CURVATURE BOUNDS VIA RICCI SMOOTHING

VITALI KAPOVITCH

ABSTRACT. We give a proof of the fact that the upper and the lower sectional curvature bounds of a complete manifold vary at a bounded rate under the Ricci flow.

Let (M^n, g) be a complete Riemannian manifold with $|\sec(M)| \leq 1$. Consider the Ricci flow of g given by

(0.1)
$$\frac{\partial}{\partial t}g = -2\mathrm{Ric}(g)$$

It is known (see [Ham82, BMOR84, Shi89]) that (0.1) has a solution on [0, T] for some T > 0 which smoothes out the metric. Namely, g_t satisfies

$$(0.2) \quad e^{-c(n)t}g \le g_t \le e^{c(n)t}g \quad |\nabla - \nabla_t| \le c(n)t \quad |\nabla^m R_{ijkl}(t)| \le \frac{c(n,m,T)}{t^m}$$

In particular, the sectional curvature of g(t) satisfies

$$|K_{q_t}| \le C(n,T)$$

This result proved to be a very useful technical tool in many situations and in particular in the theory of convergence with two-sided curvature bounds (see [CFG92, Ron96, PT99] etc). However, it turns out that in applications to convergence with two-sided curvature bounds in addition to the above properties, it is often convenient to know that $\sup K_{g_t}$ and $\inf K_{g_t}$ also vary at the bounded rate and in particular, the upper and the lower curvature bounds for g_t are almost the same as for g for sufficiently small t. For example, it is very useful to know that if g_0 has pinched positive [Ron96] or negative [Kan89, BK] curvature, then g_t has almost the same pinching.

This fact has apparently been known to some experts and it was used without a proof by various people (see e.g [Kan89, Fuk90, FJ98]). A careful proof was given in [Ron96] in case of a compact M. To the best of our knowledge, no proof exists in the literature in case of a noncompact M. The purpose of this note is to rectify this situation. To this end we prove

²⁰⁰⁰ Mathematics Subject classification. Primary 53C20. Keywords: Ricci flow, smoothing. This work was supported in part by the NSF grant # DMS-0204187.

VITALI KAPOVITCH

Proposition 0.4. In the above situation one has

$$\inf K_q - C(n, T)t \le K_{q_t} \le \sup K_q + C(n, T)t$$

Proof. Throughout the proof we will denote by C various positive constants depending only on n, T. The proof in [Ron96] relies on the maximum principle applied to the evolution equation for the curvature tensor Rm which can be computed to have the form [Shi89]

(0.5)
$$\frac{\partial}{\partial t}R_{ijkl} = \Delta R_{ijkl} + P(Rm)$$

where P(Rm) is a homogeneous quadratic polynomial in Rm. However, in noncompact case the maximum principle can not be applied directly. We will use a local version of the maximum principle often employed in [Shi89]. Let $\chi: \mathbb{R} \to \mathbb{R}$ be a smooth function satisfying

(1) $\chi \ge 0$ and is nonincreasing

(2)
$$\chi(x) = \begin{cases} 1 \text{ for } x \leq 1 \\ \text{nonincreasing for } 1 \leq x \leq 2 \\ 0 \text{ for } x \geq 2 \end{cases}$$

(3)
$$|\chi''(x)| \le 8$$

(4) $\left|\frac{(\chi'(x))^2}{\chi(x)}\right| \le 16$

Fix $z \in M$ and let $d_z(x,t) = d_{g_t}(x,z)$ be the distance with respect to g_t . Put $\xi_z(x,t) = \chi(d_z(x,t))$. Using the properties of χ we obtain

(i) $0 \leq \xi_z \leq 1$ (ii) $\Delta \xi_z \geq C$ in the barrier sense (iii) $\frac{|\nabla \xi_z|^2}{|\xi_z|} \leq C$ (iv) $|\frac{\partial \xi_z(x,t)}{\partial t}| \leq C$.

To see (ii) we compute $\Delta \xi_z = \chi''(d_z) |\nabla d_z|^2 + \chi'(d_z) \Delta d_z \ge C$ because $\chi' \le 0$ and $\Delta d_z \le C$ for $d_z \ge 1$ by Laplace comparison for spaces with sec $\ge -C$. Finally, (iv) holds by the evolution equation of the metric (0.1) and the estimate (0.3).

Assume for now that $\sup K_{g_t} \ge 0$ for all $t \in [0, T]$. Let $\bar{A}(t) = \sup K_{g_t}$ and $\bar{A}_z(t) = \max\{0, \max_{(x,\sigma)} K_{g_t}(x, \sigma)\xi_z(x, t)\}$ where $x \in M$, σ is a 2-plane at x. Clearly $\bar{A}(t) = \sup_z \bar{A}_z(t)$.

We want to show that the upper right derivative of $\bar{A}_z(t)$ (which with a slight abuse of notations we will denote by $\bar{A}'_z(t)$) satisfies $\bar{A}'_z(t) \leq C$ independent of z, t. Fix $t_0 \in [0, T]$ and let $\phi_z(x, \sigma, t) = K_{g_t}(x, \sigma)\xi_z(x, t)$. By a standard maximum principle argument, it is enough to check that $\frac{\partial \phi_z}{\partial t}(x_0, \sigma_0, t_0) \leq C$ for any point of maximum of $\phi_z(\cdot, t_0)$. Let U, V be a basis of σ_0 orthonormal with respect to g_{t_0} . Extend U, V to constant vector fields in normal coordinates at x_0 with respect to g_{t_0} .

Let
$$\Phi_z(x,t) = K_{g_t}(x,U,V)\xi_z(x) = \frac{Rm(t)(U,V,U,V)}{|U \wedge V|_{g_t}^2}\xi_z(x).$$

It is easy to see (cf. [Ron96]) that

$$\begin{array}{ll} (0.6) & |U \wedge V(x_0)|_{g_{t_0}} \leq C, |\nabla|U \wedge V(x_0)|_{g_{t_0}}| \leq C \text{ and } |\nabla^2|U \wedge V(x_0)|_{g_{t_0}}| \leq C \\ \text{Therefore} \end{array}$$

(0.7)
$$\left|\frac{\partial |U \wedge V(x_0, t_0)|}{\partial t}\right| \le C(n, T) \text{ by (0.1) and (0.3)}.$$

By construction, $\Phi_z(x,t_0)$ has a local maximum at x_0 and $\frac{\partial \phi_z(x_0,\sigma_0,t_0)}{\partial t} = \frac{\partial \Phi_z(x_0,t_0)}{\partial t}$. Therefore $\nabla \Phi_z(x_0,t_0) = 0$ and $\Delta \Phi_z(x_0,t_0) \leq 0$. Using (0.5) we compute

$$\begin{aligned} \frac{\partial \Phi_z(x_0, t_0)}{\partial t} &= \Delta \Phi_z(x_0, t_0) - Rm(x_0, t_0)(U, V, U, V)\xi_z(x_0, t_0)\frac{\partial}{\partial t} \left(\frac{1}{|U \wedge V|^2}\right) \\ -2\nabla Rm(x_0, t_0)(U, V, U, V)\nabla \left(\frac{\xi_z(x_0, t_0)}{|U \wedge V|^2}\right) - Rm(x_0, t_0)(U, V, U, V)\Delta \left(\frac{\xi_z(x_0, t_0)}{|U \wedge V|^2}\right) - \frac{P(Rm(x_0, t_0))\xi_z(x_0, t_0)}{|U \wedge V|^2} - K_{g_t}(x, U, V)\frac{\partial \xi_z(x_0, t_0)}{\partial t} \end{aligned}$$

We claim that the RHS is bounded above by C. The only terms that need explaining are the third and the forth summands. Let $f(x) = \frac{\xi_z(x,t_0)}{|U \wedge V|^2}$.

To see that the third term is bounded we observe that $\nabla \Phi_z(x_0, t_0) = 0$ yields $\nabla Rm(x_0, t_0)(U, V, U, V)f(x_0) + Rm(x_0, t_0)(U, V, U, V) \nabla f(x_0) = 0$, $\nabla Rm(x_0, t_0)(U, V, U, V) = -\frac{\nabla f(x_0)}{f(x_0)} Rm(x_0, t_0)(U, V, U, V)$ and hence $|\nabla Rm(x_0, t_0)(U, V, U, V) \nabla f(x_0)| \leq C$ by the property (iii) of ξ_z above. The fourth term is bounded above because $Rm(x_0, t_0)(U, V, U, V) \geq 0$ and $\Delta f = \Delta \xi_z(x_0) \frac{1}{|U \wedge V|^2} + 2\nabla \xi_z(x_0) \nabla \left(\frac{1}{|U \wedge V|^2}\right) + \xi_z(x_0) \Delta \left(\frac{1}{|U \wedge V|^2}\right) \geq C$ by (0.6) and the property (ii) of ξ_z . Thus by (0.8) we have $\frac{\partial \phi_z}{\partial t}(x_0, \sigma_0, t_0) = \frac{\partial \Phi_z(x_0, t_0)}{\partial t} \leq C$. Thus $\bar{A}'_z(t) \leq C$ for all $z \in M, t \in [0, T]$ and hence $\bar{A}'(t) \leq C$ for all $t \in [0, T]$. This concludes the proof in the case $\sup K_{g_t} \geq 0$. The general case can be easily reduced to this one by replacing the function $K_{g_t}(x, \sigma)$ by $K_{g_t}(x, \sigma) + C$. The argument for K_{g_t} is the same except we have to change $K_{g_{t_0}}(x, \sigma)$ to $K_{g_{t_0}}(x, \sigma) - C$ to ensure that $\inf(K_{g_{t_0}}(x, \sigma) - C) \leq 0$.

Remark 0.9. In the proof of Proposition 0.4 we can actually always assume that $\inf K_{g_t} \leq 0$ since otherwise the manifold M is compact and our statement is known by [Ron96].

VITALI KAPOVITCH

Remark 0.10. By changing the cutoff function $\xi_z(\cdot)$ to $\chi(d(\cdot, z)/R)$ in the proof of Proposition 0.4 we see that the same proof actually shows that the *local* maximum and minimum of the curvature vary linearly. Namely, under condition of the Proposition, for any R > 0 there exists C = C(T, R) such that for any $z \in M$ we have

$$\inf_{B(z,R)} K_g - C(n,R,T)t \le K_{g_t}|_{B(z,R)} \le \sup_{B(z,R)} K_g + C(n,R,T)t$$

However, as constructed, $C(n, R, T) \to \infty$ as $R \to 0$.

Remark 0.11. A slightly more careful examination of the proof of Proposition 0.4 shows that the local rate of change of the curvature bounds is proportional to the local absolute curvature bounds, i.e $\bar{A}'_z(t) \leq C(n,T) \cdot sup_{x \in B(z,2)} |Rm(x,t)|$. In particular, if (M^n,g) is asymptotically flat then so is (M^n,g_t) and it has the same curvature decay rate as (M^n,g) . The only difference is that one has to notice that when we change $K_{g_t}(x,\sigma)$ by $K_{g_t}(x,\sigma) + C$ to ensure that $\sup_{x \in B(z,2)} (K_{g_t}(x,\sigma)+C) \geq 0$, the size of C is comparable to $sup_{x \in B(z,2)} |Rm(x,t)|$.

Alternatively one can argue as follows. Equation (0.5) yields

(0.12)
$$\frac{\partial}{\partial t} |Rm|^2 \le \Delta |Rm|^2 + P(Rm)$$

And the rest of the proof is the same as before if we apply the maximum principle to $|Rm|^2 \xi_z(x,t)$.

The author would like to thank Igor Belegradek, Guofang Wei and Rick Ye for helpful conversations regarding the preparation of this paper.

References

[BK]	I.	Beleg	radek	and	ν.	Kapovit	$^{\mathrm{ch}}$	Classific	ation	of	1	negati	ively
	pinc	hed	manifold	ds	with	amenable	fun	damental	groi	$\iota ps,$		prepi	rint,
	http:	http://front.math.ucdavis.edu/math.DG/0402268.											
	TD	,		~			a						

- [BMOR84] J. Bemelmans, Min-Oo, and E. A. Ruh, Smoothing Riemannian metrics, Math.
 Z. 188 (1984), no. 1, 69–74. MR 85m:58184
- [CFG92] J. Cheeger, K. Fukaya, and M. Gromov, Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992), no. 2, 327–372.
- [FJ98] F. T. Farrell and L. E. Jones, *Rigidity for aspherical manifolds with* $\pi_1 \subset \operatorname{GL}_m(\mathbf{R})$, Asian J. Math. **2** (1998), no. 2, 215–262.
- [Fuk90] K. Fukaya, Hausdorff convergence of Riemannian manifolds and its applications, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., vol. 18, Academic Press, 1990, pp. 143–238.
- [Ham82] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255–306.
- [Kan89] M. Kanai, A pinching theorem for cusps of negatively curved manifolds with finite volume, Proc. Amer. Math. Soc. 107 (1989), no. 3, 777–783. MR 90b:53048

- [PT99] A. Petrunin and W. Tuschmann, Diffeomorphism finiteness, positive pinching, and second homotopy, Geom. Funct. Anal. 9 (1999), no. 4, 736–774.
- [Ron96] X. Rong, On the fundamental groups of manifolds of positive sectional curvature, Ann. of Math. 143 (1996), no. 2, 397–411.
- [Shi89] W.-X. Shi, Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989), no. 1, 223–301.

VITALI KAPOVITCH, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA BARBARA, CA93110

 $E\text{-}mail\ address:$ vitali@math.ucsb.edu