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ABSTRACT. We introduce a definition of “equivariant quasisymmetry” for polynomials in two sets
of variables. Using this definition we define quasisymmetric generalizations of the theory of double
Schur and double Schubert polynomials that we call double fundamental polynomials and double
forest polynomials, where the subset of “noncrossing partitions” plays the role of Sn. In subsequent
work we will show this combinatorics is governed by a new geometric construction we call the “qua-
sisymmetric flag variety” which plays the same role for equivariant quasisymmetry as the usual flag
variety plays in the classical story.
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1. INTRODUCTION

Recall that a polynomial f(x1, . . . , xn) is quasisymmetric if the coefficient of a monomial xa1i1 · · ·x
ak
ik

is the same as xa11 · · ·x
ak
k for all sequences i1 < · · · < ik, and that the quasisymmetric polynomials

form a subring QSymn ⊂ Z[x1, . . . , xn]. The following definition is new and the crux of this paper.
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We say that a polynomial in two sets of variables f(x1, . . . , xn; t) with t = (t1, t2, . . .) is equivariantly
quasisymmetric if for 1 ≤ i ≤ n− 1 we have

f(x1, . . . , xi−1, ti, xi+1, xi+2, . . . , xn; t) = f(x1, . . . , xi−1, xi+1, ti, xi+2, . . . , xn; t).

This is a restricted form of variable symmetry, and setting all ti = 0 recovers an equivalent refor-
mulation of the definition of quasisymmetric polynomials that we recall in Section 2. We write
EQSymn for the set of equivariantly quasisymmetric polynomials, which we will show is a ring
with a Z[t]-basis of what we call double fundamental quasisymmetric polynomials Fc(x1, . . . , xn; t), in-
dexed by padded compositions c = 0ℓa1 · · · an−ℓ with ai > 0. This family specializes when t = 0

to the well-known basis Fc(x1, . . . , xn) for QSymn of fundamental quasisymmetric polynomials.1

While a polynomial that is symmetric in x1, . . . , xn takes a single value at any specialization of
the x-variables xi = tσ(i) for a σ ∈ Sn, an equivariantly quasisymmetric polynomial need only take
the same values at xi = tσ(i) for a noncrossing permutation σ ∈ NCn. Noncrossing permutations are
obtained by applying a backwards cycle to each block of a noncrossing partition of {1, . . . , n}. For
example, when n = 3 we have

f(t3, t2, t1; t) = f(t3, t1, t2; t) = f(t1, t3, t2; t) = f(t1, t2, t3; t) = f(t2, t1, t3; t).

Notably, we are unable to reach f(t2, t3, t1; t) by applying (quasi)symmetries, and the correspond-
ing permutation is the only element of S3 \NC3.

In this paper we develop a combinatorial theory for equivariant quasisymmetry which paral-
lels the theory of double Schur polynomials sλ(x1, . . . , xn; t), and more generally double Schubert
polynomials Sw(x; t) for x = (x1, x2, . . .). These will be played respectively by the double funda-
mental polynomials Fc(x1, x2, . . . , xn; t) and a family of polynomials we call double forest polynomi-
als PF (x; t) for F a plane binary indexed forest. We will show that the double forest polynomials
give a Z[t]-basis for Z[t][x] and specialize when t = 0 to the recently introduced forest polynomial
basis of Z[x] studied in [26, 28].

In the sequel to this paper [6] we will use the combinatorial theory developed here as a back-
bone to construct a quasisymmetric flag variety QFln that plays the same role for the double forest
polynomials and NCn as the usual flag variety does for double Schubert polynomials and Sn. One
of the culminating results of the sequel [6] will be that if we define QSym+

n := ⟨f(x1, . . . , xn) −
f(0, . . . , 0) | f ∈ QSymn⟩, then the quasisymmetric flag has cohomology ring

H•(QFln)
∼= QSCoinvn := Z[x1, . . . , xn]/QSym+

n ,

the ring of quasisymmetric coinvariants. This exactly parallels the fact that the complete flag va-
riety Fln has cohomology ring the analogously defined symmetric coinvariants, and answers in
the best possible way the question of finding a geometric model for the ring of quasisymmetric
coinvariants. See Section 1.4 for further discussion.

1Our double quasisymmetric polynomials are unrelated to work of Pechenik–Satriano [29].
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1.1. Double forest polynomials. Let S∞ be the group of permutations of {1, 2, . . .} that fix all but
finitely many elements. This group is generated by the adjacent transpositions si = (i, i+ 1), and
contains the finite symmetric groups Sn = ⟨s1, . . . , sn−1⟩ ⊂ S∞. The group S∞ acts on polynomials
Z[t][x] by permuting the x-variables w · (x1, x2, . . .) = (xw(1), xw(2), . . .), and the divided difference
operation is the endomorphism of Z[t][x] defined by

∂if =
f − si · f
xi − xi+1

.

This operation characterizes symmetry in the x-variables, as a polynomial f(x1, . . . , xn; t) is sym-
metric in x1, . . . , xn if and only if ∂1f = · · · = ∂n−1f = 0. Furthermore, these operations sat-
isfy the defining relations of the nil-Hecke algebra ∂2i = 0, ∂i∂j = ∂j∂i for |i − j| ≥ 2, and
∂i∂i+1∂i = ∂i+1∂i∂i+1, which implies that the composite operations ∂w = ∂i1 · · · ∂iℓ(w)

for any
reduced word factorization w = si1 · · · siℓ(w)

are well defined.
The double Schubert polynomials {Sw(x; t) | w ∈ S∞} ⊂ Z[t][x] of Lascoux–Schützenburger

[23] are the unique family of homogenous polynomials satisfying the normalization condition
Sw(t; t) = δw,id and the recursion ∂iSw(x; t) = δℓ(wsi)<ℓ(w)Swsi . They are equivalently character-
ized as the unique family of homogenous polynomials such that (∂wSw′)(t; t) = δw,w′ . Classically,
these polynomials are constructed by the ansatz Sw0,n(x; t) =

∏
i+j≤n(xi − tj), where w0,n ∈ Sn is

the longest element, and deriving all other Schubert polynomials by applying divided differences.
They can also be defined via a subword model inducing the graphical “pipe dreams” [4, 10, 14, 20],
and directly shown to satisfy the recursive characterization from there.

In this paper we define a new operation

Eif =
f(x1, . . . , xi−1, xi, ti, xi+1, . . . , xn−1; t)− f(x1, . . . , xi−1, ti, xi, xi+1, . . . , xn−1; t)

xi − ti
we call the equivariant quasisymmetric divided difference. This operation characterizes equivariant
quasisymmetry, as a polynomial f(x1, . . . , xn; t) is equivariantly quasisymmetric if and only if
E1f = · · · = En−1f = 0.

Analogously to the descent set Des(w) which consists of those i for which w 7→ wsi decreases
length, indexed forests have a notion LTer(F ) which consists of the labels of the terminal nodes,
and we have an analogous “trimming” operation F 7→ F/i to a forest with one less internal node
[26, §3]. The double forest polynomials will be axiomatically characterized in terms of their in-
teraction with Ei by requiring the normalization condition PF (t; t) = δF,∅, and EiPF (x; t) =

δi∈LTer(F )PF/i(x; t̂i) where t̂i = (t1, . . . , ti−1, ti+1, . . .). We note in particular that this recursion
asserts that EiPF does not depend on the variable ti. This recursion is subtle; for example, if
j ∈ LTer(F/i) then EjEiPF is not necessarily a variable transformation of P(F/i)/j due to the t-
variable reindexing in EiPF . We give some examples of applications of this operation to forest
polynomials in Figure 1.
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1 2 3 4

1 2 3

1 2 3

PF (x; t) = (x1 − t1)(x1 − t2)(x2 + x3 − t1 − t2)

PF/1(x; t̂1) = (x1 − t2)(x2 − t2)

PF/3(x; t̂3) = (x1 − t1)(x1 − t2)

E1

E3

PF/1(x; t) = (x1 − t1)(x2 − t1)

PF/3(x; t) = (x1 − t1)(x1 − t2)

E1

E2

1 2

PF/3/1(x; t̂1) = x1 − t2

PF/1/2(x; t̂2) = x1 − t1

PF/1/2(x; t) = x1 − t1

FIGURE 1. Applying Ei operations for the forest F with code c(F ) = (2, 0, 1, 0, . . .)

Theorem A (Theorem 4.2, Section 5). Double forest polynomials PF (x; t) exist, and are computed
by a subword model that is graphically represented by certain vine diagrams.

We also show our subword model and vine diagrams can also be adapted to compute double
Schubert polynomials. These models do not appear to specialize to pipe dreams.

Remark 1.1. As noted in [26], it appears that no simple ansatz works even for ordinary forest
polynomials. As we will see, the existence of vine diagrams follows from the axiomatic definition
of forest polynomials assuming they do exist, and we will directly verify the axiomatic recursion
on these polynomials.

1.2. Evaluations at noncrossing permutations. Given a polynomial f(x; t), we can consider its
specializations evw f := f(tw; t) at permutations of the t-variables tw = (tw(1), tw(2), . . .). The dou-
ble Schubert polynomials satisfy an upper-triangular property with respect to these evaluations
under the Bruhat order

evσ Sw =


0 σ ̸≥ w∏
i<j and w(i)>w(j)

(tw(i) − tw(j)) σ = w

Formula of AJS–Billey [1, 9] σ > w.

Furthermore, the formula of AJS-Billey is always nonzero and so this shows that double Schubert
polynomials evaluations characterize the Bruhat order via

w ≤ σ ⇐⇒ evσ Sw ̸= 0.

We show that double forest polynomials behave analogously with respect to NCn. We con-
struct a bijection ForToNC : Forestn → NCn from forests supported on {1, . . . , n} to noncrossing
partitions such that the following is true.
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Theorem B (Section 8). For σ ∈ NCn and F ∈ Forestn we have

evσ PF =


0 σ ̸≥ ForToNC(F )∏
i<j and σ(i)>σ(j) and σ(i,j)∈NCn

(tσ(i) − tσ(j)) σ = ForToNC(F )

Formula in Theorem 8.3 σ > ForToNC(F ).

We will furthermore show that the formula in Theorem 8.3 is always nonzero, and so double
forest polynomials evaluations characterize the Bruhat order restricted to NCn via

ForToNC(F ) ≤ σ ⇐⇒ evσ PF ̸= 0.

1.3. ⋆-compositions and combinatorial positivity. Under a modified notion of composition we
call ⋆-composition, the Ei operations satisfy the defining relations of the positive Thompson monoid

[Ei ⋆ Ej ] = [Ej ⋆ Ei+1] for i > j,

meaning that the theory of their ⋆-compositions is governed by the monoid structure on Forest.
From these ⋆-compositions we can build algebraic operations [ev ⋆EF ] : Z[t][x] → Z[t] with the
property that [ev ⋆EF ]PG = δF,G. This will in particular imply for any f(x; t) ∈ Z[t][x] that

f(x; t) =
∑

F∈Forest
aF (t)PF (x; t) where aF (t) = [ev ⋆EF ]f.

Say that a(t) ∈ Z[t] is Graham-positive if it lies in Z≥0[t2 − t1, t3 − t2, . . .]. First studied by Graham
[18], this is the natural torus-equivariant notion of positivity in “type A”, specializing when t = 0

to the usual notion of positivity. Using these operations we are able to show the following result.

Theorem C (Theorem 11.7, Theorem 11.6). Double Schubert polynomials have a decomposition

Sw(x; t) =
∑

F∈Forest
awF (t)PF (x; t) with awF (t) Graham positive,

and for forests F,G we have

PF (x; t)PG(x; t) =
∑

H∈Forest
aHF,G(t)PH(x; t) with aHF,G(t) Graham positive.

Furthermore, the Graham-positivity is realized by an explicit combinatorial algorithm for com-
puting the coefficients.

We note that as a special case of this result we obtain a Graham-positive decomposition of
double Schur polynomials into double fundamental quasisymmetric polynomials, as well as a
Graham-positive multiplication rule for double fundamental quasisymmetric polynomials. Al-
though our algorithm is manifestly Graham-positive, we understand almost nothing about how
it behaves in even the simplest cases. We thus pose the following tasks.
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Question 1.2. (1) Give an explicit combinatorial interpretation for the awF (t).
(2) As a special case, give an explicit combinatorial interpretation for the decomposition of double

Schur polynomials into double fundamental quasisymmetric polynomials.
(3) Determine the “equivariant shuffle product rule” for multiplying double fundamental qua-

sisymmetric polynomials.
(4) As a special case, determine an “equivariant Monk’s rule” corresponding to multiplication by

F0n−11 = x1 + · · ·+ xn − t1 − · · · − tn.

The interested reader can find tables containing the values from (1)-(4) at the end of the paper.

1.4. Prior work. This work has a number of antecedents. By work of Borel [12], the complete flag
variety Fln has cohomology ring given by the symmetric coinvariants

H•(Fln) = Coinvn := Z[x1, . . . , xn]/Sym+
n ,

where Sym+
n := ⟨f(x1, . . . , xn) − f(0, . . . , 0) | f ∈ Symn⟩. Subsets of Schubert polynomials form

bases both for Coinvn and Sym+
n , and the interplay between the geometry of the flag variety and

the combinatorics of Schubert polynomials is one of the central themes in algebraic combinatorics.
Inspired by this, in [3] Aval–Bergeron–Bergeron introduced the ring of quasisymmetric coin-

variants and showed that

rank(QSCoinvn
(i)) =

n− i
n+ i

(
n− i
i

)
for i = 0, . . . , n− 1. For fixed n this sequence is increasing and in particular fails to be symmetric,
which rules out the possibility of a smooth projective variety X for which the quasisymmetric
coinvariants may be realized as H•(X). Later work of the third and fifth authors [28] showed
that forest polynomials give bases for QSym+

n and QSCoinvn, analogously to how Schubert poly-
nomials give bases for Sym+

n and Coinvn. In [26] the third, fourth, and fifth authors developed
a combinatorial theory for forest polynomials based on the trimming operation Ti (obtained by
setting t = 0 in Ei) which paralleled the divided difference theory of Schubert polynomials. This
was used by the same authors in [25] to show that there was a geometric theory paralleling the
combinatorial theory based on certain toric Richardson varieties forming a toric complex we called
HHMPn, and it was shown using a spectral sequence argument that

QSCoinvn ⊂ H•(HHMPn).

In the sequel [6] we will show that to have the geometry match the equivariant combinatorial
theory (and to have an equality of the cohomology ring with the quasisymmetric coinvariants)
it is necessary to work with a new much more combinatorially complicated toric complex that
we will call the quasisymmetric flag variety QFln, formed as the union of the X(F ) varieties that
were first introduced in [25] as canonical translations of the Richardsons appearing in QFl. It is a
primary goal of this paper to supply the necessary combinatorics to carry this out.
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Finally, in work of the first two authors [5] it was shown that if we consider the “orbit harmon-
ics” associated to the set of points

{(σ(1), . . . , σ(n)) | σ ∈ NCn} ⊂ Qn,

i.e. the cokernel of the map Q[x1, . . . , xn] → Q|NCn | taking f 7→ (fσ)σ∈NCn then we recover a ring
whose associated graded is isomorphic to the quasisymmetric coinvariants with Q-coefficients.
These results, when generalized appropriately to our context, will be established in the sequel [6]
using Theorem B, and will correspond geometrically to the determination of the T -equivariant
cohomology ring H•

T (QFln) via the combinatorial graph cohomology ring of Goresky–Kottwitz–
MacPherson [17].

1.5. Outline of the article. In Section 2 we define the notion of equivariant quasisymmetry and
compare it to how symmetric polynomials are considered in an equivariant context. In Section 3
we go over combinatorial preliminaries needed for the remainder of the article. Moving beyond
preliminaries, the article has three main parts.

In the first part, we study equivariant quasisymmetry using forests and double forest polyno-
mials. In Section 4 we introduce the axiomatic definition of double forest polynomials. In Section 5
we create subword models and graphical vine models for double Forest polynomials and prove
that double forest polynomials exist using the subword model as an ansatz. In Section 6 we show
that the vine model computes double Schubert polynomials and state some related results.

In the second part of the paper we use the combinatorics of noncrossing partitions to under-
stand the evaluations of double forest polynomials at noncrossing partitions. In Section 7 we
show that noncrossing partitions characterize equivariant quasisymmetry and give a natural bi-
jection between indexed forests and noncrossing partitions. In Section 8 we prove the analogue of
the AJS–Billey formula for double forest polynomials and noncrossing partitions.

In the final part of the article we introduce monoids which interpolate between forests and
noncrossing partitions in order to give in-depth descriptions of certain structure constants related
to equivariant quasisymmetry. In Section 9 we introduce some monoids that are used in the re-
mainder of the article. In Section 10 we introduce the ⋆-composition for the Ei operations, and
show how to algebraically extract coefficients in double forest polynomial decompositions. In
Section 11 we show how certain positive straightening rules allow us to verify double Schuberts
expand Graham-positively into double forests, and that the structure coefficients for double forest
multiplication are Graham-positive.

For the convenience of the reader, we include three tables of computed values at the end of the
article. Table 1 contains examples of double forest polynomials. Table 2 contains the expansion
of double Schubert polynomials into double forest polynomials. Table 3 gives the multiplicative
structure constants for the basis of double fundamental polynomials in EQSym4.



8 NANTEL BERGERON, LUCAS GAGNON, PHILIPPE NADEAU, HUNTER SPINK, AND VASU TEWARI

Acknowledgements. We would like to thank Frédéric Chapoton and Allen Knutson for helpful
correspondence/conversations. We are very grateful to the Fields Institute for providing a fantas-
tic work environment.

2. EQUIVARIANT QUASISYMMETRY

We will work with polynomials Z[t][x] in two infinite sets of variables

x = {x1, x2, . . .} and t = {t1, t2, . . .}.

For geometric reasons we call t the equivariant variables and x the non-equivariant variables. Given a
nonnegative integer n we shall denote the truncated sets of variables {x1, . . . , xn} and {t1, . . . , tn}
by xn and tn respectively.

2.1. Equivariantly quasisymmetric polynomials. Our definition of equivariant quasisymmetry
generalizes an algebraic formulation of quasisymmetry that we now recall. For f ∈ Z[x], the ith
Bergeron–Sottile map [7, 25, 26]

Rif = f(x1, . . . , xi−1, 0, xi, xi+1, . . .),

makes the substitutions xi 7→ 0 and xj 7→ xj−1 for all j ≥ i. Then we say that a polynomial
f ∈ Z[xn] is quasisymmetric if Ri+1f = Rif for all 1 ≤ i < n.

We denote

QSymn = {f(xn) ∈ Z[xn] | Ri+1f = Rif for 1 ≤ i < n},

the ring of quasisymmetric polynomials. This algebraic formulation is equivalent to the usual defini-
tion of quasisymmetry for f ∈ Z[xn] which says that the coefficients of the monomials xa11 · · ·x

ak
k

and xa1i1 · · ·x
ak
ik

are equal for every increasing sequence (i1, . . . , ik) of distinct indices.

Definition 2.1. For f(x; t) ∈ Z[t][x], we define the equivariant Bergeron–Sottile maps to be

R−
i f(x; t) = f(x1, . . . , xi−1, ti, xi, xi+1, . . . ; t)

R+
i f(x; t) = f(x1, . . . , xi−1, xi, ti, xi+1, . . . ; t)

We say that f ∈ Z[t][xn] is equivariantly quasisymmetric if R+
i f = R−

i f for 1 ≤ i < n.

We denote

EQSymn = {f(xn; t) ∈ Z[t][xn] | R+
i f = R−

i f for 1 ≤ i < n},

the equivariantly quasisymmetric polynomials. Note that if we set t = 0 then the condition for equi-
variant quasisymmetry becomes the algebraic formulation for quasisymmetry, and therefore

f(xn; t) ∈ EQSymn =⇒ f(xn;0) ∈ QSymn.

Theorem 2.2. For all n ≥ 0, EQSymn is a Z[t]-algebra.
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Proof. The equalizer of the algebra morphisms R+
i and R−

i is a Z[t]-algebra, and so EQSymn is the
intersection of these Z[t]-algebras. □

2.2. Comparison with equivariantly symmetric polynomials. Our definition of equivariant qua-
sisymmetry is closely related to what one might call the equivariantly symmetric polynomials.
Recall the action of S∞ (and Sn) on Z[t][x] from §1.1. Say that an element f ∈ Z[t][xn] is equivari-
antly symmetric if f = w · f for all w ∈ Sn. For each n, the equivariantly symmetric polynomials in
x1, . . . , xn form a subring ESymn of Z[t][xn].

The defining condition for equivariant quasisymmetry can be rephrased as R−
i (f − si · f) = 0,

which weakens the condition for equivariant symmetry. Therefore, we have the containments

ESymn ⊂ EQSymn ⊂ Z[t][xn].

There are also important differences between equivariant symmetry and equivariant quasisym-
metry. The ordinary symmetric polynomials Symn are exactly the equivariantly symmetric poly-
nomials in the subring Z[xn], and moreover ESymn = Z[t]⊗Symn. In contrast, ordinary quasisym-
metric polynomials are typically not even contained in EQSymn, except when n = 0 or n = 1.

Example 2.3. The polynomial f = x21x2 + x21x3 + x22x3 lies in QSym3, but is not equivariantly
quasisymmetric:

R+
1 (f) = t1x

2
1 + x21x2 + t21x2 and R−

1 (f) = t21x1 + t21x2 + x21x2.

We will see in Corollary 4.6 that every element of QSymn can be homogenously deformed using
the equivariant variables to produce an element of EQSymn. For example, one such deformation
of this polynomial would be

(x22x3 + x21x3 + x21x2)− (x2x3 + x1x3 + x1x2)t2 − (x21 + x22)t2 − x21t1
+ (x1 + x2 + x3)t1t2 + (x2 + x1)t

2
2 − (x3 + x2)t

2
1 − t1t22 + t31.

Note that for example the coefficient of t21 is not quasisymmetric, so EQSym3 ̸⊂ Z[t]⊗QSym3.

3. COMBINATORIAL PRELIMINARIES

Throughout we set [n] := {1, . . . , n} for all nonnegative integers n. We let N denote the set of
positive integers. In this section we introduce our main combinatorial objects.

3.1. Binary trees and indexed forests. We quickly recall several relevant notions in the context of
our primary combinatorial object: indexed forests. In order to keep the exposition brief, we refer
the reader to [25, 26] for a more detailed investigation of the associated combinatorics and only
record the facts that we shall need.

A binary plane tree is a rooted tree T in which each node v is an internal node with exactly 2

children vL and vR (the left and right child), or v is a leaf with zero children. Going forward, all
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trees will be binary plane trees, so we shall omit these qualifiers. We write IN(T ) for the set of
internal nodes of T , and we define the size of a tree to be |T | := | IN(T )|. For v ∈ IN(T ), we call
the descendants of vL the left descendants of v and the descendants of vR the right descendants of v.

We write ∗ for the trivial tree with one node. This node is both the root and a leaf, and IN(∗) = ∅.

Definition 3.1. An indexed forest is an infinite sequence F = (T1, T2, . . .) of binary trees where all
but finitely many of the trees are ∗. We write Forest for the set of all indexed forests.

Given Definition 3.1, we extend our notation and terminology for binary trees to indexed forests.
For F = (T1, T2, . . .), the internal nodes of F are

IN(F ) =
∞⋃
i=1

IN(Ti),

and we write |F | = | IN(F )|. Similarly, the leaves of F are the union of the leaves of the Ti. We say
that v is terminal if vL and vR are leaves. The forest with all constituent trees trivial is called the
empty forest and denoted by ∅.

We use distinct labeling conventions for the leaves and the internal vertices of an indexed forest
F = (T1, T2, . . .). The leaves of F will be absolutely identified with N from left to right, so that T1
has leaves 1 through |T1|+1, T2 has leaves |T1|+2 through |T1|+ |T2|+2, and so on. The canonical
label of v ∈ IN(F ) will be the value of the rightmost leaf descendant of vL.

We define its support supp(F ) to be the set of leaves in N that appear in the nontrivial trees in F ,
and for fixed n ≥ 1 we denote the subset of forests supported on [n] by

Forestn = {F ∈ Forest | supp(F ) ⊂ [n]}.

A Sylvester word of a forest F ∈ Forest is an ordered sequence comprising the canonical labels of
the vertices in IN(F ) such that the label of v ∈ IN(F ) appears later than the labels of its children
vL, vR. Let

Syl(F ) = {Sylvester words for F}.
See Figure 2 for an example.

1 2 3 4 5 6 7 8 9 10

{3248, 3284, 3824, 8324, 3428, 3482, 3842, 8342}
F

Syl(F )
2

3

4 8

FIGURE 2. An indexed forest F and its associated Sylvester words

A word w in the alphabet N is injective (in the sense of [11]) if each of its letters are distinct. We
write suppw ⊂ N for the set of letters that w is a permutation of. Every finite injective word w is a
Sylvester word for a unique indexed forest, which is determined as follows.
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For w a permutation of a finite linear order I , we define the binary search tree of w to be the
labeled binary tree T (w) obtained by the following insertion procedure. If w is empty, then T (w)
is the empty tree. So suppose w = w′a and let T ′ := T (w′). If T ′ is empty, then T (w) is the tree
with a single node labeled a. If T ′ is not empty, let b be the label of its root node. Now T (w) is
recursively obtained by inserting a in the right (resp. left) subtree of T ′ if a > b (resp. a < b). When
this procedure terminates, a is necessarily the label of a terminal node.

For w an injective word, decompose suppw = I1⊔· · ·⊔Ik as a disjoint union of maximal disjoint
contiguous intervals in N, and let w1, . . . , wk be the associated permutations of I1, . . . , Ik as they
appear in w (so that w is a shuffle of the letters of w1, . . . , wk). Then w ∈ Syl(F ), where F ∈ Forest

has its nontrivial trees T (w1), . . . , T (wk) with canonical labels that agree with the associated binary
search labelings. For example the injective word w = 3482 has w1 = 342 and w2 = 8, and these
insert to the binary trees constituting the forest F in Figure 2, showing that 3482 ∈ Syl(F ).

Remark 3.2. Our choice of terminology is inspired by Hivert–Novelli–Thibon’s Sylvester con-
gruence [19, §3]. This is an equivalence relation on injective words2 generated by the relation
w1 bw2 acw3 ∼ w1 bw2 caw3 whenever a < b < c. One of the main results in [19] states that the
binary search tree of an injective word w, treated as a permutation of suppw treated as a linear
sub-order of N uniquely determines its equivalence class in the Sylvester congruence. Our sets
Syl(F ) partition the set of all injective words into coarser equivalence classes under the modified
version of the Sylvester relation that

w1acw2 ∼ w1caw2 whenever there exists some a < b < c with b ̸∈ w2.(3.1)

The additional equivalences we allow are when there is such a b between a and c which is not
present in the word at all, in which case a, c are in distinct trees of the indexed forest and we allow
them to freely commute.

Indexed forests can be encoded by sequences of nonnegative numbers. We let Codes denote
the set of sequences (ci)i≥1 of nonnegative integers where all but finitely many entries are 0. For
F ∈ Forest we define the flag ρF : IN(F ) → N by setting ρF (v) to be the label of the leaf obtained
by going down left edges starting from v. The code of F , denoted by c(F ), is defined as

c(F ) = (ci)i∈N, where ci = |{v ∈ IN(F ) | ρF (v) = i}|.

This gives a bijection c : Forest→ Codes. The flag also allows us to define another relevant notion.
For F ∈ Forest, let

LTer(F ) := {ρF (v) | v a terminal node in F}.

Of particular interest is the case where LTer(F ) ⊂ {n} for some n ∈ N. We call such an F a zigzag
forest, and write ZigZagn for the collection of all such forests. Figure 3 depicts a zigzag forest in

2It is defined more generally for words but it suffices to restrict to this setting for our purposes.
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1 2 3 4 5 6 7 8 9 10 11

F
LTer(F ) = {6}

Syl(F ) = {9384576}

FIGURE 3. A zigzag forest in ZigZag6

ZigZag6. Observe that a zigzag forest necessarily has a unique Sylvester word, and it is obtained
by reading the canonical labels starting at the root node and ending at the terminal node.

We define the ith elementary forest i as shown in Figure 4. It is the unique indexed forest of size
1 with i ∈ LTer(F ). The elementary forests generate the monoid on Forest [26, §4] in which F · G
is the forest obtained by attaching, for each i, the ith leaf of F to the ith root of G. This monoid is
isomorphic to the Thompson monoid

ThMon := ⟨1, 2, . . . | i · j = j · (i+ 1) for all i > j⟩,

under the map i 7→ i, and we will always make this identification in what follows. Every element
F of ThMon has a unique representative F = 1a1 · 2a2 · · · where the generators are multiplied in
weakly increasing order, and c(F ) = (a1, a2, . . .).

1 2 3 i i+1 i+2

i =

FIGURE 4. The ith elementary forest

Given F ∈ Forest and i ∈ LTer(F ), we define the trimmed forest F/i to be the indexed forest
obtained by deleting the terminal node v ∈ IN(F ) satisfying ρF (v) = i. Equivalently, F/i is the
unique forest such that F = (F/i) · i. As shown in [26] if c = c(F ) then LTer(F ) = {i | ci >
0 and ci+1 = 0}, and for i ∈ LTer(F ) we have c(F/i) = (c1, . . . , ci−1, ci − 1, ci+2, ci+3, . . .).

The analogue of reduced words for forests are the trimming sequences, defined by

Trim(F ) = {(i1, . . . , i|F |) | F = i1 · · · i|F |}.

While the trimming sequences for F/i are obtained by deleting the last letter from all trimming
sequences of F that end in i, the analogous fact for Sylvester words involves a nontrivial shift.

Observation 3.3. If F ∈ Forest and j ∈ LTer(F ), then the Sylvester words for F/j are obtained by
deleting the last letter from each Sylvester word for F which ends in j and replacing k 7→ k− δk>j .
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3.2. Noncrossing partitions and noncrossing permutations. A set partition P of [n] is a collection
of disjoint nonempty sets {B1, B2, . . . , Bk}—called blocks—whose union is [n]. We depict set par-
titions as arc diagrams, placing elements of [n] along the positive x-axis and connecting sequential
elements of each block with an arc above the axis; see Example 3.4. A set partition P of [n] is
noncrossing if, for every pair P,Q of distinct blocks of P with a, b ∈ P and c, d ∈ Q, we do not have
a < c < b < d; this condition ensures that no arcs in the arc diagram cross. We denote the set of
noncrossing set partitions NCPartn.

Each noncrossing partition P of [n] determines a unique noncrossing permutation σ(P) ∈ Sn as
follows. First write P as B1/B2/ · · · /Bk with the convention that max(B1) < max(B2) < · · · <
max(Bk). Associate to each block B = {ap > ap−1 > · · · > a1} in P the long backwards cycle
cB := (ap ap−1 · · · a1), and define σ(P) ∈ Sn as the product of disjoint cycles

σ(P) :=
∏

1≤i≤k

cBi .

Given this correspondence, we use the terms ‘noncrossing partition’ and ‘noncrossing permu-
tation’ interchangeably when this causes no confusion. We shall also treat the terms ‘blocks’ and
‘cycles’ as synonyms.

Example 3.4. Let P = 138/2/45/67 ∈ NCPart8. Then P is noncrossing, with arc diagram

P = 1 2 3 4 5 6 7 8 .

The associated permutation in NC7 has cycle notation (8 3 1)(2)(4 5)(7 6) and in one line notation
is the more opaque 82154763.

3.3. Nested Forests. Say that a partition P of the set N is finite noncrossing if there exists an N ∈ N
for which {n} ∈ P for all n > N and {B ∈ P | maxB ≤ N} is a noncrossing set partition of [N ].
A nested (indexed) forest F̂ is a family of binary trees (TB)B∈P where P is a finite noncrossing set
partition of N and each TB has |B|-many leaves.

Every indexed forest is a nested forest, and we extend our conventions for indexed forests to
nested forests. For each tree TB in a nested forest F̂ , we absolutely identify the leaves of TB withB
in increasing order from left to right, and define the support of F̂ to be the set supp F̂ of all leaves
of nontrivial trees in F̂ . We also write IN(F̂ ) to denote the set of internal nodes in all TB .

We denote by NestFor the set of nested forests, and we write NestForn for the subset of nested
forests with supp(F̂ ) ⊆ [n]. For F̂ = (TB)B∈P ∈ NestForn we let NCPerm(F̂ ) ∈ Sn be the non-
crossing partition whose cycles are the sets B ∈ P which are contained in [n].
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1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13

FIGURE 5. A nested indexed forest and the noncrossing partition obtained from its support

4. DOUBLE FOREST POLYNOMIALS

Recall the (equivariant) Bergeron–Sottile operators from Section 2.1. It was shown in [26] that if
we define the “trimming operations”

Ti :=
Ri+1f − Rif

xi
= Ri+1∂i = Ri∂i,

then the forest polynomials {PF (x) | F ∈ Forest} are the unique family of homogeneous polyno-
mials such that P∅ = 1 and TiPF = δi∈LTer(F )PF/i. The forest polynomials form a basis of Z[x],
and if we restrict to the forests {F ∈ Forest | LTer(F ) ⊂ [n]} then we obtain a basis of Z[xn].

We define equivariant forest polynomials via their interactions with a new analogue of the trim-
ming operation using the equivariant Bergeron–Sottile operators R−

i and R+
i ; see Definition 2.1.

Definition 4.1. We define the equivariant trimming operation Ei by

Eif :=
R+
i f − R−

i f

xi − ti
= R+

i ∂if = R−
i ∂if.

Unlike the Ti operations which satisfy the Thompson monoid relations

TiTj = TjTi+1 for i > j,

the Ei do not satisfy these relations. In Section 10 we will define a modified composition under
which the Ei operators satisfy these relations.

Theorem 4.2. There is a unique family of homogenous polynomials {PF (x; t) | F ∈ Forest} ⊂
Z[t][x] such that, denoting t̂i = (t1, t2, . . . , ti−1, ti+1, . . .), we have

PF (t; t) =

1 if F = ∅

0 otherwise.
and EiPF =

PF/i(x; t̂i) if i ∈ LTer(F )

0 otherwise.

Proof. Deferred to Section 5.2. □

Definition 4.3. We call the polynomials PF ∈ Z[t][x] in Theorem 4.2 the double forest polynomials.

Example 4.4. In lowest degrees we have P∅(x; t) = 1 and Pi = x1 + · · ·+ xi − t1 − · · · − ti.
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Remark 4.5. If a polynomial f depends nontrivially on xn but not xm for anym > n, then Enf ̸= 0.
It follows that

∞⋂
i=1

ker(Ei) = Z[t].

Therefore by induction on |F | it is clear that double forest polynomials must be unique provided
they exist, which we prove in Section 5.2.

Corollary 4.6. For F ∈ Forest we have PF (x;0) = PF (x), the ordinary forest polynomial. Further-
more,

(1) the double forest polynomials {PF (x; t) | F ∈ Forest} are a Z[t]-basis for Z[t][x], and
(2) {PF (x; t) | LTer(F ) ⊂ [n]} is a Z[t]-basis for Z[t][xn].

Proof. When t = 0, the Ei become the trimming operations Ti, and Theorem 4.2 translates to the
recursive characterization of forest polynomials in terms of the Ti [26, Theorem 6.1], which shows
PF (x;0) = PF (x). Now (1) follows from the fact that {PF (x) | F ∈ Forest} is a Z-basis of Z[x].

For (2), begin by noting that

f ∈ Z[t][xn]⇐⇒ Eif = 0 for all i > n.

If we now write f ∈ Z[t][x] uniquely as f =
∑
aF (t)PF (x; t), then

Eif =
∑

i∈LTer(F )

aF (t)PF/i(x; t̂i),

which is equal to zero exactly when aF = 0 for all F with i ∈ LTer(F ). Demanding Eif = 0 for
i > n now immediately yields (2). □

The following corollary is proved nearly identically, so we omit the proof.

Corollary 4.7.

(1) {PF (x; t1, . . . , tn, 0, . . .) | F ∈ Forest} is a Z[tn]-basis for Z[tn][x].
(2) {PF (x; t1, . . . , tn, 0, . . .) | LTer(F ) ⊂ [n]} is a Z[tn]-basis for Z[tn][xn].

Corollary 4.8. A forest polynomial PF (x; t) depends only on the variables x1, . . . , xmaxLTer(F ) and
the variables t1, . . . , t(max suppF )−1. In particular, if F ∈ Forestn then PF (x; t) ∈ Z[tn−1][xn].

Proof. To show the x-variable dependence, we note that if k is the largest index such that PF (x; t)
depends on xk then

EkPF (x; t) =
1

xk − tk
(PF (x1, . . . , xk; t)−PF (x1, . . . , tk; t)) ̸= 0,

so we must have k ∈ LTer(F ).
To show the t-variable dependence we proceed by induction on |F |. Suppose PF depends

on tk with k ≥ max suppF . Write PF =
∑
hi(x; t̂k)tik where hi is the coefficient of tik. If for
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some i ≥ 1 we have that hi has a nontrivial dependence of xj , then choosing j maximal we have
EjPF = δj∈LTer(F )PF/j(x; t̂j) has nonzero tik coefficient, contradicting our induction hypothesis as
tk appears as the k − 1th equivariant variable in t̂j and k − 1 ≥ max suppF/j. Thus only h0 may
have a nontrivial x-dependence. But now if hi ̸= 0 for any i ≥ 1 then PF (t; t) has a nontrivial
tik-coefficient, contradicting that it is equal to 0. □

A few more basic properties of double forest polynomials, particularly that if F,G are forests
with disjoint sets of leaves that PF⊔G(x; t) = PF (x; t)PG(x; t), are easier to establish with the
combinatorial model we derive later rather than from first principles. We defer these to Section 6.2.

4.1. Double fundamental quasisymmetric polynomials. The fundamental quasisymmetric poly-
nomials are a well-known Z-basis of ordinary quasisymmetric polynomials QSymn. We now recall
from [26] how they are realized as the forest polynomials associated to forests F ∈ ZigZagn, and
use this to obtain a Z[t]-basis of EQSymn given by a new family of “double fundamental qua-
sisymmetric polynomials”.

Definition 4.9. A padded composition of length n is a sequence (0n−ℓ, a1, . . . , aℓ) where ℓ ≥ 0 and
ai > 0 for 1 ≤ i ≤ ℓ. The set of padded compositions of length n will be denoted by Padn.
For c = (0n−ℓ, a1, · · · , aℓ) ∈ Padn, let Set(c) = {a1, a1 + a2, . . . , a1 + · · · + aℓ−1}. The associated
fundamental quasisymmetric polynomial is the generating function

Fc(xn) =
∑

1≤i1≤···≤im≤n
j∈Set(c)=⇒ij<ij+1

xi1 · · ·xim ,

where m := a1 + · · ·+ aℓ.

With this indexing convention, Fc(xn) is the fundamental quasisymmetric polynomial whose
reverse-lexicographic leading term

∏
1≤i≤ℓ x

ai
n−ℓ+i. This would traditionally be indexed by the

“strong composition” (a1, . . . , aℓ).
By interpreting a padded composition c as an element of Codes (by appending 0s at the end),

we can associate the unique indexed forest Fc whose code is c. It was shown in [26, Theorem 8.3]
that

(4.1) Fc(xn) = PFc(xn),

and the map c 7→ Fc gives a bijection from Padn to ZigZagn. For the zigzag forest in Figure 3, the
associated padded composition c ∈ Pad6 is c = (0, 0, 2, 2, 1, 2).

Definition 4.10. Given c ∈ Padn, we define the associated double fundamental quasisymmetric poly-
nomial by

Fc(xn; t) := PFc(xn; t).
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Example 4.11. We give an example of a double fundamental quasisymmetric polynomial com-
puted from the combinatorial model appearing later in Section 5. Consider c = (0, 2, 1) ∈ Pad3.
Then the associated forest is given by 102231 = 2 · 2 · 3 ∈ Forest5, which has the unique Sylvester
word {4, 2, 3}. By Theorem 5.1 we can compute

Fc(x; t) = (x1 − t4)(x1 − t1)(x2 + x3 − t1 − t2) + (x1 + x2 − t1 − t4)(x2 − t2)(x3 − t2).

Observe that the specialization t = 0 is x21x2 + x21x3 + x22x3 + x1x2x3 which is the fundamental
quasisymmetric polynomial indexed by c.

Theorem 4.12. For c ∈ Padn we have Fc(xn;0) = Fc(xn), the ordinary fundamental quasisymmet-
ric polynomial. Furthermore, the set

{PF (xn; t) | F ∈ ZigZagn} = {Fc(xn; t) | c ∈ Padn}

is a Z[t]-basis for EQSymn.

Proof. The specialization at t = 0 to ordinary fundamental quasisymmetric polynomials follows
from Corollary 4.6 in conjunction with (4.1).

We now establish the second half. Note that

f ∈ EQSymn ⇐⇒ Eif = 0 for all i ̸= n.

In particular PF (x; t) ∈ EQSymn for any F ∈ ZigZagn. By Corollary 4.6, the double forest polyno-
mials {PF (x; t) | F ∈ ZigZagn} are Z[t]-linearly independent, hence it remains to show that they
Z[t]-linearly span EQSymn. If we write f ∈ Z[t][x] uniquely as f =

∑
aFPF (x; t), then

Eif =
∑

i∈LTer(F )

aF PF/i(x; t̂i),

which is equal to zero exactly when aF = 0 for all F with i ∈ LTer(F ). If f ∈ EQSymn, then we
infer that the nonzero aF necessarily satisfy LTer(F ) ⊂ {n}, or equivalently, F ∈ ZigZagn. This
concludes the proof. □

We now describe a version of this result where we work only with equivariant variables t1, . . . , tn.

Definition 4.13. We let EQSym[n] := EQSymn ∩ Z[tn][xn]

Since the definition of equivariant quasisymmetry only involves the variables t1, . . . , tn−1 it is
straightforward to verify that

EQSymn = EQSym[n] ⊗ Z[tn+1, tn+2, . . .].

The following is proved almost identically to Theorem 4.12, so we omit the proof.
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Theorem 4.14. The set

{PF (xn; t1, . . . , tn, 0, . . .) | F ∈ ZigZagn} = {Fc(xn; t1, . . . , tn, 0, . . .) | c ∈ Padn}

is a Z[tn]-basis for EQSym[n].

5. A COMBINATORIAL MODEL FOR FOREST POLYNOMIALS

Following [20], we will use the term subword model to refer to the realization of a family of
polynomials F as uniformly-defined generating functions for subwords in a fixed word. A well-
known example of a subword model is the celebrated pipe dream formula for single and double
Schubert polynomials [4, 10, 14, 20, 21]. In this section we define a subword model which allows
us to realize double forest polynomials, and in the next section double Schubert polynomials.
While both models are reminiscent of the pipe dream formula and we have a similar diagrammatic
depiction, the resulting formulas seem to be novel.

We now define a subword model formally (see [20, Definition 1.8.1] for what guides us). A
word is an ordered sequence ω = (ω1, . . . , ωℓ). For convenience we shall often omit parentheses
and commas in writing our words. An ordered subsequence π of ω is called a subword of ω. We
shall abuse notation on occasion and denote this by π ⊂ ω. A weight function on ω is a function
wt : [ℓ] → Z[t][x], which we informally view as assigning an element of Z[t][x] to each letter in ω.
This given, the weight wt(π) of a subword π of ω is the product of the weights of the letters in π.
For a collection of words D, we define

R(ω;D) = {π ⊂ ω | π ∈ D}.

Then the subword generating function associated to D is

(5.1)
∑

π∈R(ω;D)

wt(π).

The relevant collections of words for us are D = Red(w) for some permutation w or D = Syl(F )

for some indexed forest F . In these cases, we will write

R(ω;F ) := R(ω; Syl(F )), and R(ω;w) := R(ω; Red(w)).

In Section 5.1 we define a word ω̃[n] and weight function wt such that the following result holds.

Theorem 5.1. For F ∈ Forestn+1 we have

PF (x; t) =
∑

π∈R(ω̃[n];F )

wt(π).

The proof of Theorem 5.1 is deferred to Section 5.2, after which we give a diagrammatic con-
struction of our subword model in Section 5.3. The same subword model can be used to compute
double Schubert polynomials in Section 6.
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FIGURE 6. The long word ω̃ as a planar array

5.1. The vine subword model. We now define the subword model used in Theorem 5.1, which
we call the vine subword model. Proofs are deferred to Section 5.2. For each 1 ≤ k ≤ n let

ω
(k)
[n] = (n, n− 1, . . . , k + 1, k, k + 1, . . . , n− 1, n),

where the bar is used only as a decoration to distinguish the two instances of i in ω(k). To dis-
tinguish the letters in ω(k) we sometimes denote these letters as i(k) for k ≤ i ≤ n and i

(k) for
k + 1 ≤ i ≤ n; when using this convention we say that i is the value of both i(k) and i(k).

We write ω̃[n] for the concatenation

ω̃[n] = ω
(1)
[n]ω

(2)
[n]ω

(3)
[n] · · ·ω

(n−1)
[n] ω

(n)
[n] ,

omitting the [n] when it is clear from context. In Section 5.3 we will consider ω̃[n] as coming from
a planar array, which may provide some useful intuition here; see Figure 6. We refer to the terms
from ω(k) in ω̃ as the kth syllable of ω̃. For example ω̃[4] consists of four syllables,

(5.2) ω̃[4] = 43 2 1 2 3 4 4 3 2 3 4 4 3 4 4

When finding subwords we only consider the value of each letter. For example |R(ω̃[4]; {2})| = 3,
counting two instances of 2 and one instance of 2.

We assign each letter of ω̃ a polynomial weight in x and t based on its position, value, and the
syllable in which it occurs:

wt(j(i)) = (xi − tj) and wt(j
(i)
) = (tj − ti).

For example, the two instances of 2 in (5.2) have weights x1−t2 and x2−t2 and the solitary instance
of 2 has weight t2 − t1. This in turn means that the subword generating function from (5.1) for
D = {2} equals (x1 − t2) + (x2 − t2) + (t2 − t1) = x1 + x2 − t1 − t2.
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5.2. Proof that double forest polynomials exist. We are now ready to prove Theorem 4.2, that
double forest polynomials exist, and Theorem 5.1, that double forest polynomials are computed
by the subword model. We prove both results by showing that the recursive characterization
(R+

i − R−
i )PF (x; t) = (xi − ti)PF/i(x; t̂i) of forest polynomials also holds for the subword model

(5.3)
∑

π∈R(ω̃[n];F )

wt(π),

as well as the normalization condition PF (t; t) = δF,∅. Our approach is to first devise a sign-
reversing involution which simplifies the application of (R−

i − R+
i ) to the expression in (5.3), and

then to introduce a weight-preserving bijection between the surviving terms and the elements of
R(ω̃[n];F/i).

To begin, say that a word with any two consecutive letters distinct is Smirnov; see [30] for in-
stance. (In particular note that reduced words and Sylvester words are Smirnov.) In the following,
denote by ω̃−

[n],i (resp. ω̃+
[n],i) the subword of ω̃[n] obtained by deleting ω(i)

[n] (resp. the barred letters

from ω
(i)
[n] and the unbarred letters from ω

(i+1)
[n] ). For instance, if n = 6 and i = 3, we have

ω̃−
[6],3 = 65 4 3 2 1 2 3 4 5 6 6 5 4 3 2 3 4 5 6 6 5 4 3 4 5 6 6 5 4 5 6 6 5 6 6

ω̃+
[6],3 = 65 4 3 2 1 2 3 4 5 6 6 5 4 3 2 3 4 5 6 6 5 4 3 4 5 6 6 5 4 5 6 6 5 6 6,

where the gray letters are meant to be ignored. In terms of the planar array in Figure 6, these
words are obtained by striking out two consecutive rows. For ω̃−

[n],i we strike out the consecutive
rows of lengths i+ 1 and i, whereas for ω̃+

[n],i we strike out the two rows of length i.

Proposition 5.2. Let D be a finite set of Smirnov words. Then

R−
i

∑
π∈R(ω̃[n];D)

wt(π) = R−
i

∑
π∈R(ω̃−

[n],i
;D)

wt(π)

R+
i

∑
π∈R(ω̃[n];D)

wt(π) = R+
i

∑
π∈R(ω̃+

[n],i
;D)

wt(π)

Proof. Throughout the proof we write ω̃ for ω̃[n]. The first equality can be rewritten as

R−
i

 ∑
π∈R(ω̃;D)\R(ω̃−

i ;D)

wt(π)

 = 0.(5.4)

To establish this we consider the involution ι on R(ω̃;D) \ R(ω̃−
i ;D) defined as follows. If π

contains i(i), then we declare ι(π) = π. Otherwise, we consider j minimal so that π contains
exactly one of {j(i), j(i)}. Such a j exists as π is Smirnov. Now ι(π) is obtained by swapping j(i) for
j
(i) (or vice versa). Next observe that R−

i wt(π) = 0 if π contains i(i) and R−
i wt(π) = −R−

i wt(ι(π))

otherwise. It follows that (5.4) holds.



EQUIVARIANT QUASISYMMETRY AND NONCROSSING PARTITIONS 21

The proof of the second equality is similar. This time we consider the involution on R(ω̃;D) \
R(ω̃+

i ;D) that takes the maximal j such that π contains exactly one of {j(i), j(i+1)} and then swaps
j
(i) for j(i+1) (or vice versa). Again, the existence of such a j follows from the fact that π is Smirnov.

This involution has the property that it negates each R+
i wt(π) implying that

R+
i

 ∑
π∈R(ω̃;D)\R(ω̃+

i ;D)

wt(π)

 = 0,(5.5)

which is clearly equivalent to the second equality. □

Corollary 5.3. Let D be a finite set of Smirnov words. Then

Ei

∑
π∈R(ω̃[n];D)

wt(π) = R+
i

∑
π∈R(ω̃+

[n],i
;D)

i(i)∈π

wt(π \ {i(i)}).

Proof. As before, we write ω̃ for ω̃[n]. By its definition we have (xi − ti)Ei = R+
i − R−

i . From
Proposition 5.2 it then follows that

(xi − ti)Ei

∑
π∈R(ω̃;D)

wt(π) = R+
i

∑
π∈R(ω̃+

i ;D)

wt(π)− R−
i

∑
π∈R(ω̃−

i ;D)

wt(π).(5.6)

Now consider the injection fromR(ω̃−
i ;D) toR(ω̃+

i ;D) that takes a subword π of ω̃−
i and replaces

all instances of unbarred letters of the form j(i+1) by j(i). Let π′ be the resulting word; this is clearly
in R(ω̃+

i ;D). Furthermore any word in R(ω̃+
i ;D) not containing i(i) can be obtained uniquely as

the image of this injection. Finally note that

R−
i wt(π) = R+

i wt(π′).

Equation 5.6 now becomes

(xi − ti)Ei

∑
π∈R(ω̃;D)

wt(π) = R+
i

∑
π∈R(ω̃+

i ;D)

i(i)∈π

wt(π)(5.7)

The claim follows from observing that the weight of i(i) equals xi − ti = R+
i (xi − ti). □

Lemma 5.4. Let F ∈ Forest. The following are equivalent.

(1) i ∈ LTer(F ).
(2) Neither i− 1 nor i+ 1 come after i in some w ∈ Syl(F ).
(3) Neither i− 1 nor i+ 1 come after i in any w ∈ Syl(F ).

Proof. Note that i ∈ LTer(F ) is equivalent to saying that i is the terminal letter of some word in
Syl(F ) (by Observation 3.3 for example).
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The relations (3.1) from Remark 3.2 do not allow consecutive adjacent numbers in a Sylvester
word to commute past each other. Hence if either of {i−1, i+1} comes after i in some w ∈ Syl(F ),
then i cannot commute to the end of the Sylvester word, preventing it from lying in LTer(F ). On
the other hand, if neither i − 1 nor i + 1 comes after i in some w ∈ Syl(F ), then we claim that
i ∈ LTer(F ). Indeed, if j is the letter to the right of i, then one of i − 1, i + 1 has value between i
and j, so by (3.1) i can commute past j to the right. Applying this repeatedly we can move i to the
end of the Sylvester word and hence i ∈ LTer(F ). □

We are now ready to address the existence of double forest polynomials.

Proof of Theorem 4.2 and Theorem 5.1. Suppose F ∈ Forestn+1. Again we write ω̃ for ω̃[n]. By Re-
mark 4.5 it suffices to show that the ansatz

P′
F (x; t) =

∑
π∈R(ω̃;F )

wt(π)

satisfies

(i) P′
F (t; t) = δF,∅, and

(ii) EiP
′
F (x; t) = P′

F/i(x; t̂i) if i ∈ LTer(F ), and 0 otherwise.

For (i), note that there is an involution on R(ω̃;F ) where we consider the minimal j such that j(i)

or j(i) appears, and either fix the word if j = i, and otherwise swap j(i) for j(i) and vice versa (in
this latter case exactly one of j(i) and j

(i) occurs as the words in R(ω̃;F ) are Smirnov). This is a
sign-reversing involution on the weights wt(π)(t; t) so we conclude that P′

F (t; t) = δF,∅.
For (ii), we consider cases. By Corollary 5.3 we are interested in the right-hand side of

EiP
′
F (x; t) = R+

i

∑
π∈R(ω̃+

i ;F )

i(i)∈π

wt(π \ {i(i)}).

If i ̸∈ LTer(F ), then we claim that there does not exist π ∈ R(ω̃+
i ;F ) so that i(i) ∈ π. Indeed,

in ω̃+
i all letters after i(i) have value ≥ i + 2, so by Lemma 5.4 we have i ∈ LTer(F ) which is a

contradiction. Therefore EiP
′
F (x; t) = 0 in this case, as desired.

On the other hand, suppose i ∈ LTer(F ). We aim to establish that

R+
i

∑
π∈R(ω̃+

i ;F )

i(i)∈π

wt(π \ {i(i)}) = P′
F/i(x; t̂i).(5.8)

Note that Sylvester words have the property that any letter appears at most once. So if we as-
sume that i(i) appears in π ∈ Syl(F ) then we are guaranteed that π cannot contain letters in
{i(i−1), i

(i−1)
, i(i−2), i

(i−2)
, . . . , i(1), i

(1)}.
For clarity we now make the dependence on n explicit. There is a bijection

Φ : ω̃+
[n],i \ {i

(i), i(i−1), i
(i−1)

, i(i−2), i
(i−2)

, . . . , i(1), i
(1)} → ω̃[n−1]
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obtained by applying the following transformations.

j(k) 7→


(j − 1)(k−1) k > i

(j − 1)(k) j > i, k ≤ i
j(k) j < i, k ≤ i

j
(k) 7→


(j − 1)(k−1) k > i

(j − 1)(k) j > i, k ≤ i
j
(k)

j < i, k ≤ i

The map Φ has the property that

R+
i wt(π \ {i(i)}) = wt(Φ(π \ {i(i)}))(x; t̂i).

This given, to conclude (5.8) it remains to show that π 7→ Φ(π \ {i(i)}) is a bijection

{π ∈ R(ω̃+
[n],i;F ) | i

(i) ∈ π} ←→ R(ω̃[n−1];F/i).

To see that this map is well defined, note that in any π ∈ R(ω̃+
[n],i;F ) containing i(i) we must have

all letters after this one have value ≥ i + 2. Hence by Lemma 5.4 we have i ∈ LTer(F ). Therefore
removing i(i) and then applying Φ gives an element of R(ω̃[n−1];F/i). This map is furthermore
clearly injective, so it remains to show that it is surjective.

For π′ ∈ R(ω̃[n−1];F/i), if we append i to the end of the string of values of the letters in Φ−1(π′)

then we obtain an element of Syl(F ). Repeatedly applying the forest Sylvester relation w1aiw2 ∼
w1iaw2 when a ≥ i + 2 and i + 1 ̸∈ w2 (see (3.1)), the string of values for Φ−1(π′) ∪ {i(i)} ⊂ ω̃[n]

also give an element of Syl(F ) as all letters of Φ−1(π′) after i(i) are ≥ i+ 2 in value. The subword
Φ−1(π′) ∪ {i(i)} ⊂ ω̃[n] is then the desired preimage. □

5.3. Vine diagrams. We conclude the section by giving an alternate presentation of our subword
model which we call the pictorial vine model. We associate each letter in ω̃ with an entry of the
planar array from Figure 6, moving row-by-row from top to bottom, reading odd (unbarred) rows
from right to left and even (barred) rows from left to right, so that with the exception of ω(n) each
syllable of ω̃ corresponds to exactly two consecutive rows.

We refer to the places that the individual letters occupy as boxes. Every subword of ω̃ is uniquely
determined by selecting a subset of boxes, and the weight of the selection is the product of the
weights of the selected boxes. The weight of each box is equal to xi − tj if the box is in the jth
column of the ith odd (unbarred) row and tj − ti if the corresponding box is in the jth column of
the ith even (barred) row.

The upshot of this approach is that we can give a diagrammatic criterion for whether a subword
(seen as a subset of boxes) belongs to a particular set D, which for our purposes will either be
Syl(F ) or, in Section 6, Red(w). We do so by placing a pictorial tile in each box according to a
fixed set of rules and considering the resulting structure; see Figure 7 for the tiles used in the
vine diagram. This parallels the diagrammatic realization of the pipe dream formula for Schubert
polynomials, in which each subword is realized as an eponymous diagram [4, 10] .
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cross odd
elbow

even
elbow

T horizontal

FIGURE 7. The various tiling pieces. Pieces 2,3,4,5 are used for the forest vine
model and pieces 1,2,3 are used for the Schubert vine model.

For forest polynomials, we first note that a selection of boxes corresponds to the Sylvester word
of some forest (i.e. no letter is repeated) if and only if we have chosen at most one box from each
column of the diagram. If a subset S of the diagram is selected, then we put a T -shape into the
selected boxes, a horizontal bar in any unselected box above a T -shape, and for the remaining
boxes we put an odd elbow in odd numbered rows and an even elbow in even numbered rows
(see Figure 7). A selection of boxes corresponds to an element of Syl(F ), and hence contributes to
PF if and only if the diagram is combinatorially equivalent to F (see Figure 8).

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 1312

FIGURE 8. A vine diagram and its associated indexed forest

6. THE VINE MODEL FOR SCHUBERT POLYNOMIALS

In this section we state further properties of the vine model from Section 5, and in particular the
following result.

Theorem 6.1. For w ∈ Sn+1 we have

Sw(x; t) =
∑

π∈R(ω̃[n];w)

wt(π)

We prove this result in Section 6.2 after giving a diagrammatic interpretation of this formula.
Under the assumption that forest polynomials exist, the same argument leads to a second proof of
Theorem 5.1; see Remark 6.6. This second proof is noteworthy as it illuminates our initial intuition
for the vine subword model.
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1 2 3 4 5

2 5 4 3 1

FIGURE 9. A vine diagram for the permutation 25431 = s4s3s1s2s4s3s4.

6.1. The vine model for double Schubert polynomials. Before proving Theorem 6.1 we briefly
discuss the new pictorial vine model for double Schubert polynomials which it implies.

The elements ofR(ω̃[n];w) correspond exactly to realizations of the permutation w in the planar
array from Figure 6 as follows. Referring to the first three tiling pieces in Figure 7, given a subsetD
of boxes we place a cross into the selected boxes, and for the remaining boxes we put an odd elbow
in odd-numbered rows and an even elbow in even-numbered rows. Then D belongs toR(ω̃[n];w)

if and only if the resulting tiles connect column i at the bottom of the diagram to column w(i) at
the top, and furthermore no two strands cross more than once; see Figure 9. Thus if we sum over
all such configurations the product of the weights associated to the boxes containing crosses, we
recover the formula in Theorem 6.1.

Remark 6.2. If we set t = 0 in the vine model for Schuberts, then we have effectively forbidden
cross tiles in even numbered rows, rendering these rows superfluous. It is then easily checked that
the vine model recovers the well-known pipe dream model for ordinary Schubert polynomials
[4, 10]. Additionally, our vine model is also compatible with the “back stable limit” and gives a
new formula for back stable double Schubert polynomials. As discussed in [22, §4.4] this is not the
case with the pipe dream formula of Fomin–Kirillov [14] for double Schubert polynomials; indeed
the bumpless pipe dreams introduced in [22, §5] fix this but do not directly recover the pipe dream
formula when t = 0. Setting t = 0 in the vine model for double forest polynomials produces the
diagrammatic interpretation in [27, §4.2].

We now turn to the proof of Theorem 6.1. Throughout we work with a single, fixed value of
n. We begin by carefully choosing a sequence of variable substitutions which transitions from
(x1, . . . , xn) to (t1, . . . , tn).

Definition 6.3. For 1 ≤ i ≤ j we consider two ordered variable sets:

Bj,i =(x1, . . . , xi−1, xi, ti+1, . . . , tj , ti, tj+1, . . . , tn−1), and

Bj,i =(x1, . . . , xi−1, ti, ti+1, . . . , tj−1, xi, tj , . . . , tn−1).
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To each prefix L ⊂ ω̃[n] we associate one of the sets defined above: let

B(L) =


Bj,i if j(i) is the final letter of L,

Bj,i if j(i) is the final letter of L,

(t1, . . . , tn) if L = ∅,

so that B(ω̃[n]) = (x1, . . . , xn).

Our proof depends on the following analysis of how B(L) changes as L is shortened.

Fact 6.4. Let L be a nonempty prefix of ω̃[n] with final letter a, and write L = L′a.

(1) If a = n(i) (resp. a = n(i)), then B(L′) is obtained from B(L) by replacing xi (resp. tn) by tn
(resp. ti) in position n.

(2) If a = j
(i) ̸= n(i), then B(L′) is obtained from B(L) by swapping tj in position j with ti in

position j + 1.
(3) If a = j(i) ̸= n(i), then B(L′) is obtained from B(L) by swapping xi in position j with tj+1

in position j + 1.

For example for n = 3, we have

ω̃[3] = 3(1)2(1)1(1)2
(1)

3
(1)

3(2)2(2)3
(2)

3(3)

and the variable sets

B3(ω̃[3]) = (x1, x2, x3)︸ ︷︷ ︸
B3,3

, (x1, x2, t3)︸ ︷︷ ︸
B3,2

, (x1, x2, t2)︸ ︷︷ ︸
B2,2

, (x1, t2, x2)︸ ︷︷ ︸
B3,2

,

(x1, t2, t3)︸ ︷︷ ︸
B3,1

, (x1, t2, t1)︸ ︷︷ ︸
B2,1

, (x1, t1, t2)︸ ︷︷ ︸
B1,1

, (t1, x1, t2)︸ ︷︷ ︸
B2,1

, (t1, t2, x1)︸ ︷︷ ︸
B3,1

, (t1, t2, t3)︸ ︷︷ ︸
B(∅)

.

Proof of Theorem 6.1. For w ∈ Sn+1, so that Des(w) ⊂ [n], we have ∂n+1Sw = ∂n+2Sw = · · · = 0.
Therefore Sw only depends on x-variables x1, . . . , xn, so we can write Sw(x1, . . . , xn; t) = Sw(x; t)
without ambiguity. We will show that for any prefix L ⊂ ω̃[n] that

Sw(B(L); t) =
∑

π∈R(L;w)

wt(π).

We show this by induction on |L|. For L = ∅ we have Sw(B(∅); t) = Sw(t; t) = δw,id. Otherwise
write L = L′a, where a is j(i) or j(i). The recursion for ∂jSw(x; t) and Fact 6.4 gives

Sw(B(L); t) =

{
Sw(B(L′); t) + wt(a)Swsj (B(L′); t) j ∈ Des(w)

Sw(B(L′); t) otherwise.
(6.1)
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(Note that in case (1) of Fact 6.4, we set xn+1 = tn or ti before applying the recursion for ∂n.) This
exactly matches the recursion on subwords π ∈ R(L;w) given by choosing whether or not π has
final letter a: ∑

π∈R(L;w)

wt(π) =
∑

π∈R(L′;w)

wt(π) + wt(a)
∑

π=π′a∈R(L;w)

wt(π′). □

As an example, in Figure 10 we fully expand the recursion for S3142, where each node keeps
track of the current variable set and permutation.

(x1, x2, x3)

(x1, x2, t3)

(x1, x2, t2)

(x1, t2, x2)

(x1, t2, t3)

(x1, t2, t1)

(x1, t1, t2)

(t1, x1, t2)

(t1, t2, x1)

(t1, t2, t3)

(x1, x2, t3)

(x1, x2, t2)

(x1, t2, x2)

(x1, t2, t3)

(x1, t2, t1)

(x1, t1, t2)

(t1, x1, t2)

(t1, t2, x1)

(t1, t2, t3)

(t1, x1, t2)

(t1, t2, x1)

(t1, t2, t3)

(t1, x1, t2)

(t1, t2, x1)

(t1, t2, t3)

(t1, t2, x1)

(t1, t2, t3)

3142

1342

3124

1324

1234

x3
− t3

t3−
t2

x2
− t3

t3−
t1

x
1 −

t1

x1
− t3

x1 − t1

x 1
−
t 3

x1 − t2

FIGURE 10. The recursion for S3142 = (x2 + x3 − t1 − t2)(x1 − t1)(x1 − t2) fully
expanded out. Each arrow represents a nonzero second term in our recursion, and
the weights of the vine model are recovered by multiplying the labels of any path
which reaches the bottom of column 1234 by moving only down and to the right.

Remark 6.5. The pipe dream formula for double Schubert polynomials can be derived analo-
gously. Recall that for w ∈ Sn+1 this formula states that Sw(x; t) =

∑
π∈R(ω̃pipe

[n]
;w)

wtpipe(π) for

ω̃pipe
[n]

:= n(1) (n− 1)(2)n(2) · · · 2(n−1) · · ·n(n−1) 1(n) · · ·n(n)

and wtpipe(j(i)) = xj+i−n − tn+1−i. One can prove this subword model using the variable sets

Aj,i =(t1, . . . , tn−i, x1, . . . , xj+i−n−1, tn−i+1, xj+i−n, . . . , xi−1) for 1 ≤ j ≤ i ≤ n
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and the recursion

Sw(Aj+1,i; t) =Sw(Aj,i; t) + (xj+i−n − tn+1−i)δj∈Des(w)Swsj (Aj,i; t).

Remark 6.6. Provided one is willing to assume that forest polynomials exist, one can also derive
Theorem 5.1 using the argument above. This proof is our original inspiration for the vine model
and establishes the stronger statement that for any prefix L of ω̃[n], we have

PF (B(L); t) =
∑

π∈R(L;F )

wt(π),

so we sketch it here.
Pursuing a similar inductive argument as we do for double Schubert polynomials, we consider

the case |F |, |L| > 1 and write L = L′a. Then with

B(L/a) =

B(L′)(x, t̂j) if a = j
(i)

B(L)(x, t̂j) if a = j(i)
,

the recursion for EjPF (x, t) and Fact 6.4 give that

PF (B(L); t) =

PF (B(L′); t) + wt(a)PF/i(B(L/a); t̂j) j ∈ LTer(F )

PF (B(L′); t) otherwise.

The final step of the proof amounts to showing that with our inductive hypothesis on |L| and |F |,
the terms above correspond exactly and in a weight-preserving manner to elements π ∈ R(L;F ),
divided by whether the final letter of π has value j or not. While accounting for depleted vari-
able sets make this correspondence more cumbersome to describe, it is morally equivalent to the
bijection used in the proof of Theorem 6.1.

6.2. Further properties of the vine model. We close this section with a couple of elementary
results on double forest polynomials that are not obvious from their definition, in contrast to the
analogous results in the nonequivariant case, but follow easily from the vine subword model.

Corollary 6.7. If F,G ∈ Forest have suppF ∩ suppG = ∅, then PFPG = PF⊔G where F ⊔G is the
indexed forest obtained by overlaying F and G on a common set of leaves.3

Proof. It suffices to assume that F and G are indexed trees. Now note that Syl(F ⊔G) = Syl(F )�

Syl(G) where � denotes the shuffle operation. Given π ∈ Syl(F ⊔ G), let πF (resp. πG) denote
the subword of π consisting solely of letters in supp(F ) (resp. supp(G)). We then have wt(π) =

wt(πF ) wt(πG) which by Theorem 5.1 implies the claim. □

3In terms of codes, F ⊔G is the indexed forest with code c(F ) + c(G) where addition is component-wise.
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Corollary 6.8. If w = si1 · · · sik with all ij distinct, then Sw(x; t) is a positive, multiplicity-free
sum of double forest polynomials. As a special case, the hook Schur s(m−ℓ,1ℓ)(xn; t) decomposes
explicitly as

s(m−ℓ,1ℓ)(xn; t) =
∑

Fc(xn; t)

where the sum is over all (0n−ℓ−1, c1, . . . , cℓ+1) ∈ Padn where all ci > 0 and
∑
ci = m.

Proof. For the first half, note that Red(w) is a disjoint union of Syl(F ) over some indexed forests
F . This is because w is fully commutative, i.e. any two elements of Red(w) can be related by a se-
quence of commutation moves, and any two elements of Syl(F ) are also related via commutation
moves [19, Definition 8].

Regarding the second half of the claim, note that s(m−ℓ,1ℓ)(x1, . . . , xn; t) = Sw where w =

sn−ℓsn−ℓ+1 · · · sn−1sn+m−ℓ−1 · · · sn+1sn. The explicit expansion holds, as it is true under the spe-
cialization t = 0; the latter is a special case of the well-known expansion of Schur polynomials into
fundamental quasisymmetric polynomials [31, Chapter 7]. □

The column shape and the row shape are special cases of hook shapes. In these special cases
one has that the double fundamental quasisymmetric polynomial F0n−a1a (resp. F0n−1a) equals the
double elementary (resp. complete) symmetric polynomial ea(xn; t) (resp. ha(xn; t)). In particular,
F0n−11 = x1 + · · ·+ xn − t1 − · · · − tn.

7. EQUIVARIANT QUASISYMMETRY AND NONCROSSING PARTITIONS

For each σ ∈ S∞, we define the evaluation map

evσ : Z[t][x] → Z[t]
f(x; t) 7→ f(tσ(1), tσ(2), . . . ; t)

.

For λ a nonempty integer partition with at most n parts, the non-constant double Schur polynomi-
als sλ(x1, . . . , xn; t) have the property that evσ sλ = 0 for all σ ∈ Sn. This follows immediately from
the fact that sλ is symmetric in the x-variables, so evσ sλ = evid sλ = 0. The analogous vanishing
for equivariant quasisymmetric polynomials involves the noncrossing partitions NCn ⊂ Sn.

Theorem 7.1. If f(x1, . . . , xn; t) ∈ EQSymn and σ ∈ NCn, then evσ f = evid f . In particular, if
Fc(x; t) is a nonconstant double fundamental quasisymmetric polynomial (so that c ∈ Padn \{∅}),
then evσ Fc = 0 for all σ ∈ NCn.

As an example, we evaluate the equivariant fundamental F(0,2,1)(x; t) computed in Example 4.11
according to the noncrossing partition σ = 213:

F(0,2,1)(t2, t1, t3; t) = (t2 − t4)(t2 − t1)(t1 + t3 − t1 − t2) + (t2 + t1 − t1 − t4)(t1 − t2)(t3 − t2) = 0.

The reader is invited to check that the F(0,2,1)(x; t) vanishes at each of the four remaining elements
of NC3 = S3 \ {231}.
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We prove Theorem 7.1 in Section 7.1 by characterizing NCn in terms of an equivalence relation
on Sn. We then extend the relationship between noncrossing partitions and forest polynomials in
Section 7.2 by constructing a bijection between Forestn and NCn which, in relation to our proof, is
canonical.

7.1. Noncrossing word combinatorics and Theorem 7.1. We now introduce an equivalence rela-
tion which encodes noncrossing permutations.

Definition 7.2. Let ∼NC denote the equivalence relation on Sn generated by the relations σ ∼NC

σsi if i ∈ {σ(i), σ(i+ 1)}.

The relation ∼NC reflects the structure of equivariant quasisymmetry in the sense that if σ ∼NC

τ , we must have evσ f = evτ f for every f(x1, . . . , xn; t) ∈ EQSymn. In this section we show that
NCn is the equivalence class of ∼NC containing id ∈ Sn, see Corollary 7.9, and use this to deduce
Theorem 7.1.

Example 7.3. For n = 3 the equivalence classes are

NC3 = {123, 132, 213, 312, 321} and {231}.

For n = 4 the equivalence classes are

NC4 = {1234, 1324, 2134, 3124, 3214, 1243, 2143, 1423, 1432, 4123, 4132, 4213, 4231, 4321}, and

{1342, 3142}, {2314}, {2341}, {2431, 2413}, {3412}, {3421, 3241}, {4312}

NC4 is pictured in Figure 11 along with the generating equivalences for ∼NC.

We first show that NCn is the equivalence class containing id under ∼NC. 4

Lemma 7.4. Let σ ∈ NCn. Then σsi ∈ NCn if and only if i ∈ {σ(i), σ(i+ 1)}.

Proof. Let P = P(σ) be the set partition given by the blocks of σ. We proceed by taking cases.
If i = σ(i), then {i} is a singleton block in P . Now consider the block B in P containing i + 1.

Since i ̸∈ B we have
cBsi = cB⊔{i}

where ⊔ denotes disjoint union. Replacing {i} and B by B ⊔ {i} cannot violate the noncrossing
property, so σsi ∈ NCn in this case.

Next suppose that i = σ(i+ 1). This then means that both i and i+ 1 belong to the same block,
say B, in P . It then follows that

cBsi = cB∩{1,...,i}cB∩{i+1,...,n},

splitting B into blocks B ∩ {1, . . . , i} and B ∩ {i+ 1, . . . , n}. Again we see that σsi ∈ NCn.

4See also [8, §3.7] where Biane states essentially this criterion.
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FIGURE 11. NC4 with the generating equivalences labeled.

Finally, if i ̸∈ {σ(i), σ(i + 1)}, then i ∈ A ∈ P with |A| ̸= 1 and i + 1 ∈ B ∈ P with A ̸= B.
Multiplying σ by si merges the cycles cA and cB into a single cycle cAcBsi containing A and B.
However, this merged cycle is not equal to cA⊔B :

(cAcBsi)(i+ 1) = σsi(i+ 1) = σ(i) ̸= i = cA⊔B(i+ 1),

so σsi ̸∈ NCn. □

In order to conduct a more careful analysis of the ∼NC classes, we develop a combinatorics of
reduced words for noncrossing partitions; these tools will be used again in later sections.

Definition 7.5. For σ ∈ NCn,

(1) a noncrossing descent of σ is an 1 ≤ i < n such that σsi ∈ NCn and ℓ(σsi) < ℓ(σ); and
(2) a noncrossing reduced word for σ ∈ NCn is a word (i1, i2, . . . , iℓ) such that for all 1 ≤ k ≤ ℓ,

the permutation si1si2 · · · sik is noncrossing and satisfies ik ∈ DesNC(si1 · · · sik).

We write DesNC(σ) and RedNC(σ) for the sets of noncrossing descents and noncrossing reduced
words for σ, respectively.

We note that DesNC(σ) is always a subset of the usual descent set Des(σ) = {i | ℓ(σsi) < ℓ(σ)}.
Similarly, RedNC(σ) is always a subset of the set of ordinary reduced words Red(σ).
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Furthermore, by Lemma 7.4 each noncrossing descent corresponds to a generating equivalence
for ∼NC that decreases the length of σ, and each noncrossing reduced word corresponds to a
length-increasing chain of generating equivalences from id to σ.

Example 7.6. Taking σ = 82154763 ∈ NC7 from Example 3.4 we see that DesNC(σ) = {2, 4, 6}.
Indeed one may check that σs2 = 81254763, σs4 = 82145763, and σs6 = 82154673 belong to
belongs to NC8; for instance

P(σs2) = 1 2 3 4 5 6 7 8 and P(σs6) = 1 2 3 4 5 6 7 8 .

The remaining descents at position 1 and 7 give permutations 28154763 and 82154736, which
are not noncrossing. Considering noncrossing reduced words, this means that every element of
RedNC(σ) must end in 2, 4, or 6; for example

(7, 6, 5, 4, 3, 2, 1, 4, 5, 4, 6, 7, 6, 2) ∈ RedNC(σ).

One can check by computer that of the 183365 elements of Red(σ), only 336 are noncrossing.

Proposition 7.7. Let σ ∈ NCn. Then i ∈ DesNC(σ) exactly when i is the minimal element of its
cycle and i+ 1 is not. In particular for each σ ∈ NCn \{id}we have DesNC(σ) ̸= ∅.

Proof. The first part follows from using Lemma 7.4 together with the fact that ℓ(σsi) < ℓ(σ) if
and only if σ(i + 1) < σ(i). Now consider a non-identity σ ∈ NCn. Find the maximal i with the
property that for all 1 ≤ j ≤ i we have that j is the minimal element in its block. Since σ ̸= id we
know that i < n. By its definition, we must have that i ∈ DesNC(σ). □

Corollary 7.8. Every noncrossing partition has a noncrossing reduced word.

Proof. This follows from iteratively applying Proposition 7.7. □

Corollary 7.9. The equivalence class of ∼NC containing id ∈ Sn is NCn.

Proof. By Lemma 7.4 we know that NCn is a union of equivalence classes, and by Corollary 7.8
every noncrossing partition is equivalent to the identity. □

Proof of Theorem 7.1. By the definition of equivariant quasisymmetry, f takes a constant value on
all (tσ(1), . . . , tσ(n)) for σ in a fixed equivalence class of ∼NC, and NCn is the equivalence class
containing id by Corollary 7.9, so evσ f = evid f = 0. If f = Fc(x1, . . . , xn; t) with c ̸= ∅ then
evid f = 0 by the normalization condition on double forest polynomials, so evσ f = 0. □
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7.2. A bijection ForToNC from indexed forests to noncrossing permutations. In this section we
describe a bijection ForToNC : Forestn → NCn and relate it to the combinatorial structure of
noncrossing reduced words. This bijection will be used in later sections and in particular Theo-
rem 8.17.

We begin with a graphical description of our bijection. Recall the definition of a nested forest
from Section 3.3 and the map NCPerm : NestForn → NCn defined therein.

Given a nested forest F̂ ∈ NestForn, define an operation of ‘deleting the left edge of v’ for
v ∈ IN(F ) as follows. If v is a root, delete v as well as the two edges incident to it. If v is the child
of u, then delete node v as well as the three edges incident to it, and subsequently insert a new
edge uvR from u to the right child vR of v, making vR the left (resp. right) child of u if v was the
left (resp. right) child of u originally. The result will be another nested forest.

Definition 7.10. For F ∈ Forest, let LC(F ) ∈ NestFor be the nested forest obtained by deleting the
left edge of each right child v ∈ IN(F ). We define ForToNC : Forestn → NCn by

ForToNC(F ) = NCPerm(LC(F )).

The map ForToNC is a bijection. As shown in Figure 12, we can recover the code c(F ) =

(c1, c2, . . .) by setting, for an element i contained in the cycle B of NCPerm(LC(F )),

ci =


|B| if i = minB and B is nested in some other cycle,

|B| − 1 if i = minB and B is not nested in any other cycle,

0 otherwise.

Example 7.11. Recall that the permutations in Sn that have at most one descent comprise the
distinguished class of Grassmannian permutations, so it is natural to consider the σ ∈ NCn for
which |DesNC(σ)| ≤ 1. Proposition 7.7 shows that this occurs exactly when there exists an 1 ≤ i ≤
n so that every element in {1, . . . , i} is the minimal in its cycle in σ and no element in {i+1, . . . , n}
is minimal in its cycle. It is not hard to show that under the ForToNC bijection these noncrossing
partitions are the ones that map to the zigzag forests in ZigZagi that are supported on [n], and the
associated permutations are the unique elements of NCn for which there is a unique noncrossing
reduced word.

7.3. The ForToNC bijection via heaps. We now discuss how this bijection naturally arises in the
study of noncrossing reduced words. For σ ∈ Sn, the Tits–Matsumoto theorem [24, 34] states that
any two elements of Red(σ) are connected by a sequence of commutation relations aijb ⇔ ajib

for |j− i| > 1 and braid relations ai(i+1)ib⇔ a(i+1)i(i+1)b. The commutation class of a reduced
word ω ∈ Red(σ) is the subset C(ω) ⊆ Red(σ) of words which can be obtained from ω by applying
exclusively commutation relations.
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left edge deletions
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record block sizes
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FIGURE 12. An example of the map ForToNC and its inverse for n = 13

Proposition 7.12. For σ ∈ NCn, the set RedNC(σ) is a commutation class in Red(σ).

In order to prove Proposition 7.12 we collect the following simple consequences of Lemma 7.4.

Fact 7.13. For σ ∈ NCn and a ∈ DesNC(σ),

(1) for any other b ∈ DesNC(σ), we have |b− a| > 1,
(2) if |b− a| > 1, then b ∈ DesNC(σsa) if and only if b ∈ DesNC(σ), and
(3) there exists an ω ∈ RedNC(σ) whose final letter is a.

Proof of Proposition 7.12. We first show that applying a commutation relation to a noncrossing re-
duced word produces another noncrossing reduced word. As this is a recursive condition on
prefixes, it is enough to check commutations of the final two letters in any ω ∈ RedNC(σ). To this
end write ω = ω1 · · ·ωℓ−2ωℓ−1ωℓ ∈ RedNC(σ) and assume that |ωℓ−ωℓ−1| > 1. We aim to show that
ω′ = ω1 · · ·ωℓ−2ωℓωℓ−1 is a noncrossing reduced word. As ω1 · · ·ωℓ−2 is by assumption a noncross-
ing reduced word, we need only show that ωℓ−1 ∈ DesNC(σ) and ωℓ ∈ DesNC(σsωℓ−1

). To see this,
note that ωℓ−1 is a noncrossing descent for σsωℓ

, so by Fact 7.13 (2) it is also a noncrossing descent
for σ. Thus σsωℓ−1

is a noncrossing partition, so by Fact 7.13 (2) again ωℓ is a noncrossing descent
for σsωℓ−1

.
We now prove that any two noncrossing reduced words for σ are related by commutation

moves. We prove this by induction on ℓ(σ), with base case ℓ(σ) ≤ 1 holding vacuously, so
take ω, ψ ∈ RedNC(σ) for σ having length at least two. If the final letters of ω and ψ are equal
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then our inductive hypothesis completes the proof. So assume that ω and ψ have distinct fi-
nal letters u and v. We then have that u, v ∈ DesNC(σ) and by Fact 7.13 (a), |u − v| > 1. By
Fact 7.13 (b), τ = σsusv = σsvsu ∈ NCn, so we can take ϕ ∈ RedNC(τ) so that ϕv ∈ RedNC(σsu),
ϕu ∈ RedNC(σsv), and both ϕuv and ϕvu belong to RedNC(σ).

Now write ω = ω′u and ψ = ψ′v, so that ω′ ∈ RedNC(σsu) and ψ′ ∈ RedNC(σsv). As ℓ(σsu) =
ℓ(σsv) = ℓ(σ)− 1, our inductive hypothesis makes it possible to reach ϕv from ω′ using commuta-
tion moves, and likewise ϕu from ψ′. Thus, we can go from ω = ω′u to ϕvu in the same way, then
apply the commutation of u and v to get ϕuv, and finally go to ψ′v = ψ. □

Using Proposition 7.12 we can apply the theory of heaps to understand noncrossing reduced
words. What follows is a straightforward application of the theory developed in [32], follow-
ing [36].

Definition 7.14. For ω = ω1 · · ·ωℓ ∈ Red(σ), the heap order is the partial order ⪯ on [ℓ] generated
by taking i ≺ j whenever i < j and |ωi − ωj | ≤ 1. The associated heap Heap(ω) of ω is the labeled
poset ([ℓ],⪯) together with the labeling i 7→ ωi.

We visualize the heap Heap(ω) by embedding the Hasse diagram of ⪯ into the first quadrant so
that node i sits in the line x = ωi, with the largest elements under ⪯ appearing at the bottom; see
Figure 13.

Proposition 7.15 ([32, Proposition 2.2]). For ω ∈ Red(σ), the heap Heap(ω) is uniquely determined
by the commutation class C(ω), and

C(ω) = {ωf(1)ωf(2) · · ·ωf(ℓ) | f : [ℓ]→ [ℓ] is a linear extension of ⪯}.

Example 7.16. Taking σ = 82154763 ∈ NC8 with (7, 6, 5, 4, 3, 2, 1, 4, 5, 4, 6, 7, 6, 2) ∈ RedNC(σ) from
Example 7.6, the heap order is shown in Figure 13 alongside the indexed forest which maps to
σ under ForToNC. The cardinality of RedNC(σ) is the number of linear extensions of this poset,
which we calculate to be 336.

The following proposition shows how the heap associated to σ ∈ NCn naturally encodes the
forest ForToNC−1(σ).

Proposition 7.17. For F ∈ Forestn, write σ = ForToNC(F ) and ⪯ for the heap order determined
by the commutation class RedNC(σ).

(1) The Hasse diagram of ⪯ is a forest F .
(2) Removing the leaves of F produces the Hasse diagram for ⪯ restricted to the final occur-

rence of each letter.

We defer the proof of Proposition 7.17 to Section 8.1, as it requires an in-depth study of a partic-
ular family of noncrossing reduced words that we have not yet introduced.
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1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

FIGURE 13. The heap associated to RedNC(σ) alongside the indexed forest
ForToNC−1(σ) for σ = 82154763. The final nodes in each column of the heap (col-
ored black) correspond exactly to the internal nodes of ForToNC−1(σ).

8. EVALUATIONS AT NONCROSSING PARTITIONS

There is a well-known combinatorial formula for the image of a double Schubert polynomial
under evw, which we restate in Theorem 8.1 below. This formula was independently discovered
by Andersen–Jantzen–Soergel [1] and Billey [9], so we refer to it as the AJS–Billey formula. In what
follows, we remind the reader that the notationsR(ω;w) andR(ω;F ) were defined in Section 5.

Theorem 8.1 ([1, 9]). Let v, σ ∈ Sn and fix a reduced word ω = (i1, . . . , iℓ) ∈ Red(σ). Then letting
σ(p) = si1 · · · sip we have

evσ(Sv) =
∑

π∈R(ω;v)

wt◦π where wt◦π =
∏
ip∈π

(tσ(p−1)(ip+1) − tσ(p−1)(ip)
).

We refer the reader to [35] or [2, Chapter 18] for a geometric perspective on this result; see also
[16] for a generalization.

Example 8.2. For the permutations v = 312 and σ = 321, we have S312(x3; t3) = (x1 − t1)(x1 − t2)
hence evσ(Sv) = (t3 − t2)(t3 − t1). For ω = (2, 1, 2) = (i1, i2, i3) we must have π = (i1, i2) so we
alternately verify by Theorem 8.1 that evσ(Sv) = (t3 − t2)(ts2·2 − ts2·1) = (t3 − t2)(t3 − t1).

In this section we give a similar, AJS–Billey type formula for evσ applied to each double forest
polynomial.
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Theorem 8.3. Let F ∈ Forestn, σ ∈ NCn, and fix ω = (i1, . . . , iℓ) ∈ RedNC(σ). Then letting
σ(p) = si1 · · · sip we have

evσ(PF ) =
∑

π∈R(ω;F )

wt◦π where wt◦π =
∏
ip∈π

(tσ(p−1)(ip+1) − tσ(p−1)(ip)
).

The proof of Theorem 8.3 is given in Section 8.2.

Example 8.4. Consider σ = 4321 ∈ NC4. Pick ω = (3, 2, 1, 2, 3, 2), the solitary element in RedNC(σ).
Now suppose F has code (2, 0, 1, 0, . . . ). From Table 1 we know that

PF (x; t) = (x1 − t1)(x1 − t2)(x2 + x3 − t1 − t2)

In particular evσ PF = (t4 − t1)(t4 − t2)(t3 − t1). Let us check that we obtain the same result by
invoking Theorem 8.3. We have Syl(F ) = {(2, 1, 3), (2, 3, 1)}. Only (2, 1, 3) appears as the subword
π = (i2, i3, i5) ⊂ ω. We thus compute

evσ PF = wt◦π = (ts3·3 − ts3·2)(ts3s2·2 − ts3s2·1)(ts3s2s1s2·4 − ts3s2s1s2·3) = (t4 − t2)(t4 − t1)(t3 − t1).

The rest of the section is laid out as follows: Section 8.1 states some combinatorial results about
noncrossing reduced words, after which Section 8.2 proves the main result. We conclude in Sec-
tion 8.3 by proving some consequences of Theorem 8.3 which have parallels for Schubert polyno-
mials, including Graham-positivity and upper-triangularity of evaluations.

8.1. Bruhat combinatorics of noncrossing partitions. Recall that the (strong) Bruhat order on
Sn is given by σ ≤ τ if and only if some (equivalently any) reduced word ω ∈ Red(σ) occurs
as a subword in some ψ ∈ Red(τ). In Section 7.2 we introduced the notion of a noncrossing
reduced word and established some basic properties of this definition. However, we have not yet
considered (strong) Bruhat order in relation to noncrossing partitions, which is a key aspect of
reduced word combinatorics. In this section we extend the combinatorics of noncrossing reduced
words to the Bruhat order and develop what we need for the remainder of the paper.

We begin by reviewing the work of Gobet–Williams [15], who use the subword combinatorics
of our long word ω̃ to determine the Bruhat order on noncrossing partitions. A particularly nice
feature of this result is that it (inadvertently) identifies a canonical noncrossing reduced word for
each noncrossing partition. Given σ ∈ NCn and i ∈ [n], let

verti(σ) =

2|{cycles in σ nesting i}| if i is maximal in its cycle, and

2|{cycles in σ nesting i}|+ 1 otherwise.

For example, if σ = 82154763 as in Example 3.4, then vert(σ) = (1 2 1 3 2 3 2 0).
It will always be the case that verti(σ) ≤ 2i−1. Since the total number of i’s (barred or unbarred)

in ω̃ is 2i− 1, the following are well-defined.
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Definition 8.5. We define ω̃σ
≤vert ⊂ ω̃ as the subword obtained by selecting, for each i such that

verti(σ) ̸= 0, the first verti(σ) instances of i. Similarly, define ω̃σ
≥vert ⊂ ω̃ as the subword obtained

by selecting, for each i such that verti(σ) ̸= 0, all instances of i at or beyond the first verti(σ)

instances of i. Finally, let

ω̃σ
vert = ω̃σ

≤vert ∩ ω̃σ
≥vert,

so that ω̃σ
vert ⊂ ω̃ contains exactly the verti(σ)’th instance of each letter i for which verti(σ) ̸= 0.

An example with σ = 82154763 as in Example 3.4 is shown in Figure 14; see Figure 15 for an
accompanying pictorial description.

ω̃σ
≤vert =76 5 4 3 2 1 2 3 4 5 6 7 7 6 5 4 3 2 3 4 5 6 7 7 6 5 4 3 4 5 6 7 7 6 5 4 5 6 7 7 6 5 6 7 7 6 7 7

ω̃σ
≥vert =76 5 4 3 2 1 2 3 4 5 6 7 7 6 5 4 3 2 3 4 5 6 7 7 6 5 4 3 4 5 6 7 7 6 5 4 5 6 7 7 6 5 6 7 7 6 7 7

ω̃σ
vert =76 5 4 3 2 1 2 3 4 5 6 7 7 6 5 4 3 2 3 4 5 6 7 7 6 5 4 3 4 5 6 7 7 6 5 4 5 6 7 7 6 5 6 7 7 6 7 7

FIGURE 14. The subword with ω̃σ
≤vert for σ = 82154763.

Proposition 8.6 ([15, Theorem 1.2 and §6.1]). For each σ ∈ NCn, we have ω̃σ
≤vert ∈ RedNC(σ).

Moreover, given also any τ ∈ NCn we have

τ ≤ σ if and only if ω̃τ
≤vert ⊂ ω̃σ

≤vert if and only if verti(τ) ≤ verti(σ) for all 1 ≤ i ≤ n.

Remark 8.7. Proposition 8.6 and the statements in [15] differ in a few superficial ways, the most
notable being that the results of [15] describe the set {σ−1 | σ ∈ NCn}, and accordingly each
reduced word appears in the opposite order (see [5, Rem. 3.5] for a more comprehensive transla-
tion).

Now recall that by Proposition 7.12, every element of RedNC(σ) can be obtained from ω̃σ
≤vert

using commutation relations only. We use this to reduce many properties of noncrossing reduced
words to properties of ω̃σ

≤vert, and we now collect some of these properties for later use.

Lemma 8.8. Let σ ∈ NCn.

(1) For any i ∈ DesNC(σ) with i > 1, any pair of letters i−1 and i+1 appearing in a noncrossing
reduced word for σ must have an i in between them (in this statement we ignore all bar
decorations).

(2) If σ = ForToNC(F ), then ω̃σ
vert ∈ R(ω̃;F ).

(3) Every π ∈ R(ω̃;F ) is contained in ω̃π
≥vert.
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Proof. Take i ∈ DesNC(σ) with i > 1. As commutation relations cannot move an i past an i − 1 or
i + 1, it is sufficient by Proposition 7.12 to verify Statement (1) for ω̃σ

≤vert ∈ RedNC(σ). This will
follow from the fact that either verti−1(σ) < verti(σ) or both verti−1(σ) = verti(σ) and verti+1(σ) <

verti(σ), which we verify in cases. Let C1, C2, . . . , Cs denote the cycles in σ which nest i ordered so
that Cj+1 is nested in Cj for all j, and denote C for the cycle containing i, which we note is nested
in Cs. Then verti(σ) = 2s+δi ̸=maxC . Each of i−1 and i+1 must be nested in C1, . . . , Cs−1, and the
only additional cycles that can possibly nest them are Cs or C. But by Proposition 7.7 we know
that i = minC and i+1 is not minimal in the cycle that contains it, which implies that neither i−1

nor i+1 can be nested by C. If i− 1 ∈ Cs, then i− 1 is nested precisely by C1, . . . , Cs−1, and so we
conclude verti−1(σ) ≤ 2s−1 < 2s ≤ verti(σ). If on the other hand i−1 ̸∈ Cs, then i−1 must be the
largest element of its cycle (as otherwise this cycle nests i below Cs) so verti−1(σ) ≤ 2s ≤ verti(σ).
We note for use in a later proof that at this point we have established in all cases that whenever
i ∈ DesNC(σ), we have

(8.1) verti(σ)− 2 ≤ verti−1(σ) ≤ verti(σ) and verti+1(σ) ≤ verti(σ) + 1.

Here it remains to analyze the case verti−1(σ) = verti(σ). But this is only possible if verti(σ) = 2s,
and so i = maxC. Furthermore by Proposition 7.7 we have i + 1 is not the minimal element
of its cycle, so C must be nested in this cycle. We conclude that i + 1 is not nested by all of
the cycles C1, . . . , Cs that nest C and so i + 1 is nested by exactly C1, . . . , Cs−1 which implies
verti+1(σ) ≤ 2s− 1 < 2s ≤ verti(σ).

For the remaining statements, fix a subword π ⊂ ω̃ whose values are the canonical labels of
IN(F ) each appearing exactly once, and consider the function htπ : IN(F )→ [2n− 1] given by

htπ(i) =

2r − 1 if π contains i(r)

2r if π contains i(r)

In terms of the planar array for ω̃, the function htπ sends i to the index of the row from which π
selects i. The function htπ completely determines π, and π is a Sylvester word of F if and only if,
for each parent-child pair i and j in IN(F ), we have one of:

(i) htπ(i) < htπ(j), or
(ii) j < i and htπ(j) = htπ(i) is even, or

(iii) i < j and htπ(j) = htπ(i) is odd.

We verify directly that the function i 7→ verti(σ) satisfies these conditions. For a parent and
child within the same component of ForToNC(F ), both elements are non-maximal in some cycle
of σ so the values are equal and even (case (ii)). For the left child of a vertex which is removed by
ForToNC during left edge deletion, the parent is the maximum value of a cycle which contains the
child, so the values differ by one (case (i)). For a removed vertex and its right child, we have two
maximal elements in disjoint cycles of σ which are nested beneath the same set of larger cycles, so
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vert(σ) = 1 2 1 3 2 3 2 0

σ = 8 2 1 5 4 7 6 3

vert(σ) = 1 2 1 3 2 3 2 0

FIGURE 15. The (permutation) vine diagram associated to the subword ω̃σ
≤vert and

the (forest) vine diagram associated to the subword ω̃σ
vert for σ = 82145763.

the values are equal and odd (case (iii)). Finally, for a removed vertex and a parent which is not
removed by ForToNC, the parent is in a cycle which nests the child and the child is maximal in its
(disjoint) cycle, so the values differ by one (case (i) again). This proves Statement (2).

For Statement (3) we show that any π satisfying the conditions above has htπ(i) ≥ verti(σ) for
all i ∈ IN(F ). This follows from the preceding argument: verti(σ) assigns the minimum allowed
value at all internal nodes, only increasing when moving between a parent and child pair i and j
with htπ(i) odd and i > j or htπ(i) even and j > i as required. □

We can visualize Lemma 8.8(2) by constructing the vine diagram corresponding to the Sylvester
word ω̃σ

vert, as shown in Figure 15. The reader will readily identify this vine diagram with the heap
in Figure 13 by treating the midpoint of every box in ω̃σ

≤vert as a vertex (rather than just those with
“T”-tiles), illustrating the visual intuition behind Proposition 7.17.

Proof of Proposition 7.17. We first prove that every element covers at most one other element in ⪯.
To this end suppose that we have 1 ≤ a < b < c ≤ ℓ with a and b both covered by c in ⪯.
By definition of the heap order, we must have |ωa − ωc| = |ωb − ωc| = 1, and by assumption
we must have ωa ̸= ωc. Without loss of generality we take ωa = ωc − 1 and ωb = ωc + 1. Then
by Lemma 8.8(1) the letter ωa must appear in some position c′ between positions a and b, implying
that a ≺ c′ ≺ c, a contradiction.

For the second claim, ω̃σ
vert is a Sylvester word for F , so we know that both graphs are defined

on the same underlying set, and we directly verify that each edge in F corresponds to a sequence
of covers in the heap order. For each non-maximal element i of a cycle in σ, let k be the next-
largest element. Then verti(σ) is odd, vertk(σ) > verti(σ) for all j between i and k, and vertk(σ) =

verti(σ) or verti(σ) − 1. Therefore the final occurrence of i and j in ω̃σ
≤vert appears in a sequence

jb(j + 1)(j + 2) · · · i in which b contains only letters strictly greater than j, giving a sequence of
covers in⪯ from j to i. Following a similar argument, we can construct a chain of covers in⪯ from
the largest element of each nested cycle to largest element of the nesting cycle which is still smaller
than the nested cycle. As these are precisely the internal edges of F , the proof is complete. □
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8.2. Proof of AJS–Billey for double forest polynomials. In this section we prove Theorem 8.3.
We begin by introducing an inductive description of the interaction of the trimming operator Ei

and the evaluation operator evσ, proceed to the proof, and conclude with some examples.

Definition 8.9. For a subset S ⊂ [n] and a ∈ [n] which may or may not lie in S, we write

S(â) = {i− δi>a | i ∈ S \ a}.

For a P ∈ NCPartn, let P(â) be the noncrossing partition obtained by replacing each block S with
S(â). If σ := σ(P), we let σâ ∈ NCn−1 be the noncrossing partition corresponding to P(â).

For a noncrossing reduced word ω, let ω(â) be obtained by removing all instances of a in ω and
then decreasing all remaining elements which are larger than a by 1.

Example 8.10. Take σ = 82154763 ∈ NC8 from Example 7.6, with noncrossing reduced word
ω = (7, 6, 5, 4, 3, 2, 1, 4, 5, 4, 6, 7, 6, 2). Then with a = 4 we have ω(â) = (6, 5, 4, 3, 2, 1, 4, 5, 6, 5, 2),

P(σ) = 1 2 3 4 5 6 7 8 , and P(σâ) = 1 2 3 4 5 6 7

so that σâ = 7214653.

Proposition 8.11. For all σ ∈ NCn, a ∈ DesNC(σ), and ω ∈ RedNC(σ) we have ω(â) ∈ RedNC(σâ).

Proof. Proposition 7.12 states that there exists a sequence of noncrossing reduced words ω̃σ
≤vert =

ψ(0), ψ(1), . . . , ψ(k), ψ(k+1) = ω such that each ψ(i) and ψ(i+1) differ by a single commutation move.
Using induction on k, we prove the statement that ω(â) = ψ(k+1)(â) ∈ RedNC(σâ).

For the base case, let ω = ω̃σ
≤vert. We first compute the vertical code from the combinatorial

description of P(σâ). Proposition 7.7 implies that any arcs in P connected to a do not contribute
to the vertical code of P , so we have

vertb(σâ) =

vertb(σ) if b < a,

vertb+1(σ) if b ≥ a.

Thus ω̃σâ
≤vert = ω̃σ

≤vert(â); pictorially we can see this as taking the subset of the planar array for ω̃
corresponding to the subword ω̃σ

≤vert, removing all boxes in column a, and the shifting all boxes
to the right of this column one step to the left.

Now assume that ψ(k)(â) ∈ RedNC(σâ). Let i denote the index at which the commutation be-
tween ψ(k) and ω takes place, so that ωi = ψ

(k)
i+1 and ωi+1 = ψ

(k)
i and ωj = ψ

(k)
j for all j /∈ {i, i+ 1}.

If a ∈ {ωi, ωi+1} then ω(â) = ψ(k)(â) and the proof is complete. Otherwise |ωi − ωi+1| > 1, then
|ωi − δωi>a − ωi+1 + δωi+1>a| > 1 unless possibly {ωi, ωi+1} = {a− 1, a+ 1}, which cannot happen
by by Lemma 8.8 (1) (as the a between a − 1 and a + 1 initially in ψ(k+1) remains between a − 1

and a + 1 after each commutation). Thus ω(â) and ψ(k)(â) differ by a single commutation. Thus
by Proposition 7.12, ω(â) ∈ RedNC(σâ). □
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Proof of Theorem 8.3. We proceed by induction on the length ℓ = ℓ(σ). The case ℓ = 0 is trivial, so
we assume ℓ ≥ 1. Throughout, we set a := iℓ, the final letter of our fixed noncrossing reduced word
ω ∈ RedNC(σ). While there may be other instances of the letter a in ω, we are solely concerned
with the final instance in ω in the following.

Since ω ∈ RedNC(σ), we have σsa ∈ NCn. Lemma 7.4 implies a ∈ {σ(a), σ(a + 1)}, so the Ea

recursion then gives

evσ PF =

evσsa PF + (tσ(a) − tσ(a+1))
(
(evσâ

PF/a)(̂ta)
)

if a ∈ LTer(F ),

evσsa PF otherwise,
(8.2)

where (evσâ
PF/a)(̂ta) is obtained from evσâ

PF/a by replacing all instances of tb where b ≥ a with
tb+1. We now apply our inductive hypothesis to each case on the right hand side above.

Consider first the case where a /∈ LTer(F ). This means that no word in Syl(F ) ends in a. Let
ω′ := (i1, . . . , iℓ−1), which must belong to RedNC(σsa). We have by induction that

evσsa PF =
∑

π∈R(ω′;F )

wt◦π(8.3)

As the jth letter of ω and ω′ agree for all j < ℓ,R(ω′;F ) = R(ω;F ) and we thus conclude

evσ(PF ) = evσsa(PF ) =
∑

π∈R(ω′;F )

wt◦π =
∑

π∈R(ω;F )

wt◦π .

Now suppose a ∈ LTer(F ), so that every word in Syl(F ) contains a. Like before, the sum of wt◦π
over all subwords π ⊂ ω that do not use the last letter in ω gives evσsa PF , while the remaining
terms are divisible by (tσ(a) − tσ(a+1)), so∑

π∈R(ω;F )

wt◦π = evσsa PF + (tσ(a) − tσ(a+1))
∑

π∈R(ω;F )
final a ∈ π

∏
ip∈π
p ̸=ℓ

(tσ(p−1)(ip+1) − tσ(p−1)(ip)
).

Considering the second term above, we claim that the map π → π(â) gives a bijection from the set
{π ∈ R(ω;F ) | final a ∈ π} to R(ω(â);F/a). From Observation 3.3, removing the last letter from
π and decrementing all letters strictly larger than a by 1 produces a Sylvester word π(â) for F/a.
Furthermore, π(â) is a subword of ω(â), which by Proposition 8.11 belongs to RedNC(σâ).

To describe the effect of our bijection on the weight of each subword, let g : N → N be the map
sending x 7→ x+ δx≥a. Thus tg(i) is the ith element of the variable set t̂a. For each fixed 1 ≤ p < ℓ

with ip ̸= a (which includes all ip such that ip ∈ π since only the final letter of π is a), we can write
(i1i2 · · · ip)(â) = j1j2 · · · jq so that g(j1) · · · g(jq) is the sublist of i1 · · · ip where we omit all instances
of a, and ip = g(jq). By Proposition 8.11, j1j2 · · · jq−1 ∈ RedNC((σâ)

(q−1)), and we claim that

(8.4) σ(p−1)(ip) = g
(
(σâ)

(q−1)(jq)
)

and σ(p−1)(ip + 1) = g
(
(σâ)

(q−1)(jq + 1)
)
,

which we prove in Lemma 8.12 below.
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Once this has been proved, it follows that∑
π∈R(ω;F )
final a ∈ π

wt◦π = (tσ(a) − tσ(a+1))
∑

π(â)∈R(ω(â);F/a)

∏
jq∈π̂

(
t
g
(
(σâ)(q−1)(jq+1)

) − t
g
(
(σâ)(q−1)(jq)

))

= (tσ(a) − tσ(a+1))
(
evσâ

PF/a

)
(̂ta),

which in view of the previous considerations completes the proof. □

Lemma 8.12. If σ ∈ NCn, a ∈ DesNC(σ), and ω = i1 · · · iℓ ∈ RedNC(σ) with iℓ = a, then for any
1 ≤ p < ℓ with ip ̸= iℓ, we have:

• ip ̸= a− 1 and σ(p−1)g(j) = g
(
(σâ)

(q−1)(j)
)

for all j, or
• ip ̸= a+ 1 and σ(p−1)sag(j) = g

(
(σâ)

(q−1)(j)
)

for all j,

where g(x) = x+ δx≥iℓ and (i1i2 · · · ip)(â) = j1j2 · · · jq as in the proof of Theorem 8.3 above.

This lemma implies Equation (8.4) by taking j = jq and jq + 1: if jq ̸= a − 1 then g(jq + 1) =

g(jq) + 1 = ip + 1, and if jq ̸= a then sag(jq) = g(jq) = ip and sag(jq + 1) = g(jq) + 1 = ip + 1.

Proof. Let a = iℓ. We begin by observing that gsa−1 = sasa−1sag and gsr = sg(r)g for all r ̸= a− 1.
Therefore if i′1 · · · i′s is a list in which all instances of a− 1 and a occur as a disjoint union of triples
of the form a(a − 1)a, then si′1 · · · si′sg = gsj1 · · · sjq−1 , where j1 · · · jq−1 is the associated depletion
(i′1 · · · i′s′)(â). We therefore construct a (possibly nonreduced) word i′1 · · · i′s for σ(p−1) or σ(p−1)sa

whose depletion is exactly j1 · · · jq. This is accomplished by modifying either i1 · · · ip or i1 · · · ipa
using two operations which do not change the associated permutation or depletion: commutation
moves of the form ab 7→ ba with |a− b| ≥ 2 and insertions or removing instances of aa.

Consider the subsequence of i1i2 · · · ip containing all instances of a − 1 and a. Commutation
relations do not affect this subsequence, so it is a truncation of the analogous subsequence for
ω̃σ
≤vert. Because a ∈ DesNC(σ), we have the inequalities verta(σ) − 2 ≤ verta−1(σ) ≤ verta(σ)

and verta+1(σ) ≤ verta(σ) + 1 observed in the proof of Lemma 8.8(1) in equation (8.1). It follows
that this subsequence begins with a, has some number of repetitions of a− 1, a− 1, a, a, and then
possibly ends with a prefix of a − 1, a − 1, a, a or a − 1, a, a. Moreover every a + 1 in our word
appears between two consecutive a’s in this sequence, except possibly before the first a, or when
the subsequence ends in a− 1, a, after the last a.

We now proceed to modify the word i1i2 · · · ip−1 as described above (adding an extra a at the
end in one of the cases). First, for each a, a− 1, a− 1, a or a, a− 1, a in our subsequence of a’s and
a− 1’s, we can use commutation relations to move the a’s until they are adjacent to the a− 1’s in
the original list. Next, any two a − 1’s with no a in between them must be separated entirely in
the original list by letters b with |a − b| ≥ 2, so we can introduce two copies of a at any point in
this interval; we do so directly next to each a − 1. The result is a word for σ(p−1) in which all a’s
and a − 1’s occur in triples of adjacent letters a(a − 1)a, possibly followed by a “remainder” of a
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or a(a − 1) (also adjacent). If there is no remainder, we have obtained a word of the desired form
for σ(p−1); in this case note that the final letter ip cannot be a− 1 as there is a single a following the
previous instance of a− 1 in our word.

If there is a remainder of either a or a − 1, then the letters between this remainder and ip (in-
cluding ip) are not a + 1, as this violates the pattern of a, a − 1, and a + 1 described above. We
can therefore move the letter a between the end of our word to the end of the remainder using
commutation relations. If the remainder is a, we move it to the end so that our word ends in aa,
which we can remove. If the remainder is a(a− 1), we move the a from the end of our word to the
end of the remainder to form an a(a− 1)a. □

8.3. Consequences of the AJS–Billey formula for forests. We now show that our evaluations
of double forest polynomials share two important properties with the actual AJS–Billey formula.
First, recall from the introduction that a(t) is Graham-positive if it lies in Z≥0[t2−t1, t3−t2, . . .]. The
previous examples suggest that evaluations of double forest polynomials at noncrossing partitions
are Graham-positive. Our next result establishes this in general.

Corollary 8.13. The evaluation of a forest polynomial PF at a noncrossing partition σ is Graham-
positive.

Proof. Fix ω = (i1, . . . , iℓ) ∈ RedNC(σ). For 1 < p ≤ ℓ, we have that ip is not a descent for σ(p−1). So
σ(p−1)(ip +1) > σ(p−1)(ip). It follows that every factor in wtπ is of the form tb− ta for b > a, where
π ∈ R(ω;F ). □

Now, recall that evaluations of double Schubert polynomials are upper triangular with respect
to the Bruhat order, in that evσ(Sv) = 0 if and only if v ̸≤ σ. This is immediate from the subword
criterion for Bruhat comparison, but our analogous result requires some more legwork. Recall the
bijection ForToNC : Forestn → NCn given in Section 7.2.

Theorem 8.14. Let σ ∈ NCn and F ∈ Forestn. Then evσ(PF ) = 0 if and only if ForToNC(F ) ̸≤ σ in
the Bruhat order.

Proof of Theorem 8.14. By Proposition 8.6, and the fact that a sum of Graham-positive nonzero ex-
pressions is nonzero, we know that ω̃σ

≤vert is a noncrossing reduced word for σ. By Theorem 8.3 it
suffices to show that

ForToNC(F ) ≤ σ ⇐⇒ R(ω̃σ
≤vert;F ) is nonempty.

First suppose that ForToNC(F ) ≤ σ. By Proposition 8.6 we know that ω̃ForToNC(F )
≤vert ⊂ ω̃σ

≤vert

and by Lemma 8.8(2) we know that ω̃ForToNC(F )
vert is a Sylvester word for F , so ω̃

ForToNC(F )
vert ∈

R(ω̃σ
≤vert;F ).
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Now suppose thatR(ω̃σ
≤vert;F ) ̸= ∅. Then there exists a π ∈ Syl(F ) that is a subword of ω̃σ

≤vert.

By Lemma 8.8(3) this subword has the additional property that π ⊂ ω̃ForToNC(F )
≥vert , so we must have

ω̃
ForToNC(F )
≤vert ⊂ ω̃σ

≤vert. Thus ForToNC(F ) ≤ σ by Proposition 8.6. □

The AJS–Billey formula also shows that double Schubert polynomials have the property

evw Sw(x; t) =
∏

(a,b)∈Inv(w)

(tw(a) − tw(b)).

A similar formula exists for evσF (PF ). For σ ∈ NCn, define the noncrossing inversion set of σ to be

InvNC(σ) := {(i, j) ∈ [n]2 | i < j, σ(i j) ∈ NCn and σ(i) > σ(j) }.

Example 8.15. For σ = 82154763 ∈ NC8 in Example 3.4 we have

InvNC(σ) = {(1, 3), (1, 8), (2, 3), (4, 5), (4, 8), (6, 7), (6, 8)}.

Proposition 8.16. For σ ∈ NCn, (i, j) ∈ InvNC(σ) if and only if i is the smallest element in its cycle
and either

(1) j belongs to the same cycle as i, or
(2) σ(j) < i < j and j is minimal with respect to this property.

Proof. LetA andB denote the parts of σ containing i and j, respectively. IfA = B, then σ(i) > σ(j)

occurs only when i = minA. In this case, clearly σ(i, j) ∈ NCn as it splits the cycle A into the
product c{1,...,σ(j)}∩A c{σ(j)+1,...,n}∩A of two disjoint cycles.

If, on the other hand, A ̸= B then σ(i) > σ(j) if and only if A is nested in B, and σ(j) < i. In
this case cAcB(i, j) = cA⊔B exactly when i = minA, and σ(i, j) is noncrossing exactly when there
is no cycle C of σ nested between B and A, in that A is nested in C and C is nested in B. The latter
is equivalent to j being minimal with respect to the property that σ(j) < i < j. □

Theorem 8.17. For F ∈ Forestn and σ = ForToNC(F ) we have

evForToNC(F )(PF ) =
∏

(a,b)∈InvNC(σ)

(tσ(a) − tσ(b)).

Proof. We apply Theorem 8.3 with ω = ω̃F
≤vert, which lies in RedNC(σ) by Proposition 8.6.

By Lemma 8.8(3), apart from ω̃
ForToNC(F )
vert , every Sylvester subword of F in ω̃ contains a letter

that is not in ω̃
ForToNC(F )
≤vert , so R(ω;F ) contains a unique element which gives the same Sylvester

word as ω̃ForToNC(F )
vert . By Theorem 8.3 we know that this is of the form

∏|F |
i=1(tci − tdi) for some

sequences c1, . . . , c|F | and d1, . . . , d|F | with ci > di for all i.
Now, for any polynomial f , permutation w and i ̸= j we have the divisibility relations (tw(i) −

tw(j))
∣∣(evw f − evw(i,j) f). So taking w = σ and noting that evσ(i,j)PF = 0 for (i, j) ∈ InvNC(σ) by

Theorem 8.14 we deduce that
∏

(a,b)∈InvNC(σ)
(tσ(a) − tσ(b)) divides evσ(PF ). □
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Remark 8.18. The set InvNC(σ) has a combinatorial description in terms of indexed forests. For
F ∈ Forestn and v ∈ IN(F ), we define the spread of v as the pair (i, j) such that i is the leftmost
leaf descendant of v and j is the rightmost leaf descendant of v. Define the spread set of F as

Sp(F ) = {(i, j) | i < j spread of some v ∈ IN(F )}.

Then one can directly verify that Sp(F ) = InvNC(ForToNC(F )), so an alternative statement of The-
orem 8.17 is

evForToNC(F )(PF ) =
∏

(a,b)∈Sp(F )

(tσ(a) − tσ(b)).

9. MONOIDS

In this section we recall combinatorial monoids which structure the composition of equivariant
quasisymmetric divided difference operators and equivariant Bergeron–Sottile maps. In previous
work [26, 25], it was established that in the non-equivariant setting the analogous compositions are
intimately related to rewriting rules in an augmented version of the positive Thompson monoid.
Elements of this monoid are parameterized by the indexed forest and nested forests described in
Section 3. In order to generalize the results of [26, 25] to the equivariant setting, and in particular
to account for the variable depletion in Theorem 4.2, we undertake an even finer study of this
monoid and quotients thereof here.

Throughout we denote by RESeq be the set of strings of letters from the alphabet

∞⋃
i=1

{r−i , r
+
i , ei}.

This set has the structure of a free monoid under concatenation. For example, the product of
r−2 r

+
3 e2 ∈ RESeq and r+1 r

−
1 ∈ RESeq is r−2 r

+
3 e2r

+
1 r

−
1 ∈ RESeq.

9.1. The marked nested forest monoid. We quickly recall some notions from [25]. A marked nested
forest [25, Definition 3.9] is a nested forest F̂ in NestFor alongside the extra data marking some
finite subset of the roots nodes in the constituent trees of F̂ by ⊗ such that the root nodes of
indexed trees that are nested are necessarily marked. Write mNestFor for the set of marked nested
forests. This has a natural monoid structure F̂ · Ĝ given by joining the ith leaf of F̂ to the ith
unmarked root of Ĝ for all i ∈ N and preserving all markings; see [25, Definition 3.11]. Just as
Forest has a presentation by the Thompson monoid ThMon, in [25] it was shown that mNestFor

has a similar presentation by the augmented Thompson monoid introduced in [25, Definition 3.7].
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Theorem 9.1 ([25, Theorem 3.12]). mNestFor has a presentation given by the quotient of the free
monoid ⟨r−1 , r

−
2 , . . . , e1, e2, . . .⟩ ⊂ RESeq by the formal commutation relations

eiej = ejei+1 if i > j, eir
−
j = r−j ei+1 if i ≥ j,

r−i ej = ejr
−
i+1 for i > j, r−i r

−
j = r−j r

−
i+1 if i ≥ j.

under the identification in Figure 16.

1 2 3 i i+1 i+2 1 2 3 i−1 i i+1

ei 7→ r−i 7→

FIGURE 16. Generators for mNestFor

Note that if we restrict to the monoid generated by e1, e2, . . . then identifying these generators
with 1, 2, . . . we recover the presentation ⟨i · j = j · (i+ 1) | i > j⟩ of ThMon ∼= Forest.

9.2. The ⋆-monoid. We define the ⋆-monoid S as the submonoid of mNestFor generated by r−1 , r
−
2 , . . ..

Identifying these generators with the integers 1, 2, . . ., this has a presentation

S := ⟨i | i ⋆ j = j ⋆ (i+ 1) for i ≥ j⟩.

The relations allow any element to be rewritten canonically in strictly increasing order, so the
elements of S can be identified with finite subsets of N. Under this correspondence if A,B ⊂ N
are finite subsets then

A ⋆ B = {Bi | i ∈ A} ∪B.

where Bi denotes the ith element of N \ B. For instance, if A = {1, 3, 4} = 1 ⋆ 3 ⋆ 4 and B =

{2, 3, 6} = 2 ⋆ 3 ⋆ 6, then A ⋆ B = {1, 2, 3, 5, 6, 7}.
Note that the defining relations of ThMon demand i · j = j · (i+1) for i > j, so there is a natural

map Forest→ S. We can describe this map in a straightforward way. Given F ∈ Forest let

L(F ) = {x | x, x+ 1 ∈ suppF},

or equivalently as the set of canonical labels of the internal nodes of F . We note that this is in fact
the definition of support in [28].

Lemma 9.2. For an indexed forest F = i1 · · · ik we have L(F ) = i1 ⋆ · · · ⋆ ik.

Proof. This follows inductively from the fact that L(G · i) = L(G) ⋆ i for any indexed forest G. □
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1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6

1

2 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

F̂

Ĝ

F̂ · Ĝ

FIGURE 17. Two elements in mBNestFor (left) and their product (right)

9.3. Marked bicolored nested forests and marked RE±-forests.

Definition 9.3. A marked bicolored nested forest is a marked nested forest where each internal node
has been colored either black or white { ∧ , ∧ }, and denote mBNestFor for the set of all such
forests. This has a monoid structure inherited from mNestFor.

Proposition 9.4. The monoid structure on mBNestFor can be described as the quotient of the free
monoid RESeq by the formal commutation relations

eiej = ejei+1 for i > j

r−i r
−
j = r−j r

−
i+1 for i ≥ j, r+i r

+
j = r+j r

+
i+1 for i > j,

r+i r
−
j = r−j r

+
i+1 for i ≥ j, r−i r

+
j = r+j r

−
i+1 for i > j,

eir
−
j = r−j ei+1 for i ≥ j, r−i ej = ejr

−
i+1 for i > j

eir
+
j = r+j ei+1 for i > j, r+i ej = ejr

+
i+1 for i > j.

under the identification in Figure 18.

1 2 3 i i+1 i+2

1 2 3 i−1 i i+1

1 2 3 i i+1 i+2

ei 7→

r+i 7→

r−i 7→

FIGURE 18. Generators for mBNestFor

Proof. This follows from the presentation of Theorem 9.1 as we replaced each ei generator with
two copies of it, ei and r+i . □
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Definition 9.5. We define the marked RE±-forests mREFor to be the quotient of mBNestFor under
the further relations

eir
+
i+1 = r+i ei and r+i r

+
i+1 = r+i r

+
i .

The two relations in Definition 9.5 are graphically represented in Figure 19. Note that these
correspond to rotations on binary trees, which is how one obtains the Tamari lattice [33]. In our case
we only need to perform these rotation moves when a white node is a right child.

A

B C

=

A B

C A

B C

=

A B

C

FIGURE 19. Additional relations in mREFor

FIGURE 20. Two equivalent forests in mREFor, with the right forest in normal form

Note that because mREFor is graded in Z3 by the number of r+, r−, e, we can identify within
mREFor the submonoids generated by only taking letters of a certain type. For example, the sub-
monoid generated by e is ThMon ∼= Forest, and the submonoid generated by e and r− is mNestFor.

Remark 9.6. Say that F ∈ mBNestFor is in normal form if no white internal node is a right child. It
is clear that applying the additional relations in mREFor will eventually lead to such a forest, and
in the sequel [6] we will show that every element of mREFor in fact has a unique normal form.5

10. COEFFICIENT EXTRACTION AND ⋆-COMPOSITION

This section solves the problem of writing f ∈ Z[t][x] as a Z[t]-linear combination of double
forest polynomials. For double Schubert polynomials we have the identity for any f ∈ Z[t][x] that

f =
∑

awSw(x; t) for aw(t) = (∂wf)(t; t).

For double forest polynomials we will analogously define algebraic extraction operators [ev ⋆EF ] :

Z[t][x]→ Z[t] obtained by composing the Ei in a modified way we call “⋆-composition” such that

f =
∑

aF (t)PF (x; t) for aF (t) = [ev ⋆EF ]PF .

5As pointed out to us by F. Chapoton, this uniqueness can be directly proved using the Gröbner bases for operads.
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10.1. ⋆-composition. LetA ⊂ N be a finite subset andA = N\A ordered naturally. For each i ≥ 1,
let ti,A := t(A)i

, and t̂A = (t1,A, t2,A, . . .). Now define

evA f(x; t) = f (̂tA; t)

R−
i,Af(x; t) = f(x1, . . . , xi−1, ti,A, xi, xi+1, . . . ; t)

R+
i,Af(x; t) = f(x1, . . . , xi−1, xi, ti,A, xi+1, . . . ; t)

Ei,Af(x; t) =
R+
i,Af(x; t)− R−

i,Af(x; t)
xi − ti,A

.

Definition 10.1. We define a ⋆-word to be a formal string Φ = Xi1 ⋆ Xi2 ⋆ · · · ⋆ Xik with each
Xi ∈ {R+

i ,R
−
i ,Ei}, and we define the ⋆-weight to be Φ := i1 ⋆ · · · ⋆ ik ∈ S. For Ω ∈ RESeq we

let ΦΩ be obtained by replacing each letter with its corresponding operator and separating the
consecutive letters with ⋆.

For A ⊂ N a finite subset we define operations

[Xi1 ⋆ · · · ⋆ Xik ]A :=Xi1,i2⋆···ik⋆AXi2,i3⋆···ik⋆A · · ·Xik,A : Z[x][t]→ Z[x][t]

[ev ⋆Xi1 ⋆ · · · ⋆ Xik ]A := evi1⋆···⋆ik⋆A[Xi1 ⋆ · · · ⋆ Xik ]A : Z[x][t]→ Z[t].

We omit A from the notation if A is the empty set.

Note that from their definition we can recursively compute these operations as

[Φ1 ⋆ Φ2]A = [Φ1]Φ2⋆A[Φ2]A

[ev ⋆Φ]A = [ev]Φ⋆A[Φ]A.

Example 10.2. Let Ω = e3r
+
2 r

−
1 e2. Then the ⋆-word ΦΩ is given by E3⋆R

+
2 ⋆R

−
1 ⋆E2, and the ⋆-weight

is given by 3 ⋆ 2 ⋆ 1 ⋆ 2 = {1, 2, 4, 6}. The corresponding operations for A = ∅ are

[ΦΩ] = E3,{1,2,4}R
+
2,{1,2}R

−
1,{2}E2

[ev ⋆ΦΩ] = ev{1,2,4,6} E3,{1,2,4}R
+
2,{1,2}R

−
1,{2}E2.

Our next task is to make a connection between ⋆-composition and the monoids from Section 9.
To this end we introduce the notion of ⋆-compatibility.

Definition 10.3. Given ⋆-words B1, . . . , Bk we say that a relation∑
1≤i≤k

ai(t)[Bi] = 0

is ⋆-compatible if we have the following equality of ⋆-weights:

B1 = B2 = · · · = Bk.
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Proposition 10.4. Given a ⋆-compatible relation
∑
aj(t)[Bj ] = 0, a finite set A ⊂ N, and ⋆-words

Φ1,Φ2, the following hold: ∑
aj (̂tΦ2⋆A)[Φ1 ⋆ Bj ⋆ Φ2]A = 0,∑

aj (̂tΦ2⋆A)[ev ⋆Φ1 ⋆ Bj ⋆ Φ2]A = 0.

Proof. Let B1 = B2 = · · · = M ∈ S. The second identity follows from the first by applying
evΦ1⋆M⋆Φ2⋆A, so we will show the first identity. It is clear that

∑
aj (̂tΦ2⋆A)[Bj ]Φ2⋆A = 0 for all A, as

this amounts to applying the identity using the equivariant variables t̂Φ2⋆A, and treating {ti}i∈Φ2⋆A

as formal commuting variables. We thus compute∑
aj (̂tA⋆Φ2)[Φ1 ⋆ Bj ⋆ Φ2]A =

∑
aj (̂tA⋆Φ2)[Φ1]M⋆Φ2⋆A[Bj ]Φ1⋆A[Φ2]A

=[Φ1]M⋆Φ2⋆A

(∑
aj (̂tΦ2⋆A)[Bj ]Φ2⋆A

)
[Φ2]A = 0. □

Theorem 10.5. Each relation arbs = ctdu from Proposition 9.4 and Definition 9.5 (i.e. the defining
relations of mREFor) gives a ⋆-compatible relation

[Ar ⋆ Bs] = [Ct ⋆ Du].

In particular, if Ω,Ω′ ∈ RESeq induce the same element of mREFor, then [ΦΩ] = [ΦΩ′ ] is a ⋆-
compatible relation. Furthermore if Ω,Ω′ give the same element of mREFor up to the locations of
markings of roots then [ev ⋆ΦΩ]A = [ev ⋆ΦΩ′ ]A for all finite sets A.

Proof. First we check the R±
i ⋆R

±
j identities. For ϵ1, ϵ2 ∈ {+,−}, let a = j+δϵ1,+ and let b = i+δϵ2,+,

then if i ≥ j and we do not have (i, j, ϵ1, ϵ2) = (i, i,−,+) then

[Rϵ1
i ⋆ Rϵ2

j ]f = Rϵ1
i,{j}R

ϵ2
j f =f(x1, . . . , xa−1, tj , xa, . . . , xb−1, ti+1, xb, . . . ; t)

=Rϵ2
j,{i+1}R

ϵ1
i+1f = [Rϵ2

j ⋆ Rϵ1
i+1]f.

We now check the Ei ⋆ Ej identity. The two sides of the equation expand out to the following.

[Ei ⋆ Ej ] = Ei,{j}Ej = Ei,{j}
R+
j − R−

j

xj − tj
=

(R+
i,{j} − R−

i,{j})(R
+
j − R−

j )

(xi − ti,{j})(xj − tj)

[Ej ⋆ Ei+1] = Ej,{i+1}Ei+1f = Ej,{i+1}
R+
i+1 − R−

i+1

xi+1 − ti+1
=

(R+
j,{i+1} − R−

j,{i+1})(R
+
i+1 − R−

i+1)

(xj − tj,{i+1})(xi − ti+1)
.

We have {j}i = i + 1 and {i+ 1}j = j so the denominators are equal, and the numerators are
equal because Rϵ1

i,{j}R
ϵ2
j = [Rϵ1

i ⋆ Rϵ2
j ] = [Rϵ2

j ⋆ Rϵ1
i+1] = Rϵ2

j,{i+1}R
ϵ1
i .

The other identities are similar and we omit their verification. That [ΦΩ] = [ΦΩ′ ] is a ⋆-compatible
relation now follows from Proposition 10.4.

Finally, if Ω produces an element of mREFor then by definition r−1 Ω turns the leftmost unmarked
root into a marked root. Therefore if Ω,Ω′ give the same element of mREFor up to the locations of
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markings then there exist a, b such that (r−1 )
aΩ and (r−1 )

bΩ′ give the same element of mREFor, and
so [ev ⋆ΦΩ]A = [ev ⋆(R−

1 )
⋆a ⋆ ΦΩ]A = [ev ⋆(R−

1 )
⋆b ⋆ ΦΩ′ ]A = [ev ⋆ΦΩ′ ]A. □

Remark 10.6. If we define for Φi ∈ {R+
i ,R

−
i ,Ei} the endomorphism

Φ̃i ∈ End

( ⊕
finite A⊂N

Z[t][x]

)

by linearly extending Φ̃i(f · 1A) := (Φi,Af) · 1i⋆A, then

Φ̃i1 · · · Φ̃ik(f · 1A) = ([Φi1 ⋆ · · · ⋆ Φik ]Af) · 1i1⋆···⋆ik⋆A.

In particular, ⋆-compatible relations descend to genuine relations among the Φ̃i, and they therefore
give a representation of mREFor. In particular, the Ẽi operations are a genuine representation of
the Thompson monoid with ẼiẼj = ẼjẼi+1 for i > j.

10.2. Coefficient extraction via ⋆-compositions. By Theorem 10.5, if F ∈ Forest and we have two
factorizations F = i1 · · · ik = j1 · · · jk, then we have a ⋆-compatible identity

[Ei1 ⋆ · · · ⋆ Eik ] = [Ej1 ⋆ · · · ⋆ Ejk ],

as both sides correspond to the same element of ThMon ⊂ mREFor. Hence we are free to replace
Ei1 ⋆ · · · ⋆ Eik with Ej1 ⋆ · · · ⋆ Ejk in any ⋆-composition by Proposition 10.4.

Definition 10.7. We extend the definition of [Φ]A for a ⋆-word Φ to also allow Φ to contain letters
EF for F ∈ Forest, which should be interpreted as Ei1 ⋆ · · · ⋆ Eik for any factorization i1 ⋆ · · · ⋆ ik. In
particular,

[EF ]A :=Ei1,i2⋆···ik⋆AEi2,i3⋆···⋆ik⋆A · · ·Eik,A

[ev ⋆EF ]A := evL(F )⋆A Ei1,i2⋆···ik⋆AEi2,i3⋆···⋆ik⋆A · · ·Eik,A.

Example 10.8. Take A = {2, 3} and let F be the forest with factorization 1 · 1 · 3. Then

[EF ]{2,3} = E1,{1,2,3,4}E1,{2,3,4}E3,{2,3}

The monoid Forest is right-cancellative [13, Proposition 2.6], meaning that the equation G =

H · F has at most one solution H for fixed F,G. We shall denote this solution by G/F , and write
F ≤R G if G/F exists.

Proposition 10.9. For F,G ∈ Forest, we have

[EF ](PG(x; t)) =

{
PG/F (x; t̂L(F )) F ≤R G

0 otherwise.
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Proof. This follows by induction on |F |. If we write F = (F/i) · i then we obtain

[EF ]PG = [E(F/i)·i]PG = [EF/i]{i} δi≤RGPG/i(x; t̂i) = δi≤RG [EF/i]{i}PG/i(x; t̂i)

By applying the inductive hypothesis to the right-hand side we obtain

δi≤RG δF/i≤RG/iP((G/i)/(F/i))(x; t̂L(F/i)⋆i) =δF≤RGPG/F (x; t̂L(F )),

thereby concluding the proof. □

In Figure 21 we see two different ways of computing [E1·3] = [E2·1] applied to PF for F =

1 · 1 · 3 = 1 · 2 · 1.

1 2 3 4

1 2 3

1 2 3

PF (x; t) = (x1 − t1)(x1 − t2)(x2 + x3 − t1 − t2)

PF/3(x; t̂3) = (x1 − t1)(x1 − t2)

E1,∅

E3,∅ E1,{3}

E2,{1}

1 2

PF/1(x; t̂1) = (x1−t2)(x2−t2)

PF/1/2(x; t̂{1,3}) = PF/3/1(x; t̂{1,3}) = x1 − t2

FIGURE 21. Applications of Ei,A operations to forest polynomials

Theorem 10.10. For f ∈ Z[t][x] we have

f(x; t) =
∑

F∈Forest
aFPF (x; t) where aF = [ev ⋆EF ]f.

Proof. This follows directly from Proposition 10.9 as

[ev ⋆EF ]PG = evL(F )[EF ]PG = δF≤RG evL(F )PG/F (x; t̂L(F )) = δF≤RG δG/F,∅ = δG,F . □

Example 10.11. We have the forest polynomial decomposition of (x1 − t1)3 given by

(x1 − t1)3 = (t2 − t1)2 (x1 − t1)︸ ︷︷ ︸
P1

+(t3 + t2 − 2t1) (x1 − t1)(x1 − t2)︸ ︷︷ ︸
P1·1

+(x1 − t1)(x1 − t2)(x1 − t3)︸ ︷︷ ︸
P1·1·1

.

Let us see how to extract the coefficient of P1·1 using these operations. We have [ev ⋆E1·1] =

ev1⋆1 E1,{1}E1 = ev{1,2} E1,{1}E1. We compute

E{1},1E1(x1 − t1)3 = E{1},1(x1 − t1)2 =
(x1 − t1)2 − (t2 − t1)2

x1 − t2
= x1 + t2 − 2t1.

Evaluating this expression at (x1, x2, . . .) = t̂{1,2} = (t3, t4, · · · ) gives us t3 + t2 − 2t1.
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11. GRAHAM POSITIVITY VIA POSITIVE STRAIGHTENING RULES

Recall that the equivariant generalized Littlewood–Richardson (henceforth LR) coefficients are
the structure coefficients arising from multiplying double Schubert polynomials

Su(x; t)Sw(x; t) =
∑
v

cvu,w(t)Sv(x; t).

They specialize to the usual generalized LR coefficients cvu,w when t = 0. As was shown by Gra-
ham [18] through algebraic-geometric means, the equivariant LR coefficients cvu,w(t) are Graham-
positive.

Combinatorially, the essential difficulty in showing Graham-positivity of cvu,w(t) is that the Leib-
niz rule ∂i(fg) = ∂i(f)g + (si · f)∂i(g) involves si, which does not preserve Schubert positivity.
Our positive straightening rules allow us to bypass these difficulties for forest polynomials.

Our next result shows that ⋆-compositions of equivariant Bergeron–Sottile operations induce
evaluations at noncrossing partitions.

Lemma 11.1. For ϵ1, . . . , ϵjk ∈ {−,+} there exists n and σ ∈ NCn such that [ev ⋆Rϵ1
j1
⋆ · · · ⋆ Rϵjk

jk
]f =

evσ f .

Proof. Suppose [ev ⋆Rϵ1
j1
⋆ · · · ⋆ R

ϵk−1

jk−1
] = evσ′ . Let σ′− be the noncrossing partition obtained by

inserting a trivial block in location jk and σ′+ be the noncrossing partition obtained by joining
parts jk and jk + 1 in σ′−, or equivalently σ′+ = σ′−sjk . Then

[ev ⋆Rϵ1
1 ⋆ · · · ⋆ Rϵk

jk
]f = [ev ⋆Rϵ1

1 ⋆ · · · ⋆ Rϵk−1

jk−1
]{jk}R

ϵk
jk
f = evσ′

ϵk
f. □

Using the relations in Theorem 10.5 we can move all Ei as far to the right past the Rϵ
j letters as

possible until every subword Ei ⋆ R
ϵ
j has either (j, ϵ) = (i + 1,−) or (i,+). It turns out there are

two additional relations which let us move every Ei to the right of every Rϵ
j .

Proposition 11.2. We have the ⋆-compatible relations

[Ei ⋆ R
−
i+1] = [R+

i ⋆ Ei] + [R−
i ⋆ Ei+1] + (ti+1 − ti)[Ei ⋆ Ei+1]

[Ei ⋆ R
+
i ] = [R+

i ⋆ Ei] + [R−
i ⋆ Ei+1] + (ti+1 − ti)[Ei ⋆ Ei].

Proof. These are proved analogously to the relations in Theorem 10.5 so we omit the proof. □

Lemma 11.3. [Φi1 ⋆ · · ·Φik ]A is a Graham-positive combination of expressions of the form [Rϵ1
j1
⋆

· · · ⋆ Rϵℓ
jℓ
⋆ EK ]A, and [ev ⋆Φi1 ⋆ · · · ⋆ Φik ]A is a Graham-positive combination of expressions of the

form [ev ⋆Rϵ1
j1
⋆ · · · ⋆ Rϵℓ

jℓ
⋆ EK ]A.

Proof. The second one follows from the first since we can write

[ev ⋆Φi1 ⋆ · · · ⋆ Φik ]A = [ev]i1⋆···⋆ik⋆A[Φi1 ⋆ · · · ⋆ Φik ]A,

straighten [Φi1 ⋆ · · · ⋆ Φik ]A, and then recombine the ev.
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For the first part, we use induction on the number of Φi equal to R±. When there are none
we are already done. If there is a sub-expression Eij ⋆ R±

ij+1
then we apply the corresponding

straightening rule to move E to the right of R± from Theorem 10.5 unless we are in the situations
Ei⋆R

+
i or Ei⋆R

−
i+1 in which case we use one of the additional relations Proposition 11.2 as modified

appropriately by Proposition 10.4.
Every term in the resulting expression either decreases the number of R± or decreases the sum

of the indices of the Φi equal to R±. So this process must stop eventually. □

Theorem 11.4. [Φi1 ⋆ · · · ⋆ Φik ]PF is a Graham-positive linear combination of forest polynomials
PG(x; t̂i1⋆···⋆ik).

Proof. We want to show that [ev ⋆EG]i1⋆···⋆ik [Φi1 ⋆ · · · ⋆ Φik ]PF = [ev ⋆EG ⋆ Φi1 ⋆ · · · ⋆ Φik ]PF is
Graham-positive. By Lemma 11.3 it suffices to show this for [ev ⋆Rϵ1

j1
⋆ Rϵ2

j2
⋆ · · · ⋆ Rϵk

jk
⋆ EK ]PF . We

compute

[ev ⋆Rϵ1
j1
⋆ Rϵ2

j2
⋆ · · · ⋆ Rϵk

jk
⋆ EK ]PF =[ev ⋆Rϵ1

j1
⋆ Rϵ2

j2
⋆ · · · ⋆ Rϵk

jk
]L(K) EKPF

The right-hand side equals 0 unless K ≤R F , in which case it equals(
[ev ⋆Rϵ1

j1
⋆ Rϵ2

j2
⋆ · · · ⋆ Rϵk

jk
]PF/K

)
(̂tL(K)) =(evσ PF/K)(̂tL(K))

for some noncrossing partition σ by Lemma 11.1. Graham-positivity now follows from Theo-
rem 8.3. □

Proposition 11.5. For f, g ∈ Z[t][x] and A ⊂ N we have the “Leibniz rule”

Ei,A(fg) = (Ei,Af)(R
−
i,Ag) + (R+

i,Af)(Ei,Ag).

Proof. This follows from the identity

R+
i,A(fg)− R−

i,A(fg)

xi − tA,i
=

R+
i,Af − R−

i,Af

xi − tA,i
R−
i,A(g) + R+

i,Af
R+
i,Ag − R−

i,Af

xi − tA,i
. □

Theorem 11.6. The coefficients cHF,G(t) in the expansion

PF (x; t)PG(x; t) =
∑
H

cHF,G(t)PH(x; t)

are Graham-positive.

Proof. Let i ∈ LTer(H). Then by Proposition 11.5 we have

cHF,G(t) = [ev ⋆EH ]PFPG

= [ev ⋆EH/i]{i}
(
δi∈LTer(F )PF (x; t̂i)R−

i PG + δi∈LTer(G)(R
+
i PF )PG/i(x; t̂i)

)
.
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As R−
i PG and R+

i PF are Graham-positive linear combinations of forest polynomials PK(x; t̂i) by
Theorem 11.4, the result follows by induction after applying the observation that

[ev ⋆EH/i]{i}(f(x; t̂i)) = ([ev ⋆EH/i]f)(̂ti). □

Theorem 11.7. The coefficients cFw(t) in the expansion

Sw(x; t) =
∑
F

cFw(t)PF (x; t)

are Graham-positive.

Proof. We have

cFw(t) = [ev ⋆EF ]Sw.

We prove the stronger statement that any expression [ev ⋆Φi1⋆· · ·Φik ]Sw is Graham-positive using
induction on ℓ(w). By Lemma 11.3, it suffices to show this for [ev ⋆Rϵ1

j1
⋆ · · · ⋆ Rϵℓ

jℓ
⋆ EK ]A.

IfK = ∅, then this is equal to evσ Sw for some σ ∈ NCn by Lemma 11.1. The Graham-positivity
now follows from the AJS–Billey formula [1, 9] recalled in Theorem 8.1.

So suppose K ̸= ∅, and consider i ∈ LTer(K). By writing Ei as R−
i ∂i we have

[ev ⋆Rϵ1
j1
⋆ · · · ⋆ Rϵℓ

jℓ
⋆ EK ]Sw =[ev ⋆Rϵ1

j1
⋆ · · · ⋆ Rϵℓ

jℓ
⋆ EK/i]{i}R

−
i ∂iSw.

The right-hand side equals 0 if i /∈ Des(w). If i ∈ Des(w), then it equals

[ev ⋆Rϵ1
j1
⋆ · · · ⋆ Rϵℓ

jℓ
⋆ EK/i]{i} R

−
i Swsi =[ev ⋆Rϵ1

j1
⋆ · · · ⋆ Rϵℓ

jℓ
⋆ EK/i ⋆ R

−
i ]Swsi .

Since ℓ(wsi) < ℓ(w) when i ∈ Des(w) the result follows by induction. □

As special cases of the preceding two results we obtain the following results.

Corollary 11.8. The following hold.

(1) The coefficients aec,d(t) in

Fc(x1, . . . , xn; t)Fd(x1, . . . , xn; t) =
∑

aec,d(t)Fe(x1, . . . , xn; t)

are Graham-positive.
(2) The coefficients bcλ(t) in

sλ(x1, . . . , xn; t) =
∑

bcλ(t)Fc(x1, . . . , xn; t)

are Graham-positive.

Proof. These immediately follow from Theorem 11.6 and Theorem 11.7 respectively – we note that
the left-hand sides of the two equations lie in EQSymn and hence the only double forest polyno-
mials that can appear in their expansion are the double fundamental quasisymmetric polynomials
by Theorem 4.12. □
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F Expansion of PF with yij := xi − tj and zij := tj − ti
∅ 1

1 y11

2 y12 + z12 + y22

3 y13 + z13 + y23 + z23 + y33

1 · 1 y11y12

1 · 2 y11z12 + y11y22

1 · 3 z13y11 + y11y23 + z23y11 + y11y33 + y11y13

2 · 2 y12y13 + z12y13 + y13y22 + z13y22 + y22y23

2 · 3 z13y12 + y12y23 + z23y12 + y12y33 + z12z13 + z12y23 + z12z23 + z12y33 + z23y22+

y22y23

1 · 1 · 1 y11y12y13

1 · 1 · 2 z12y11y13 + y11y13y22

1 · 1 · 3 z13y12y11 + y11y12y23 + z23y11y12 + y11y12y33

1 · 2 · 2 z13y11y22 + y11y22y23

1 · 2 · 3 z12z13y11 + z12y11y23 + z12z23y11 + z12y11y33 + z23y11y22 + y11y22y33

2 · 2 · 2 y12y13y14 + z12y13y14 + y13y14y22 + z13y14y22 + y14y22y23 + z14y22y23 + y22y23y24

2 · 2 · 3 z13y12y14 + y12y14y23 + z23y12y14 + y12y14y33 + z12z13y14 + z12y14y23 + z12z23y14+

z12y14y33 + z23y14y22 + y14y22y33 + z23z14y22 + z14y22y33 + z23y22y24 + y22y24y33

2 · 2 · 4 z14y12y13 + y12y13y24 + z24y13y12 + y12y13y34 + z34y12y13 + y12y13y44 + z12z14y13+

z12y13y24 + z12z24y13 + z12y13y34 + z12z34y13 + z12y13y44 + z24y13y22 + y13y22y34+

z34y13y22 + y13y22y44 + z13z24y22 + z13y22y34 + z13z34y22 + z13y22y44 + z24y23y22+

y22y23y34 + z34y22y23 + y22y23y44 + z14y13y22 + y13y22y24 + z13z14y22 + z13y22y24

2 · 3 · 4 z13z14y12 + z13y12y24 + z13z24y12 + z13y12y34 + z13z34y12 + z13y12y44 + z24y12y23+

y12y23y34 + z34y12y23 + y12y23y44 + z23z24y12 + z23y12y34 + z23z34y12 + z23y12y44+

z34y12y33 + y12y33y44 + z12z13z14 + z12z13y24 + z12z13z24 + z12z13y34 + z12z13z34+

z12z13y44 + z12z24y23 + z12y23y34 + z12z34y23 + z12y23y44 + z12z23z24 + z12z23y34+

z12z23z34 + z12z23y44 + z12z34y33 + z12y33y44 + z23z24y22 + z23y22y34 + z23z34y22+

z23y22y44 + z34y22y33 + y22y33y44

1 · 1 · 1 · 1 y11y12y13y14

1 · 1 · 1 · 2 z12y11y13y14 + y11y13y14y22

1 · 1 · 2 · 2 z13y11y14y22 + y11y14y22y23

1 · 1 · 3 · 3 z14y12y11y23 + z23z14y11y12 + z14y12y11y33 + y11y12y23y24 + z23y11y12y24+

y11y12y24y33 + z24y11y12y33 + y11y12y33y34

Table 1: Expansions of PF from the vine model
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w Double forest expansion of Sw

id 1

21 P1

132 P2

231 P1·2

312 P1·1

321 P1·1·2 + (t3 − t2)P1·2

1243 P3

1342 P2·3

1423 P2·2

1432 P2·2·3 + (t4 − t3)P2·3 +P1·2·2

2143 P1·3

2341 P1·2·3

2413 P1·2·2 +P1·1·2

2431 P1·2·2·3 +P1·1·2·3 + (t4 − t3)P1·2·3 + (t2 − t1)P1·2·2

3142 P1·1·3

3241 P1·1·2·3 + (t4 − t2)P1·2·3

3412 P1·1·2·2 + (t4 − t2)P1·2·2

3421 P1·1·2·2·3 + (t5 − t2)P1·2·2·3 + (t2 − t1)P1·1·2·2 + (t2 − t1)(t4 − t2)P1·2·2

4123 P1·1·1

4132 P1·1·1·3 + (t4 − t3)P1·1·3

4213 P1·1·1·2 + (t4 − t2)P1·1·2

4231 P1·1·1·2·3 + (t5 + t4 − t3 − t2)P1·1·2·3 + (t4 − t3)(t4 − t2)P1·2·3

4312 P1·1·1·2·2 + (t5 + t4 − t3 − t2)P1·1·2·2 + (t4 − t3)(t4 − t2)P1·2·2

4321 P1·1·1·2·2·3 + (t6 + t5 − t3 − t2)P1·1·2·2·3 + (t2 − t1)P1·1·1·2·2 + (t5 − t2)(t5 − t3)P1·2·2·3+

(t2 − t1)(t5 + t4 − t3 − t2)P1·1·2·2 + (t2 − t1)(t4 − t2)(t4 − t3)P1·2·2

12354 P4

12453 P3·4

12534 P3·3

12543 P3·3·4 +P2·3·3 + (t5 − t4)P3·4

13452 P2·3·4

13524 P2·3·3 +P2·2·3

14523 P2·2·3·3 +P1·2·2·3 + (t5 − t3)P2·3·3

34512 P1·1·2·2·3·3 + (t6 − t2)P1·2·2·3·3 + (t3 − t1)P1·1·2·2·3 + (t3 − t1)(t5 − t2)P1·2·2·3

Table 2: Some double Schubert to double forest expansions
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c d “Equivariant summand” in Fc(x; t) · Fd(x; t)
0001 0001 (t5 − t4)F0001

0001 0011 (t5 − t3)F0011

0001 0002 (t6 − t4)F0002

0001 0003 (t7 − t4)F0003

0001 0012 (t6 + t5 − t4 − t3)F0012

0001 0021 (t6 − t3)F0021 + (t6 − t5)F0012

0001 0111 (t5 − t2)F0111

0011 0011 (t6 − t3)F0012 + (t4 − t3)F0021 + (t5 + t4 − t3 − t2)F0111 + (t4 − t3)(t5 − t3)F0011

0011 0002 (t6 − t3)(F0012 + F0021)

0011 0003 (t7 − t3)(F0013 + F0031 + F0022)

0011 0012 (t7 − t3)F0013 + (t5 − t3)F0022 + (t6 + t5 − t3 − t2)(F0112 + F0121)+

(t5 − t3)(t6 − t3)F0012

0011 0021 (t7 + t6 − t5 − t3)F0022 + (t6 − t5)F0112 + (t4 − t3)F0031+

(2t6 + t4 − t5 − t3 − t2)F0121 + (t6 + t4 − t3 − t2)F0211 + (t6 − t3)(t6 − t5)F0012+

(t4 − t3)(t6 − t3)F0021

0011 0111 (t6 − t2)F0112 + (t6 + t4 − 2t2)F0121 + (t4 − t2)F0211 + (t5 + t4 − t2 − t1)F1111+

(t4 − t2)(t5 − t2)F0111

0002 0002 (t7 + t6 − t5 − t4)F0003 + (2t6 − t5 − t4)F0012 + (t6 − t5)F0021+

(t6 − t4)(t6 − t5)F0002

0002 0003 (t8 + t7 − t5 − t4)F0004 + (2t7 − t5 − t4)(F0013 + F0022) + (t7 − t5)F0031+

(t7 − t4)(t7 − t5)F0003

0002 0012 (t7 + t6 − t4 − t3)(F0013 + F0022) + (t6 − t4)F0112 + (t6 − t2)F0121+

(t6 − t3)(t6 − t4)F0012

0002 0021 (t7 − t5)F0013 + (t7 + t6 − t5 − t3)(F0031 + F0022) + (t6 − t5)(F0112 + F0211)+

(2t6 − t5 − t3)F0121 + (t6 − t5)(t6 − t3)(F0012 + F0021)

0002 0111 (t6 − t2)(F0112 + F0121 + F0211)

0012 0012 (t8 − t3)F0014 + (t7 − t2)F0131 + (t5 − t2)F0221 + (t5 − t4)(F0212 + F1112)+

(t7 − t2)F0131 + (t5 − t2)F0221 + (t6 + t5 − t4 − t3)F0023 + (t6 + t5 − t2 − t1)F1121+

(t7 + t6 + t5 − t4 − t3 − t2)(F0113 + 2F0122) + (t5 − t2)(t6 − t2)F0121+

(t6 + t5 − t4 − t3)(t7 − t3))F0013 + (t5 − t4)(t5 − t3)F0022+

(t5 − t4)(t6 + t5 − t3 − t2)F0112 + (t5 − t3)(t5 − t4)(t6 − t3)F0012

Table 3: Expansions of Fc · Fd where we only record sum-
mands indexed by padded compositions of size < |c|+ |d|
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