̃(rN

1 Ω) is obtained by marking the first N unmarked outer
trees in F̃. It follows that if F̂(Ω) = F̂(Ω′) then there are N, M � 1 so that F̃(rN

1 Ω) = F̃(rM
1 Ω′);

by the first part, we get RN
1 ΠΩ = RM

1 ΠΩ′ . Now for any operator A and polynomial f we have
RN

1 A f = RM
1 f = ev0 A f for N, M large enough, so we can conclude ev0 ΠΩ = ev0 ΠΩ′ . �

We now prove the reverse implications. For this we make use of the following proposition of
independent interest:

Proposition A.3. Let c ∈ Codes. For each leaf i, consider the unique path Pi of length ci towards the
root of the tree containing i. If any of these paths does not exist, or if the paths do not partition all
internal nodes of F̂(Ω) then ev0 ΠF̃xc = 0. Otherwise, ev0 ΠF̃xc = (−1)m where m is the number
of edges connecting a node to a right child in

⊔
Pi.

Proof. We note that ev0 ∅ = ev0, so the description holds for ∅. Write F̃ = F̃(Ω) for some Ω ∈
RTSeq, and assume the result holds for all smaller length Ω ∈ RTSeq. We write Ω = (Ω′, X), and
let F̃′ = F̃(Ω′). There are two cases.

If X = ri then

ev0 ΠΩ = ev0 ΠΩ′Rixc =

ev0 ΠΩ′x
c1
1 · · · x

ci−1
i−1 xci+1

i · · · ci = 0

0 ci 6= 0.

The description holds by induction, since F̃ has a trivial tree with support {i} in this case and F̃′

is obtained by removing this trivial tree.
If X = ti then

ev0 ΠΩ = ev0 ΠΩ′Tixc =


ev0 ΠΩ′x

c1
1 · · · x

ci−1
i−1 xci−1

i xci+2
i+1 · · · ci 6= 0 and ci+1 = 0

− ev0 ΠΩ′x
c1
1 · · · x

ci−1
i−1 xci+1−1

i xci+2
i+1 · · · ci = 0 and ci+1 6= 0

0 otherwise.

Here F̃ has a terminal node with support {i, i + 1} and F̃′ is obtained by transforming it into a leaf.
The description holds by induction. �

Proof of the reverse implication of Theorem 3.18. We first show how to reconstruct F̂ from ev0 ΠF̃. For
each i, let bi be maximal such that f 7→ φ(xbi

i f ) is not identically zero; then bi is the distance in

F̂(Ω) from leaf i to the root of the tree it lies in. Now for i 6= j, f 7→ φ(xbi
i x

bj
j f ) is identically zero if

and only if i, j lie in the same tree of F̂(Ω). Finally, if i, j lie in the same tree in F̂(Ω) then there is a
smallest integer ci,j such that ev0 ΠΩxbi

i x
ci,j
j f is identically zero, namely the distance from leaf j to

the nearest common parent of i and j. This information is enough to reconstruct the nested forest.
Now, we show how to recover F̃ from ΠF̃. We already know that F̂ = F̂′ by what was said

above, so we need to show that the markings coincide. Now for any i we have Πi·F̃ = TiΠF̃ =
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TiΠF̃′ = Πi·F̃′ so the unmarked forests associated to i · F̃ and i · F̃′ have to coincide. Because the
unmarked forests for F̃ and F̃′ coincide this implies that i’th unmarked outer roots of F̃(Ω) and
F̃(Ω′) are the same, so F̃ = F̃′ as desired. �

Proof of Proposition 3.21. The proposition holds for n = 1 as Ω = r1 in this case and F̃(Ω) =

⊗×× · · · . For n > 1, the fact that F̃(Ω) satisfies the properties is then immediate by induction.
For the converse statement, by the proof of Lemma A.1 we have that F̃ = F̃′ · i for some i < n or
F̃ = F̃′ · i◦ for some i ≤ n. Then F̃′ satisfies the properties for n− 1, so we have F̃′ = F̃(Ω′) for
some Ω′ ∈ RTSeqn−1 by immediate induction, and thus F̃ = F̃(Ω′x) with x = ti with i < n or
x = ri for i ≥ n. We have thus Ω′x ∈ RTSeqn which concludes the proof. �

APPENDIX B. COMBINATORICS ASSOCIATED TO THE PERMUTATIONS u(Ω), v(Ω)

Given a permutation u ∈ S∞ and a ≥ 1, let `a(u) be the number of b ≥ a such that u−1(b) ≤
u−1(a). In words, `a(u) counts numbers larger than a that occur before a in the one-line notation of
u. For instance if w = 426153789 · · · then `a(u) is given by 4, 2, 4, 1, 2, 1, 1, 1, 1, . . . for a = 1, 2, . . ..

This gives a bijection between S∞ and sequences of positive integers eventually constant equal
to 1. It is clear that the permutations in Sn are characterized as those with `i(u) ≤ n + 1− i for
1 ≤ i ≤ n and `i(u) = 1 for i ≥ n + 1. For any sequence j1, . . . , jk, the permutation

w = ε j1 · · · ε jk(1)

is then characterized by `a(w) = ja for a = 1, . . . , k and `a(w) = 1 for a ≥ k + 1.

Corollary B.1. If |Ω| ≤ |Ω′|, then (u(Ω), v(Ω)) = (u(Ω′), v(Ω′)) if and only if Ω′ = r
|Ω′|−|Ω|
1 Ω.

Proposition B.2. For fixed m, the map Ω → (u(Ω), v(Ω)) is a bijection between length m se-
quences in RTSeq and pairs of permutations (u, v) ∈ S∞ × S∞ such that `a(v)− `a(u) ∈ {0, 1} for
1 ≤ a ≤ m and `a(v) = `a(u) = 1 for a ≥ m + 1.

Proof. For a length m sequence Ω = x1 · · · xm ∈ RTSeq, we have `i(u) = `i(v) = 1 for i ≥ m + 1
and for 1 ≤ i ≤ m we have

(`i(u), `i(v)) =

(k, k) xm+1−i = rk

(k, k + 1) xm+1−i = tk,

which clearly establishes the bijection. �

We now describe what pairs (u(Ω), v(Ω)) are produced for Ω ∈ RTSeqn. This is not particularly
a restriction by Corollary B.1, since r

N−1−|Ω|
1 Ω ∈ RTSeqN for N sufficiently large.

Proposition B.3. The map RTSeqn → Sn × Sn given by Ω 7→ (u(Ω), v(Ω)) is an injective map
with image those pairs (u, v) ∈ Sn × Sn such that `a(v)− `a(u) ∈ {0, 1} for 1 ≤ a ≤ n.
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Proof. For Ω ∈ RTSeqn, the way that u(Ω), v(Ω) are both of the form ε j1 · · · ε jn−1(id) with ji ≤
n + 1− i which shows that (u(Ω), v(Ω)) ∈ Sn × Sn. Conversely, if (u, v) ∈ Sn × Sn with `a(v)−
`a(v) ∈ {0, 1} for 1 ≤ a ≤ n then setting Ω = x1 · · · xn where

xi =

rk (`n+1−i(u), `n+1−i(v)) = (k, k)

tk (`n+1−i(u), `n+1−i(v)) = (k, k + 1)

achieves (u(Ω), v(Ω)) = (u, v). �

We have the following special cases with |Ω|t = 0 minimal and |Ω|t = n− 1 maximal.

Proposition B.4.

(1) The pairs of permutations (u(Ω), v(Ω)) ∈ Sn × Sn for Ω ∈ RTSeqn and |Ω|t = 0 are
precisely those with u = v.

(2) Let cn = n12 · · · (n − 1) = sn−1sn−2 · · · s1 be the reverse long cycle in Sn. The pairs of
permutations (u(Ω), v(Ω)) ∈ Sn × Sn with Ω ∈ RTSeqn and |Ω|t = n− 1 are exactly the
pairs (u, ucn) with u ∈ Sn and u(n) = n.

We now describe the Bruhat intervals associated to Ω.

Proposition B.5. For x, y permutations, if j, k ∈ {i, i + 1} then ε j(x) ≤ εk(y) if and only if j ≤ k
and x ≤ y.

Proof. Recall the tableau criterion [11, Theorem 2.6.3], which says that a ≤ b in the Bruhat order if
for all t, the first t entries in the one-line permutation of a when sorted are elementwise less than
the first t entries in the one-line permutation of b when sorted.

In particular, if we have εr(a) ≤ εs(b), then the tableau criterion applied to the first s entries
implies that 1 appears in the first r entries so r ≤ s. Therefore it remains to show that if i ≤ j ≤
k ≤ i + 1 then ε j(x) ≤ εk(y) if and only x ≤ y.

If i ≤ j ≤ k ≤ i + 1 and x ≤ y then the tableau criterion shows directly that ε j(x) ≤ ε j(y) ≤
εk(y). Conversely, suppose ε j(x) ≤ εk(y). Then for 1 ≤ r ≤ j− 1, the first r entries of x and y agree
respectively with the first i entries of ε j(x) and εk(y) decremented by 1, while for r ≥ j they agree
respectively with the first r + 1 entries of ε j(x) and εk(y) after removing 1 and decrementing the
remaining entries by 1. Hence the tableau criterion for ε j(x) ≤ εk(y) implies the tableau criterion
for x ≤ y. �

Corollary B.6. If u ≤ v in the Bruhat order, then the following are true.

(1) The map w 7→ ε i(w) is a poset isomorphism between [u, v] and [ε i(u), ε i(v)].
(2) [ε i(u), ε i+1(v)] = [ε i(u), ε i(v)] t [ε i+1(u), ε i+1(v)]. Furthermore for w, w′ ∈ [u, v] and j, k ∈
{i, i + 1} we have ε j(w) ≤ εk(w′) if and only if w ≤ w′ and j ≤ k.
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Corollary B.7. The Bruhat intervals contained in [u(Ω), v(Ω)] are those of the form [u(Ω′), v(Ω′)]
with Ω′ obtained by replacing some ti in Ω with either ri or ri+1.

APPENDIX C. MOMENT POLYTOPES OF Ω-RICHARDSON VARIETIES

For λ = (λ1 > · · · > λn) a decreasing sequence of integers, let Pv(Ω)
u(Ω)

(λ) be the moment polytope

of X(Ω) under the generalized Plücker embedding Plλ : Fln → Pn!−1. We now show that

(1) Pv(Ω)
u(Ω)

(λ) ∼= GZ(λ; Ω) where GZ(λ; Ω) is a face associated to Ω of the Gelfand–Zetlin poly-
tope determined by λ.

(2) The moment polytopes for Ω ∈ RTSeqn are exactly the faces of a subdivision of the per-
mutahedron

Perm(λ) := {w · (λ1, . . . , λn) | w ∈ Sn}

into combinatorial cubes.
(3) Pv(Ω)

u(Ω)
(λ) ∼= C(F̂; λ) where C(F̂; λ) is a polytope intrinsically associated to the nested forest

F̂ = F̂(Ω).

The first two points slightly generalize [24, Lemma 6.3] which in our terminology shows the first
point for those Ω ∈ RTSeqn with |Ω|t = n − 1 maximal, and shows that these are the top di-
mensional faces of a dissection of Perm(λ) into combinatorial cubes. In Remark C.19 we explain
how we can see the different Bott manifold structures on the toric variety associated to C(F̂; λ)

(which is naturally isomorphic to every X(Ω) with F̂(Ω) = F̂) from the recursive structure of the
combinatorial cube C(F̂; λ), giving a different perspective to the identifications from Section 6.

C.1. The generalized Plücker embedding and moment polytopes of Richardson varieties. For
λ1 > · · · > λn a strictly decreasing sequence, the generalized Plücker embedding Plλ : Fln →
Pn!−1 associated to λ realizes Fln as a projective variety, and takes

M 7→ [
N

∏
i=1

(det M{σ(1),...,σ(i)},{1,...,i})
λi−λi+1 ]σ∈Sn

where MA,B is the submatrix of M determined by the rows indexed by A and the columns indexed
by B, and we set λn+1 = 0 by convention.

The T-fixed points of Fln are the permutation matrices {Pσ | σ ∈ Sn}, and we identify Pσ with
the permutation σ itself. Recall that Sn acts on Rn by σ · ei = eσ(i), or equivalently

σ · (λ1, . . . , λn) = (λσ−1(1), . . . , λσ−1(n)).(C.1)

Let the i’th standard character of T be denoted by ti. If we take the action of T on Pn!−1 to be
obtained by scaling the coordinate indexed by σ ∈ Sn by tλ1

σ(1)t
λ2
σ(2) · · · t

λn
σ(n) = tσ·(λ1,...,λn), then

the generalized Plücker embedding is a T-equivariant embedding Fln ↪→ Pn!−1, and σ ∈ Fln is
mapped to the standard basis vector eσ.
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For a torus T′ acting on PN by scaling the i’th coordinate by tµi
i , with µi ∈ Zn, the moment

map is the map PN → Rn given by µ([{xi}]) := ∑n
i=1

|xi |2

∑N
j=0 |xj|2

µi. By the convexity theorem for

moment maps [22], if the characters µi are distinct (so the only T′-fixed points are the ei), then for
a T′-invariant subvariety Y ⊂ PN we have µ(Y) = conv{µ(ei) : ei ∈ Y}.

For X ⊂ Fln the image of a T-invariant subvariety of Fln, the moment map µλ : X → Rn is
obtained by composing the embedding X → Pn!−1 with the moment map on Pn!−1 under the
torus action mentioned earlier. In particular, this implies

µλ(X) = conv{(σ · (λ1, . . . , λn) | σ ∈ X}.

Hence for example the moment polytope of Fln is the permutahedron

Perm(λ) := conv{σ · (λ1, . . . , λn) | σ ∈ Sn} ⊂ Rn.

For the Richardson variety Xv
u, we have σ ∈ Xv

u if and only if u ≤ σ ≤ v in the Bruhat order.

Definition C.1. If u ≤ v in Bruhat order on Sn, then we define the twisted inverse Bruhat interval
polytope by

Pv
u (λ) = conv({w · (λ1, . . . , λn) | w ∈ [u, v]}).

We therefore have the following theorem of Tsukerman–Williams.

Theorem C.2 ([56, Proposition 2.9]). The moment polytope of Xu
v under the generalized Plücker

embedding Plλ is the twisted Bruhat interval polytope Pu
v (λ).

Remark C.3. We note the relation to the Bruhat interval polytope [56] Qv
u = conv({(w(1), . . . , w(n)) :

w ∈ [u, v]}) is that

Pv
u (n, . . . , 1) = Qw0,nu−1

w0,nv−1 .

C.2. Recalling GZ polytopes. We now introduce the Gelfand–Zetlin polytopes. To keep exposi-
tion brief we quickly recall material that has appeared elsewhere (cf. [47, Section 7.1] for instance,
which builds upon [24, 27]).

Definition C.4. For λ = (λ1 > · · · > λn) ∈ Rn the Gelfand–Zetlin polytope GZ(λ) is the polytope
in Rn(n−1)/2 containing points (pi,j)1≤i≤j≤n such that pi,1 = λi for 1 ≤ i ≤ n and

pi,j ≥ pi+1,j+1 ≥ pi+1,j.

We shall think of points in GZ(λ) as fillings of triangular/staircase shape as shown in Figure 8
where the bottom row reads λ1 through λn left to right. Such a filling is often called a GZ pattern.

We will specify a face of GZ(λ) by a “face diagram”, consisting of a graph whose underlying
vertex set is the positions of entries in a GZ pattern, and whose edges record defining hyperplanes
whose intersection is the face. We represent the facet pi,j = pi+1,j+1 by a left edge connecting vertices
(i, j) and (i + 1, j + 1), and the facet pi,j = pi,j−1 by a right edge between vertices (i, j) and (i, j− 1).
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FIGURE 8. A GZ pattern determining a point in GZ(λ)

The face diagram associated to a face is not necessarily unique. We remark that it is typical in the
literature, after [31], to call a Kogan (respectively dual Kogan) face of GZ(λ) to be one determined
by a collection of left (respectively right) edges, so that every face is the intersection of a Kogan
and a dual Kogan face.

The following linear projection (cf. [24, §5]) will be used to relate certain faces of GZ(λ) and
Bruhat interval polytopes.

Definition C.5. The linear projection µ : GZ(λ)→ Perm(λ) is defined by

(C.2) µ(p) = (y1 − y2, y2 − y3, . . . , yn − yn+1),

where yi := ∑i≤k≤n pk,i for 1 ≤ j ≤ n + 1 (so yn+1 = 0).

Referring to Figure 8 the yis are produced by summing the entries in each row, going bottom to
top, and then µ(p) records the differences in successive rows.

C.3. Ω-Richardson varieties and GZ-polytopes. Recall the notion of trimming diagram given
Ω ∈ RTSeqn that was introduced at the end of Section 3. We now derive face diagrams from these
trimming diagrams.

Definition C.6. For Ω ∈ RTSeqn we define a face GZ(λ; Ω) of GZ(λ) by removing the blue edges
from the trimming diagram associated to Ω.

See Figure 9 for the face diagram obtained from the trimming diagram in Figure 4.

Proposition C.7. The polytope GZ(λ; Ω) is cut out by the pi,1 = λi, and GZ equalities along the
red edges and the inequalities corresponding to the blue edges. Furthermore, in GZ(λ; Ω) we
have pi,i > · · · > pn,i for all i.

Proof. First, note that every GZ inequality is clearly cut out by the red equalities, the blue in-
equalities, and the inequalities pi,j ≥ pi+1,j for all i, j. For i = 1 the totality of inequalities
p1,1 > · · · > pn,1 follow because λ1 > · · · > λn. It is straightforward to see that the totality
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FIGURE 9. The sequence r4
1t2r3r4t6t2t7r1t6r5 ∈ RTSeq13

of inequalities pi,i > · · · > pn,i together with the red/blue restrictions between pi,j and pi+1,k for
various i and k then imply the totality of inequalities pi+1,1 > · · · > pn,i+1 and we conclude. �

Corollary C.8. The faces of GZ(λ; Ω) are exactly those of the form GZ(λ; Ω′) where Ω′ is obtained
by changing some subset of the ti to ri or ri+1.

Proof. The faces of GZ(λ; Ω) are obtained by setting some of the defining inequalities to equalities.
Since there are only blue edge inequalities, we can either replace two blue edges at an internal
vertex with a right red edge or a left red edge, and these correspond to replacing a ti with either
ri or ri+1 respectively (noting that we cannot add in both edges since then that would force an
equality pi,j = pi,j+1). �

Figure 10 depicts the three-dimensional GZ(λ1, λ2, λ3). The two-dimensional faces GZ(λ; r1t1t1)

and GZ(λ; r1t1t2) are shaded. In accordance with the preceding corollary we note, for instance,
that the vertices of these faces may be obtained by replacing the ti with ri or ri+1. Observe that the
unique vertex of degree 4 does not appear as a vertex of either GZ(λ; r1t1t1) or GZ(λ; r1t1t2).

Definition C.9 ([31, Section 2.2.2]). A nondegenerate (or simple) vertex of GZ(λ) is a vertex of the
form GZ(λ; Ω) where Ω = ri1 · · · rin ∈ RTSeqn. We define the associated permutation π(v) ∈ Sn

to be obtained by setting π(v)(i) to be the number of vertices in the path for v starting at (i, 1).

Proposition C.10. If Ω = ri1 · · · rin ∈ RTSeqn then for v = GZ(λ; Ω) the associated vertex we have
π(v) = ε in · · · ε i1(id). Furthermore, µλ(v) = π(v) · (λ1, . . . , λn).

Proof. We induct on n. If v′ = GZ(λ; ri1 · · · rin−1) then we can check directly that

π(v)j =


π(v′)j j < in

1 j = in

π(v′)j−1 j ≥ in + 1
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r1t1t2

r1r1r1

r1r2r1

r1r2r2

r1r2r3

r1r1r3

r1r1r2

FIGURE 10. GZ(λ1, λ2, λ3) ⊂ R3 with maximal dimension faces GZ(λ; Ω) shaded

which shows that π(v) = ε in(π(v′)). Finally, the index αi of the path which stop at the i’th row
from the bottom is given by αi = π(v)−1(i) so

µ(v) = (λπ(v)−1(1), . . . , λπ(v)−1(n)) = π(v) · (λ1, . . . , λn). �

The similarity between Figure 10 and Figures 1 is explained by our next result.

Theorem C.11. For Ω ∈ RTSeqn, the map µ linearly identifies

GZ(λ; Ω) ∼= Pu(Ω)
v(Ω)

(λ).

Proof. All vertices of GZ(λ; Ω) are nondegenerate, so letting

S(Ω) = {π(v) | v vertex of GZ(λ; Ω)},

it suffices by Proposition C.10 to check that S(Ω) = [u(Ω), v(Ω)].
By Proposition C.10 again we have

S(Ω x) =

{ε i(w) | w ∈ S(Ω)} x = ri

{ε i(w) | w ∈ S(Ω)} t {ε i+1(w) | w ∈ S(Ω)} x = ti.

On the other hand, by Corollary B.6 we have

[u(Ω x), v(Ω x)] =

[ε i(u), ε i(v)] = {(ε i(w) | w ∈ [u, v]} x = ri

[ε i(u), ε i+1(v)] = {ε i(w) | w ∈ [u, v]} t {ε i+1(w) | w ∈ [u, v]} x = ti,

so we conclude by induction. �
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C.4. The HHMP subdivision of the permutahedron. It was shown in [24] that the moment poly-
topes of the top-dimensional X(Ω) give a subdivision of the permutahedron into (n − 1)! com-
binatorial cubes [24], which we call the HHMP-subdivision. We reprove this here for the conve-
nience of the reader.

Theorem C.12 ([24]). The moment polytopes Pv(Ω)
u(Ω)

(λ) are the faces of a subdivision (the HHMP-
subdivision) of Perm(λ) into combinatorial cubes.

Proof. The faces of Pv(Ω)
u(Ω)

(λ) are of the form Pv(Ω′)
u(Ω′) (λ), so it remains to show that the relative inte-

riors Pv(Ω′)
u(Ω′) (λ)

◦ partition Perm(λ). For z ∈ [λi, λi+1] we have (see [37, Proposition 3.7])

Perm(λ1, . . . , λn) ∩ {x1 = z} = {z} × Perm(λ1, . . . , λi−1, λi + λi+1 − z, λi+2, . . . , λn).

For such a z, we let λ(z) := (λ1, . . . , λi−1, λi + λi+1 − z, λi+2, . . . , λn). We recursively record a
sequence in RTSeqn by

S(z1, . . . , zn; λ) =

S(z2, . . . , zn; λ(z1))ri z1 = λi

S(z2, . . . , zn; λ(z1))ti z1 ∈ (λi, λi+1).

Then it is straightforward to check inductively that S(z1, . . . , zn; λ) records the unique relative
interior µ(GZ(λ; Ω)◦) = Pv(Ω)

u(Ω)
(λ)◦ that z belongs to. �

C.5. Ω-Richardson varieties and Nested Forest polytopes.

Definition C.13. For F̂ ∈ F̂or we define the nested forest polytope C(F̂; λ) as the polytope of
functions φ ∈ RIN(F̂) such that for the extension φλ : IN(F̂) tN → R taking i 7→ λi, we have for
each v ∈ IN(F̂) the inequalities

φλ(vL) ≥ φλ(v) ≥ φλ(vR).

Figure 11 demonstrates a nested forest F̂ as well as the inequalities cutting out the associated
polytope (in R3).

1 2 3 4 5

a

b

c

λ1 λ2 λ3 λ4 λ5

F̂

λ1 ≥ a ≥ λ3
a ≥ b ≥ c

λ4 ≥ c ≥ λ5

Inequalities defining C(F̂ ;λ)

FIGURE 11. A nested forest F̂ and the corresponding C(F̂; λ)
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Theorem C.14. There is a linear isomorphism GZ(λ; Ω) ∼= C(F̂(Ω); λ) given by assigning a GZ
pattern to the function which takes an internal node v to the corresponding pi,j in the trimming
diagram of F̂.

Proof. This immediately follows from Proposition C.7 after identifying equal pi,j. �

Corollary C.15. For a strictly decreasing λ, C(F̂; λ) is a combinatorial cube.

Corollary C.16. X(F̂) is the toric variety associated to the polytope C(F̂; λ).

Proof. By definition, X(F̂) is isomorphic to X(Ω) for any Ω ∈ Trim(F̂), and we have just shown
that X(Ω) is the toric variety associated to GZ(λ; Ω) ∼= C(F̂(Ω); λ) = C(F̂; λ). �

Remark C.17. A tedious verification which we omit shows that the isomorphism π−1
Ω′ πΩ : X(Ω)→

X(Ω′) is induced by the composite isomorphism on moment polytopes GZ(λ; Ω) ∼= C(F̂; λ) ∼=
GZ(λ; Ω′), which shows that the identification of X(F̂) with the toric variety associated to C(F̂; λ)

can be done in such a way that the isomorphism πΩ′ : X(Ω′) → X(F̂) for any Ω′ ∈ Trim(F̂) is
induced by the linear isomorphism GZ(λ; Ω′) ∼= C(F̂; λ).

One way of creating a combinatorial cube is to take a linear family of combinatorial cubes
C(λ) ⊂ Rn (i.e. for two strongly equivalent combinatorial cubes C(a) and C(b) we define C(λ)
for λ ∈ [a, b] by C(ta + (1− t)b) = tC(a) + (1− t)C(b)) and take

C′ = {(x, z) ∈ Rn × [a, b] | x ∈ C(z)}.

It turns out that C(F̂; λ) has this recursive structure that makes it into a combinatorial cube. Fur-
thermore different ways of expressing F̂ as a product of i and i◦ give different realizations of
C(F̂; λ) as a combinatorial cube.

Theorem C.18. Let λ be a decreasing sequence, and let λ′ = (λ1, . . . , λi−1, λi+1, . . .). Then we have

C(F̂ · i◦; λ) = C(F̂; λ′).

For z ∈ [λi−1, λi], let λ(z) = (λ1, . . . , λi−1, z, λi+2, . . .). Then

C(F̂ · i; λ) = {(y, z) | z ∈ [λi, λi+1], and y ∈ C(F̂; λ(z))} ⊂ RIN(F̂) ×R ∼= RIN(F̂·i).

Remark C.19. The toric variety associated to a P′ arising as the total family of a linear family of
polytopes P(z) strongly equivalent to a fixed polytope P realizes the toric variety of P′ as P(C⊕L)
for a toric line bundle L on the toric variety associated to P. The different ways of realizing the
nested forest polytope therefore correspond to different Bott manifold structures on X(Ω), giving
an alternate perspective on the computations in Section 6.
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