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Abstract. We give a proof of the fact that the upper and the lower sec-
tional curvature bounds of a complete manifold vary at a bounded rate
under the Ricci flow.

Let (Mn, g) be a complete Riemannian manifold with | sec(M)| ≤ 1. Consider
the Ricci flow of g given by

(0.1)
∂

∂t
g = −2Ric(g)

It is known ( see [Ham82, BMOR84, Shi89]) that (0.1) has a solution on [0, T ]
for some T > 0 which smoothes out the metric. Namely, gt satisfies

(0.2) e−c(n)tg ≤ gt ≤ ec(n)tg |∇ −∇t| ≤ c(n)t |∇mRijkl(t)| ≤
c(n, m, T )

tm

In particular, the sectional curvature of g(t) satisfies

(0.3) |Kgt | ≤ C(n, T )

This result proved to be a very useful technical tool in many situations and
in particular in the theory of convergence with two-sided curvature bounds (
see [CFG92, Ron96, PT99] etc). However, it turns out that in applications to
convergence with two-sided curvature bounds in addition to the above proper-
ties, it is often convenient to know that supKgt and inf Kgt also vary at the
bounded rate and in particular, the upper and the lower curvature bounds for
gt are almost the same as for g for sufficiently small t . For example, it is very
useful to know that if g0 has pinched positive [Ron96] or negative [Kan89, BK]
curvature, then gt has almost the same pinching.

This fact has apparently been known to some experts and it was used without
a proof by various people (see e.g [Kan89, Fuk90, FJ98]). A careful proof was
given in [Ron96] in case of a compact M . To the best of our knowledge, no
proof exists in the literature in case of a noncompact M . The purpose of this
note is to rectify this situation. To this end we prove
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Proposition 0.4. In the above situation one has

inf Kg − C(n, T )t ≤ Kgt ≤ supKg + C(n, T )t

Proof. Throughout the proof we will denote by C various positive constants
depending only on n, T . The proof in [Ron96] relies on the maximum principle
applied to the evolution equation for the curvature tensor Rm which can be
computed to have the form [Shi89]

(0.5)
∂

∂t
Rijkl = ∆Rijkl + P (Rm)

where P (Rm) is a homogeneous quadratic polynomial in Rm . However, in
noncompact case the maximum principle can not be applied directly. We will
use a local version of the maximum principle often employed in [Shi89]. Let
χ : R → R be a smooth function satisfying

(1) χ ≥ 0 and is nonincreasing

(2) χ(x) =


1 for x ≤ 1
nonincreasing for 1 ≤ x ≤ 2
0 for x ≥ 2

(3) |χ′′(x)| ≤ 8
(4)

∣∣∣ (χ′(x))2

χ(x)

∣∣∣ ≤ 16

Fix z ∈ M and let dz(x, t) = dgt(x, z) be the distance with respect to gt . Put
ξz(x, t) = χ(dz(x, t)). Using the properties of χ we obtain

(i) 0 ≤ ξz ≤ 1
(ii) ∆ξz ≥ C in the barrier sense
(iii) |∇ξz |2

|ξz | ≤ C

(iv) |∂ξz(x,t)
∂t | ≤ C .

To see (ii) we compute ∆ξz = χ′′(dz)|∇dz|2 + χ′(dz)∆dz ≥ C becauseχ′ ≤ 0
and ∆dz ≤ C for dz ≥ 1 by Laplace comparison for spaces with sec ≥ −C .
Finally, (iv) holds by the evolution equation of the metric (0.1) and the estimate
(0.3).
Assume for now that sup Kgt ≥ 0 for all t ∈ [0, T ] . Let Ā(t) = supKgt and
Āz(t) = max{0,max(x,σ) Kgt(x, σ)ξz(x, t)} where x ∈ M , σ is a 2-plane at x .
Clearly Ā(t) = supz Āz(t).
We want to show that the upper right derivative of Āz(t) ( which with a slight
abuse of notations we will denote by Ā′

z(t)) satisfies Ā′
z(t) ≤ C independent

of z, t . Fix t0 ∈ [0, T ] and let φz(x, σ, t) = Kgt(x, σ)ξz(x, t). By a standard
maximum principle argument, it is enough to check that ∂φz

∂t (x0, σ0, t0) ≤ C
for any point of maximum of φz(·, t0).
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Let U, V be a basis of σ0 orthonormal with respect to gt0 . Extend U, V to
constant vector fields in normal coordinates at x0 with respect to gt0 .

Let Φz(x, t) = Kgt(x,U, V )ξz(x) = Rm(t)(U,V,U,V )
|U∧V |2gt

ξz(x).

It is easy to see (cf. [Ron96]) that

(0.6) |U ∧ V (x0)|gt0
≤ C, |∇|U ∧ V (x0)|gt0

| ≤ C and |∇2|U ∧ V (x0)|gt0
| ≤ C

Therefore

(0.7) |∂|U ∧ V (x0, t0)|
∂t

| ≤ C(n, T ) by (0.1) and (0.3).

By construction, Φz(x, t0) has a local maximum at x0 and ∂φz(x0,σ0,t0)
∂t =

∂Φz(x0,t0)
∂t . Therefore ∇Φz(x0, t0) = 0 and ∆Φz(x0, t0) ≤ 0. Using (0.5) we

compute

∂Φz(x0, t0)
∂t

= ∆Φz(x0, t0)−Rm(x0, t0)(U, V, U, V )ξz(x0, t0)
∂

∂t

(
1

|U ∧ V |2

)
−2∇Rm(x0, t0)(U, V, U, V )∇

(
ξz(x0, t0)
|U ∧ V |2

)
−Rm(x0, t0)(U, V, U, V )∆

(
ξz(x0, t0)
|U ∧ V |2

)
−

P (Rm(x0, t0))ξz(x0, t0)
|U ∧ V |2

−Kgt(x,U, V )
∂ξz(x0, t0)

∂t

(0.8)

We claim that the RHS is bounded above by C . The only terms that need
explaining are the third and the forth summands. Let f(x) = ξz(x,t0)

|U∧V |2 .

To see that the third term is bounded we observe that ∇Φz(x0, t0) = 0 yields
∇Rm(x0, t0)(U, V, U, V )f(x0) + Rm(x0, t0)(U, V, U, V )∇f(x0) = 0,
∇Rm(x0, t0)(U, V, U, V ) = −∇f(x0)

f(x0) Rm(x0, t0)(U, V, U, V ) and hence
|∇Rm(x0, t0)(U, V, U, V )∇f(x0)| ≤ C by the property (iii) of ξz above. The
fourth term is bounded above because Rm(x0, t0)(U, V, U, V ) ≥ 0 and ∆f =
∆ξz(x0) 1

|U∧V |2 +2∇ξz(x0)∇
(

1
|U∧V |2

)
+ξz(x0)∆

(
1

|U∧V |2

)
≥ C by (0.6) and the

property (ii) of ξz . Thus by (0.8) we have ∂φz

∂t (x0, σ0, t0) = ∂Φz(x0,t0)
∂t ≤ C .

Thus Ā′
z(t) ≤ C for all z ∈ M, t ∈ [0, T ] and hence Ā′(t) ≤ C for all t ∈ [0, T ]

This concludes the proof in the case supKgt ≥ 0. The general case can be
easily reduced to this one by replacing the function Kgt(x, σ) by Kgt(x, σ)+C .
The argument for inf Kgt is the same except we have to change Kgt0

(x, σ) to
Kgt0

(x, σ)− C to ensure that inf(Kgt0
(x, σ)− C) ≤ 0.

�

Remark 0.9. In the proof of Proposition 0.4 we can actually always assume
that inf Kgt ≤ 0 since otherwise the manifold M is compact and our statement
is known by [Ron96].
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Remark 0.10. By changing the cutoff function ξz(·) to χ(d(·, z)/R) in the
proof of Proposition 0.4 we see that the same proof actually shows that the
local maximum and minimum of the curvature vary linearly. Namely, under
condition of the Proposition, for any R > 0 there exists C = C(T,R) such
that for any z ∈ M we have

inf
B(z,R)

Kg − C(n, R, T )t ≤ Kgt |B(z,R) ≤ sup
B(z,R)

Kg + C(n, R, T )t

However, as constructed, C(n, R, T ) →∞ as R → 0.

Remark 0.11. A slightly more careful examination of the proof of Proposi-
tion 0.4 shows that the local rate of change of the curvature bounds is propor-
tional to the local absolute curvature bounds, i.e Ā′

z(t) ≤ C(n, T )·supx∈B(z,2)|Rm(x, t)| .
In particular, if (Mn, g) is asymptotically flat then so is (Mn, gt) and it has
the same curvature decay rate as (Mn, g). The only difference is that one
has to notice that when we change Kgt(x, σ) by Kgt(x, σ) + C to ensure that
supx∈B(z,2)(Kgt(x, σ)+C) ≥ 0, the size of C is comparable to supx∈B(z,2)|Rm(x, t)| .
Alternatively one can argue as follows. Equation (0.5) yields

(0.12)
∂

∂t
|Rm|2 ≤ ∆|Rm|2 + P (Rm)

And the rest of the proof is the same as before if we apply the maximum
principle to |Rm|2ξz(x, t).

The author would like to thank Igor Belegradek, Guofang Wei and Rick Ye for
helpful conversations regarding the preparation of this paper.
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