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Abstract. We find new obstructions to the existence of complete Rie-
mannian metric of nonnegative sectional curvature on manifolds with in-
finite fundamental groups. In particular, we construct many examples of
vector bundles whose total spaces admit no nonnegatively curved metric.

1. Introduction

According to the soul theorem of J. Cheeger and D. Gromoll a complete open
manifold of nonnegative sectional curvature is diffeomorphic to the total space
of the normal bundle of a compact totally geodesic submanifold which is called
the soul. One of the harder questions in the subject of is what kind of normal
bundles can occur.
Cheeger and Gromoll also proved that a finite cover of any closed nonnegatively
curved manifold (throughout the paper by a nonnegatively curved manifold we
mean a complete Riemannian manifold of nonnegative sectional curvature) is
diffeomorphic to a product of a torus and a simply-connected closed nonneg-
atively curved manifold. It turns out that a similar statement holds for open
complete nonnegatively curved manifolds (see [Wil98] and section 2 where a
Ricci version of the statement is proved).
We use this fact to find new obstructions to nonnegative curvature and build
many examples of vector bundles whose total spaces admit no complete metric
of nonnegative curvature. Basic obstructions are provided by the following
proposition (of which there is a more general version incorporating the Euler
class).

Proposition 1.1. Let N be an open complete nonnegatively curved manifold
such that Q(TN) 6= 0 for some polynomial Q in rational Pontrjagin classes.
Then Q(TÑ) 6= 0 for the universal (and hence any) cover π : Ñ → N .

Note that 1.1 is true for finite covers without any curvature assumptions (be-
cause finite covers induce injective maps on rational cohomology). In general,
the results of this paper are only interesting for manifold with infinite funda-
mental groups.
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Previously, obstructions to the existence of nonnegatively curved metrics on
vector bundles were only known for a flat soul [ÖW94]. No obstructions are
known when the soul is simply-connected. Examples of nonnegatively curved
metrics on vector bundles can be found in [Che73, Rig78, Yan95, GZ99, GZ].

Corollary 1.2. Let η be a vector bundle over a closed smooth manifold C and
let ξ be a vector bundle over a closed flat manifold F such that the total space
of η×ξ admits a complete nonnegatively curved metric. Then ξ becomes stably
trivial after passing to a finite cover. Furthermore, if either rank(η) = 0, or η
is orientable and has nonzero rational Euler class, then ξ becomes trivial in a
finite cover.

Note that a vector bundle over a flat manifold F becomes trivial in a finite
cover iff its rational Euler and Pontrjagin classes vanish. Similarly, a bundle
over F is stably trivial in a finite cover iff its rational Pontrjagin classes vanish
(see 4.4).
In case C is a point 1.2 says that any vector bundle F with nonnegatively
curved total space becomes trivial in a finite cover. Also since the Euler
and Pontrjagin classes determine a vector bundle up to finite ambiguity (see
e.g. [Bel98]), in every rank there are only finitely many vector bundles over F
with nonnegatively curved total spaces. Thus, 1.2 is a generalization of the
main result of [ÖW94].
To see how 1.2 works, note that if T is a torus of dimension ≥ 4, then there
are infinitely many vector bundles over T of every rank ≥ 2 with (pairwise)
different first Pontrjagin classes. Also there are infinitely many rank 2 vector
bundles over T 2 and T 3 with different Euler classes. We now deduce the
following.

Corollary 1.3. Let B be a closed nonnegatively curved manifold. If π1(B)
contains a free abelian subgroup of rank four (two, respectively), then for each
k ≥ 2 (for k = 2, respectively) there exists a finite cover of B over which
there exist infinitely many rank k vector bundles whose total spaces admit no
nonnegatively curved metrics.

By contrast, any vector bundle over S2 × S1 admits a nonnegatively curved
metric as we observe in 7.3. Thus 1.3 cannot be generalized to the case when
π1(B) is virtually-Z .
Passing to finite covers in 1.2 and 1.3 seems necessary, in general, in order to
obtain bundles without nonnegatively curved metrics. For example, one can
easily construct flat SO(n) vector bundles over a torus with nonzero Stiefel-
Whitney classes, and obviously their total spaces are complete flat manifolds.
Here is an example when we get a complete picture without passing to a finite
cover.
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Corollary 1.4. Let ξ be a vector bundle over S3 × S1 whose total space has
a nonnegatively curved metric. Then either ξ is the trivial bundle or ξ is the
product of a trivial bundle over S3 and the Möbius band bundle over S1 .

We emphasize that our method does not apply when B is simply-connected, or
more generally if after passing to a finite cover C×T → B the bundle ξ becomes
a pullback of a bundle over C via the projection C × T → C . (Here, and until
the end of the section C is a simply-connected manifold and T is a torus.) For
instance, if B is a closed flat manifold which is an odd-dimensional rational
homology sphere [Szc83], then any vector bundle over B becomes trivial in a
finite cover and it is unclear whether there are bundles over B which are not
nonnegatively curved.
A reasonable goal is to find an example of a rank k vector bundle over C × T
with no nonnegatively curved metric, whenever there is a rank k vector bundle
over C × T that does not become the pullback of a bundle over C in a finite
cover. This is achieved in 1.3 when dim(T ) ≥ 4. Otherwise, the answer may
depends on the topology of C × T . For example, any bundle of rank ≥ 3 over
2-torus becomes trivial, and hence nonnegatively curved, in a finite cover.
While we do not quite settle the case dim(T ) < 4, we get various partial
results. For instance, given a closed orientable 2n-manifold B and an integer
d 6= 0, there always exists a map f : B → S2n of degree d . Then, if π1(B) is
infinite, we show that the total space of the pullback bundle f#TS2n admits
no complete metric of nonnegative curvature. To state further results we need
to review some basic bundle theory.
By a simple obstruction-theoretic argument Heven(C × T,C) = 0 implies that
any vector bundle over C × T becomes the pullback of a bundle over C after
passing to a finite cover. This is the case, for example, for bundles over CPn×
S1 . However, once Heven(C × T,C) 6= 0 we immediately get a bundle with no
nonnegatively curved metric.

Corollary 1.5. If H2i(C×T,C) 6= 0 for some i > 0, then there exist infinitely
many rank 2i vector bundles over C×T with different Euler classes whose total
spaces are not nonnegatively curved.

The Euler class is unstable and, in fact, the bundles constructed in the proof
of 1.5 become pullbacks of bundles over C after taking Whitney sum with a
trivial line bundle and passing to a finite cover.
To get examples that survive stabilization one has to deal with Pontrjagin
classes which live in H4∗(C × T ). Generally, if H4∗(C × T,C) = 0, then after
adding a trivial line bundle, any vector bundle over C×T becomes the pullback
of a bundle over C in a finite cover. If H4∗(C × T,C) 6= 0, one hopes to find a
vector bundle without nonnegatively curved metric that survives stabilization
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and passing to finite covers. We do this in several cases, the simplest being when
the rank of the bundle is ≥ dim(C) (see section 5 for other results involving
various assumptions on Pontrjagin classes of TC ).

Corollary 1.6. If H4i(C×T,C) 6= 0 for some i > 0, then for each k ≥ dim(C)
there exist infinitely many rank k vector bundles over C × T with different
Pontrjagin classes whose total spaces admit no metric of nonnegative curvature.

The main geometric ingredient of this paper is that a finite cover of any com-
plete nonnegatively curved manifold N is diffeomorphic to a product of a torus
T and a simply connected manifold M and this diffeomorphism can be chosen
to take a soul S to the product of T and a simply-connected submanifold of
M . There is also a Ricci version of this statement described in section 2. For
example, the above conclusion holds if N has nonnegative Ricci curvature, S
is an isometrically embedded compact submanifold of N such that the inclu-
sion S ↪→ N induces an isomorphism of fundamental groups, and either S is
totally convex, or there exists a distance nonincreasing retraction N → S . In
particular, all the theorems stated above hold in these cases.
Our methods also yield obstructions to existence of metrics of nonnegative
Ricci curvature on closed manifolds (after all, 1.1 can be applied to closed man-
ifolds). Here is an example. It was shown in [GW00] that the total space of
the sphere bundle associated with the normal bundle to the soul has a nonneg-
atively curved metric. Thus, potentially, sphere bundles provide a good source
of closed nonnegatively curved manifolds. Among other things, we prove the
following.

Corollary 1.7. Let ξ be a bundle over a flat manifold F with associated sphere
bundle S(ξ) and let C be a closed smooth simply-connected manifold. If C ×
S(ξ) admits a metric of nonnegative Ricci curvature , then ξ becomes trivial in
a finite cover.

Finally note that obstructions to to the existence of nonnegatively curved met-
rics on total spaces of vector bundles give rise to obstructions to the existence of
G-invariant nonnegatively curved metrics on the associated G-principal bun-
dles. Indeed, any vector bundle ξ with a structure group G can be written as
(P × Rk)/G where P is a principal G-bundle and G acts on Rk via a repre-
sentation G → SO(k). By the O’Neill curvature submersion formula, if P has
a G-invariant nonnegatively curved metric, then so does the total space of ξ .
The structure of the paper is as follows. Section 2 contains the above mentioned
splitting theorem for nonnegatively curved manifolds. Section 3 summarizes
the obstructions to nonnegative curvature coming from the splitting theorem.
In section 4 we develop general existence and uniqueness results for bundles
over C × T . Section 5 contains concrete examples of vector bundles with no
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nonnegatively curved metrics. Various obstructions to the existence of metrics
of nonnegative Ricci curvature on sphere bundles are described in section 6.
Theorem 1.4 is proved in the section 7.

We are grateful to William Goldman, Burkhard Wilking, and Wolfgang Ziller for
many illuminating conversations. The first author is thankful to the Geometry-
Topology group of the McMaster University for support and excellent working
conditions.

2. Splitting in a finite cover

Cheeger and Gromoll proved in [CG72] that a finite cover of a closed nonneg-
atively curved manifold is diffeomorphic to a product of a torus and a simply
connected manifold. The main geometric tool we employ in this paper is the
following generalization of this result to open manifolds.

Lemma 2.1. Let (N, g) be a complete nonnegatively curved manifold. Then
there exists a finite cover N ′ of N diffeomorphic to a product M×T k where M
is a complete open simply connected nonnegatively curved manifold. Moreover,
if S′ is a soul of N ′ , then this diffeomorphism can be chosen in such a way
that it takes S′ onto C × T k where C is a soul of M .

After obtaining this result we have learned that it follows from a more general
theorem which was proved earlier by B. Wilking [Wil98]. We then realized that
our proof of 2.1 in fact gives the following stronger statement.

Proposition 2.2. Let (N, g) be a complete manifold of nonnegative Ricci cur-
vature. Let q : Ñ → N be the universal cover of N and let ρ : π → Iso(Ñ) be
the deck transformation representation of π = π1(N).

Suppose that there exists a closed manifold S ⊂ N isometrically embedded into
N such that the inclusion S ↪→ N induces an isomorphism of the fundamental
groups, and any line in S̃ = q−1(S) with respect to the induced metric from Ñ

is also a line in Ñ .

Then π is virtually abelian and, if π has no torsion, then there exists a smooth
path ρ(t) : [0, 1] → Hom(π, Iso(Ñ)) such that

(i) ρ(0) = ρ;
(ii) for each t the action of π on Ñ is free and properly discontinuous;
(iii) A finite cover of N1 = Ñ/ρ(1)(π) splits isometrically as M × T k where

k = rank(π);
(iv) There is a family of closed submanifolds St ⊆ Nt = Ñ/ρ(t)(π) such that

(a) S0 = S
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(b) Under the splitting from (iii) the cover of S1 corresponds to the Rie-
mannian product C×T k ⊂ M ×T k where C is a closed isometrically
embedded submanifold of M .

(c) for each t there exists a diffeomorphism φt : (Nt, St) → (N0, S0)

The assumption that any line in S̃ = q−1(S) is also a line in Ñ is satisfied if S
is totally convex in N or if there is a distance nonincreasing retraction N → S .
Both of these conditions are true if N is an open manifold of nonnegative
sectional curvature and S ⊆ N is its soul. In this case one can also describe
the souls of the deformed manifolds Nt . Namely we have the following

Proposition 2.3. Let (N, g) be a complete nonnegatively curved manifold with
a free abelian fundamental group π . Let ρ : π → Iso(Ñ) be the deck transfor-
mation representation of π . Then there exists a smooth path ρ(t) : [0, 1] →
Hom(π, Iso(Ñ)) such that in addition to (i)-(iv) of 2.2 the following holds.

(v) If S is a soul of N , then there exists an isometric splitting Ñ = M × Rk

where k = rank(π) and a soul C of M such that, for every t ∈ [0, 1], the
projection St of C × Rk to Nt = Ñ/ρ(t)(π) is a soul of Nt . Also for each t,
there exists a diffeomorphism φt : (Nt, St) → (N0, S0).

Remark 2.4. The above mentioned result of Wilking [Wil98] implies the exis-
tence of the deformation ρ(t) as in 2.2 for an arbitrary virtually abelian group.
He also gives an upper bound on the order of the covering in question in terms
of π and the number of connected components of Iso(M). Nevertheless, we
will present our proof of 2.2 for it is considerably easier than the one in [Wil98].
(In fact, our proof is very similar to the original argument of Cheeger and Gro-
moll in the closed manifold case.) Besides, the statements of 2.2 and 2.3 are
tailored to our applications, for example the parts (iv)− (v) are not discussed
in [Wil98].

Proof of 2.2. Let q : Ñ → N be the universal cover of N and let S̃ = q−1(S).
Then since inclusion S ↪→ N induces an isomorphism of the fundamental groups
q|S̃ : S̃ → S is the universal cover of S .

Let S̃ = C ×Rk be the de Rham decomposition of S̃ so that C does not split
off a Euclidean factor. We claim that C is compact. (Indeed, suppose C is not
compact. Then C contains a ray γ . Since S is compact, there exists a point
p ∈ S such that q(γ(i)) → p as i →∞ . Let p̃ be a point in q−1(p). By above
there exists a sequence gi ∈ π such that gi(γ(i)) → p̃ . Passing to a subsequence
we can assume that gi(γ′(i)) → v ∈ Tp̃C . Just as in [CG72] we readily conclude
that σ(t) = exp(tv) : R → S̃ is a line in C ⊂ S̃ . By assumption σ(t) is also
a line in Ñ . Therefore, the splitting theorem [CG72] implies Ñ splits off σ(t)
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isometrically. So v is invariant under the Hol(Ñ) and hence under Hol(S̃)
which contradicts the fact that C does not split off a Euclidean factor.)

Since any isometry of S̃ takes lines to lines, the isometry group Iso(S̃) splits
as a direct product Iso(S̃) ∼= Iso(C) × Iso(Rk). Therefore, the natural deck
transformation action of π on S̃ gives a monomorphism ρ = (ρ1, ρ2) : π →
Iso(C)× Iso(Rk).

Since Iso(C) is compact and π is discrete, the group ρ2(π) is a discrete sub-
group of Iso(Rk). Also ker(ρ2) is compact and hence it is finite. Thus, π is
an extension of a finite group by a crystallographic one. It is well-known (see
e.g. the proof of [Wil98, Thm 2.1] ) that any such a group is virtually abelian.

Now suppose that π is free abelian. Then ρ2(π) is a discrete torsion-free
subgroup of Iso(Rk), in particular, it acts on Rk by translations and Rk/ρ2(π)
is isometric to a flat torus T k .

By above the splitting S̃ = C ×Rk is just a part of a bigger isometric splitting
Ñ = M̃×Rk where M̃ is a complete open simply connected manifold containing
C as an isometrically embedded submanifold.

Since the action of π on Ñ leaves S̃ invariant, it sends lines parallel to Rk into
lines parallel to Rk . Hence the map ρ is a restriction of a natural monomor-
phism π → Iso(M̃) × Iso(Rk) which with a slight abuse of notations we will
still denote by ρ = (ρ1, ρ2). In fact, the image of ρ1 lies in the subgroup
G � Iso(M̃) of isometries leaving C invariant. Since C is compact it follows
that G is a compact subgroup of Iso(M̃).

Next consider the homomorphism ρ1 : π → G . Let H be the closure of ρ1(π)
in G . Then H is a compact abelian subgroup of G . Let H0 be the identity
component of H . Consider the short exact sequence 1 → H0 → H → Γ → 1
where Γ = H/H0 is a finite abelian group. We claim that this sequence splits
and hence H ∼= H0 × Γ.

Indeed, the group Γ is a product of finite cyclic subgroups and, since H is
abelian, it is enough to define the splitting on generators of these subgroups.
Let g ∈ Γ be a generator of order m and let ḡ ∈ H be a preimage of g . The
endomorphism of H sending x to xm , takes ḡ to H0 , and maps H0 onto itself.
Hence, there is h ∈ H0 such that hm = ḡm , and we can define a splitting by
mapping g to ḡ · h−1 .

Thus, ρ1 : π → H ∼= H0×Γ can be written as a product of two representations
ρ′ : π → H0 and ρ′′ : π → Γ. Since H0

∼= T l , the representation variety
Hom(π,H0) is diffeomorphic to a torus T kl . Hence, we can find a smooth
deformation ρ′1(t) ∈ Hom(π,H0) such that ρ′1(0) = ρ′ and ρ′1(1) = 1, the
trivial representation.
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Crossing ρ′1(t) with ρ′′ and ρ2 , we obtain a smooth path ρ(t) ∈ Hom(π, Iso(Ñ))
such that ρ(0) = ρ and ρ(1) = 1× ρ′′ × ρ2 . For every t the action of π on Ñ
via ρt is free and properly discontinuous because so is the action of π on Rk .
Therefore, we get a smooth family of manifolds of nonnegative Ricci curvature
Nt = Ñ/ρ(t)(π) with N0 = N . We also get the family St = S̃/ρ(t)(π) ⊆ Nt of
closed isometrically embedded submanifolds with S0 = S .

The finite cover of N1 corresponding to the kernel of ρ′′ splits isometrically as
M × T k . Under the splitting the cover of S1 corresponds to the Riemannian
product C × T k ⊂ M × T k .

By the (relative) covering homotopy theorem the family (Nt, St), considered
as a bundle over [0, 1] is smoothly isomorphic to the trivial bundle [0, 1] ×
(N,S). In particular, all St ’s are mutually diffeomorphic and, moreover, have
isomorphic normal bundles. �

Proof of 2.3. Let S be a soul of N and let p : Ñ → N be the universal cover
of N . By the Cheeger-Gromoll soul theorem [CG72] S is totally convex and
the inclusion S ↪→ N is a homotopy equivalence. Thus, 2.2 applies and it only
remains to deduce (v).

Let h : N → R be the Cheeger-Gromoll exhaustion function generating S and
let h̃ = h ◦ q : Ñ → R be its lift to the universal cover Ñ . Clearly, h̃ is convex.
Moreover, since every line in Ñ parallel to Rk projects to an infinite geodesic
lying in a compact set, h̃ is constant along any such line. Hence h̃ is given by
the formula h̃(m, t) = h̄(m) for some convex function h̄ : M → R . It is easy to
see that h̄ is an exhaustion function. Let C ⊆ M is the soul generated by h̄ .

By construction h̄ is invariant under the action of ρ1(π) and, hence, under the
action of H . In particular, h̄ is invariant under the action of ρ1(t)(π) for any t .
Therefore, h̄ descends to a well defined convex exhaustion function ht : Nt → R
generating the soul St = (C × Rk)/ρ(t)(π). �

Remark 2.5. Actually, it follows from the proof of 2.2 that some versions
of 2.2 and 2.1 hold without any curvature assumptions. For example, let N be
a complete Riemannian manifold whose universal cover is isometric to M ×Rn

where Iso(M) is compact. Then a finite cover of N is diffeomorphic to the
product M × T k × Rn−k . See [Wil98] for a stronger result.

3. Basic obstructions

In this section we obtain simple topological obstructions to nonnegative curva-
ture coming from the results of the section 2.

In this section and throughout the rest of this paper we use the notation e
for the Euler class, pi for the ith Pontrjagin class, and p =

∑
i≥0 pi for total
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Pontrjagin class. Unless stated otherwise, all the characteristic classes live in
cohomology with rational coefficients. (However, it is useful to keep in mind
that e and pi are in fact integral classes, that is they lie in the image of
H∗(B, Z) → H∗(B, Q).)

Let S be a closed manifold smoothly embedded into an open manifold N such
that the inclusion S ↪→ N induces an isomorphism of fundamental groups. Let
q : Ñ → N be the universal cover of N ; then q : S̃ = q−1(S) → S is the
universal cover of S . Assume that after passing to a finite cover N becomes
diffeomorphic to M × T where π1(M) = 1 and T is a torus of positive dimen-
sion, Further, suppose that this diffeomorphism takes (a finite cover of) S onto
C × T where C is a submanifold of M . Denote the normal bundles of S in N
by νS .

Lemma 3.1. Suppose there is a polynomial Q with rational coefficients such
that Q(e(νS), p1(TN |S), p2(TN |S), ...) 6= 0 where νS is assumed to be oriented
if Q depends on e. Then Q(e(q#νS), p1(TÑ |S̃), p2(TÑ |S̃), ...) 6= 0.

Proof. Note that QS = Q(e(νS), p1(TN |S), p2(TN |S), ...) 6= 0 remains true
after passing to any finite cover because finite covers induce injective maps on
rational cohomology. Thus, we can assume without loss of generality that N
is diffeomorphic to M × T as above and this diffeomorphism identifies S with
C × T .

Then the normal bundle νM
C of C in M is the pullback of νS via the inclusion

iC : C → S and, also νS is the pullback of νM
C via the projection πC : S → C .

Similarly, since T is parallelizable, TN |C is stably isomorphic to i#CTN |S and
TN |S is stably isomorphic to π#

C TN |C . In particular,

QC = Q(e(νM
C ), p1(TN |C), p2(TN |C), ...) = i∗CQS

and π∗CQC = QS . The latter implies that QC 6= 0.

Since C is simply-connected, iC factors through the universal covering q : S̃ →
S . In particular, q∗QS 6= 0 as desired. �

Remark 3.2. Clearly, 3.1 remains true for any (not necessarily universal) cover
q′ in place of q because q′∗QS = 0 implies q∗QS = 0.

Remark 3.3. A particular case of 3.1 remains true even without mentioning
S . Namely, assume only that N is an open manifold whose finite cover is
diffeomorphic to M × T . Let Q be a polynomial in rational Pontrjagin classes
such that Q(TN) 6= 0. Then the same proof implies Q(TÑ) 6= 0. This applies
to the geometric situation discussed in 2.5.
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Base versus soul. Now we specialize to the case when N is the total space of a
smooth vector bundle over a closed manifold B . We identify B with the zero
section. Then the universal cover of B is q : B̃ = q−1(B) → B . Assume also
that the inclusion S ↪→ N is a homotopy equivalence.

First, we need to see how the characteristic classes of the normal bundles to
the S and B are related. The homotopy equivalence h : B → S (defined as
the composition of the inclusion B ↪→ N and a homotopy inverse of S ↪→ N )
clearly has the property that h∗pi(TN |S) = pi(TN |B) for any i .

Furthermore, if the manifolds N , B , S are oriented, then for the rational
Euler class we have h∗e(νS) = deg(h)e(νB). (Indeed, suppressing the inclu-
sions we have 〈h∗e(νB), α〉 = 〈e(νB), h∗α〉 = 〈[B], h∗α〉 = 〈deg(h)[S], α〉 =
deg(h)〈e(νS), α〉 .)
By possibly changing orientation on S we can arrange that deg(h) = 1 so that
h∗e(νB) = e(νS). Thus, since h∗ is an algebra homomorphism, we get

h∗Q(e(νB), p1(TN |B), p2(TN |B), ...) = Q(e(νS), p1(TN |S), p2(TN |S), ...).

Proposition 3.4. Let ξ be a vector bundle over a closed smooth manifold B
whose total space N admits a complete Riemannian metric of nonnegative sec-
tional curvature. Suppose there is a polynomial Q with rational coefficients such
that Q(e(ξ), p1(TN |B), p2(TN |B), ...) 6= 0 where ξ is assumed to be oriented if
Q depends on e. Then Q(e(q#ξ), p1(TÑ |B̃), p2(TÑ |B̃), ...) 6= 0.

Proof. Let S be a soul of N . By above the homotopy equivalence h takes
Q(e(ξ), p1(TN |B), p2(TN |B), ...) to Q(e(νS), p1(TN |S), p2(TN |S), ...) hence the
latter is nonzero.

By 3.1 we have Q(e(q#νS), p1(TÑ |S̃), p2(TÑ |S̃), ...) 6= 0. Let h̃ be the lift
of h to the universal covers; note that h̃ is a homotopy equivalence. Then
by commutativity h̃∗e(q#νB) = e(q#νS) and h̃∗pi(TÑ |B̃) = pi(TÑ |S̃). So
the homotopy inverse of h̃ takes Q(e(q#νS), p1(TÑ |S̃), p2(TÑ |S̃), ...) to the
corresponding polynomial for B̃ which is therefore nonzero as claimed. �

Remark 3.5. The statement of 3.4 becomes especially simple if p(TB) = 1.
Indeed, it implies that p(TN |B) = p(ξ ⊕ TB) = p(ξ)p(TB) = p(ξ). We also
get p(TB̃) = 1 which implies p(TÑ |B̃) = p(q#ξ).

We shall often use the following variation of 3.4.

Proposition 3.6. Let ξ be an vector bundle over B = C × T where C
is a closed connected smooth manifold and T is a torus. Assume the to-
tal space N of ξ admits a complete Riemannian metric of nonnegative sec-
tional curvature. Suppose there is a polynomial Q with rational coefficients
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such that Q(e(ξ), p1(TN |B), p2(TN |B), ...) 6= 0 where ξ is assumed to be ori-
ented if Q depends on e. Then Q(e(i#C ξ), p1(TN |C), p2(TN |C), ...) 6= 0 where
iC : C → C × T is the inclusion.

Proof. The universal cover q : B̃ = C̃×Rk → C×T = B clearly factors through
the inclusion iC : C → C×T . By 3.4, Q(e(q#ξ), p1(TÑ |B̃), p2(TÑ |B̃), ...) 6= 0,
therefore, Q(e(i#C ξ), p1(TN |C), p2(TN |C), ...) must be nonzero. �

4. Producing vector bundles

In this section we discuss some methods of building vector bundles. We start
from several general methods and then concentrate on the case when the base is
C × T where C is a finite connected CW-complex and T is a torus of positive
dimension.

Example 4.1. Let B be a closed orientable 2n-manifold and let ξ be a bundle
over S2n . Since there always exists a degree one map f : B → S2n , we get a
pullback bundle f#ξ . Now if ξ has a nonzero rational characteristic class (that
necessarily lives in H2n(S2n, Q)), so does f#ξ because f induces an isomor-
phism on the 2n-dimensional cohomology. In particular, every even integer 2d
can be realized as the Euler number of a rank 2n bundle over B (by taking ξ
to be the pullback of TS2n via a self-map of S2n of degree d).

Example 4.2. Any element of H2(B, Z) can be realized as the Euler class of an
oriented rank two bundle over B (where B is any paracompact space) [Hir66,
I.4.3.1].

Example 4.3. If B is a finite CW-complex of dimension d , then it is well-
known that a multiple of any element of ⊕i>0H

4i(B, Q) can be realized as the
Pontrjagin character of a vector bundle over B of rank d (and hence of any
rank ≥ d).

In particular, a multiple of any element x ∈ H4k(B, Q) can be realized as the
k th Pontrjagin class of a bundle of rank d . (Indeed, let X be the image of
x under the inclusion H4k(B, Q) → ⊕i>0H

4i(B, Q). Realize a multiple of X
as the Pontrjagin character of a bundle. Then this bundle has zero Pontrjagin
classes pi for 0 < i < k and the k th Pontrjagin class is a multiple of x .)

We now prove a uniqueness and existence theorem for vector bundles over C×T .

Theorem 4.4. Let C be a finite connected CW-complex and let ξ and η be
oriented rank n vector bundles over C × T such that

(1) ξ|C×∗ ∼= η|C×∗
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and

(2) ξ and η have the same rational characteristic classes.

Then there exists a finite cover π : C × T → C × T such that π#ξ ∼= π#η .

Proof. First, note that after passing to a finite cover we can assume that ξ
and η have the same integral cohomology classes. (Indeed, look for example at
the integral i-th Pontrjagin class pi . By assumption pi(ξ)− pi(η) is a torsion
element of H4i(C×T, Z). By the Künneth formula we can write pi(ξ)−pi(η) =∑4i

j=0 c4i−j ⊗ tj where cs ∈ Hs(C, Z) and tj ∈ Hj(T k, Z). Condition (1)
implies t0 ⊗ c4i = pi(ξ|C×∗) − pi(η|C×∗) = 0. Since any torsion element of the
form

∑4i
j=1 c4i−j ⊗ tj becomes zero when mapped to an appropriate finite cover

C × T → C × T along T , the integral Pontrjagin classes pi(ξ), pi(η) become
equal in such a finite cover.)

Let f, g : C × T → BSO(n) be the classifying maps for ξ and η respectively.
Let γn be the universal bundle over BSO(n). For each i ≤ [n/2], we view the
classes pi(γn) ∈ H4i(BSO(n)) as maps pi : BSO(n) → K(Z, 4i), and similarly
if n is even, e(γn) ∈ Hn(BSO(n)) is thought of as a map e : BSO(n) →
K(Z, n).

Consider the combined map c from BSO(n) to the product of Eilenberg-
MacLane spaces given by the formula

c = (p1, p2...p(n−1)/2) : BSO(n) → X = ×(n−1)/2
s=1 K(Z, 4s) if n is odd

and,

c = (e, p1, p2..., pn/2−1) : BSO(n) → X = K(Z, n)× (×n/2−1
s=1 K(Z, 4s)).

if n is even.

It is well known that c is a rational homotopy equivalence (i.e. the homotopy
fiber F of c has finite homotopy groups) and the spaces F,BSO(n), X are
simply-connected (see e.g. [Bel98]).

By the condition (2) p ◦ f is homotopic to p ◦ g . We shall now try to lift this
homotopy to the homotopy of f and g . We view the pair (C × T,C) (where
we identify C × ∗ with C ) as a relative CW-complex and we try to construct
the homotopy between f and g inductively on the dimension of the skeletons.
By (1) we can assume that the homotopy is already constructed on the zero
skeleton (C × T,C)0 .

Suppose that we have already constructed the homotopy on (C × T,C)i−1

for i > 0. We want to show that after possibly passing to a finite cover we
can extend it over (C × T,C)i . The relative obstruction Oi to the extension
over the i-th skeleton lives in the cohomology H i((C × T,C), πi(F )). Let



TOPOLOGICAL OBSTRUCTIONS TO NONNEGATIVE CURVATURE 13

m = |πi(F )| and k = dim(T ); by assumption k > 0. Consider the mk cover
Π: C×T → C×T given by the formula (c, z1, ..., zk) 7→ (c, zm

1 , ..., zm
k ). Notice

that by the Künneth formula for the pair (C × T,C) = (C, ∅)× (T, ∗) we have

H i((C × T,C), πi(F )) =
i∑

j=0

H i−j((C, ∅), πi(F ))⊗Hj((T, ∗), πi(F )) =

=
i∑

j=1

H i−j((C, ∅), πi(F ))⊗Hj((T, ∗), πi(F ))

where the last equality is due to the fact that H0((T, ∗), πi(F )) = 0. Therefore,
for any δ ∈ H i((C × T,C), πi(F )), its pullback Π∗(δ) is an m-th multiple
of some class, and thus is equal to zero. In particular, Π∗(Oi) = 0. On
the other hand, by the naturality of obstructions Π∗(Oi) is the obstruction to
extending the homotopy between f ◦ Π and g ◦ Π over the relative i-skeleton
(C × T,C)i . �

Theorem 4.5. Let ξ be an oriented rank n vector bundle over a finite con-
nected CW-complex C and let i : C → C × T be the canonical inclusion onto
C × ∗. Let e′ ∈ Hn(C × T ), p′1 ∈ H4(C × T ), . . . , p′[n/2] ∈ H4[n/2](C × T ) be a
collection of integral cohomology classes such that their restrictions onto C ×∗
give corresponding integral characteristic classes of ξ and, furthermore, e′ = 0
if n is odd and p′[n/2] = e′ ∪ e′ if n even. Then there exists a finite cover
Π: C × T → C × T and a rank n vector bundle η over C × T such that the
integral characteristic classes of η satisfy e(η) = Π∗(e′) and pi(η) = Π∗(p′i) for
i = 1, . . . , [n/2].

Proof. Again, consider the universal fibration F → BSO(n) c→ X where X is
the product of appropriate Eilenberg-MacLane spaces.

The collection of characteristic classes (e′, p′1, p
′
2, . . . , p

′
[n/2]) defines a natural

map c′ : C × T → X (where we exclude e′ for odd n and p′[n/2] for even n).
It suffices to show that after passing to a finite cover there exists a lift of this
map to the map f : C × T → BSO(n).

By assumptions, we can construct the lift f over C ×∗ by letting f |C×∗ to be
equal to a classifying map of ξ .

Now we are faced with the relative lifting problem of extending the lift from
C × ∗ to C × T . As in the proof of 4.4 we will proceed by induction on the
dimension of the relative skeleton (C × T,C × ∗)i .

Suppose f is already defined on (C × T,C × ∗)i−1 for some i > 0. As be-
fore the primary obstruction Oi to extending the lift over (C × T,C × ∗)i

lives in the group H i((C × T,C), πi−1(F )). Arguing exactly as in the proof
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of 4.4, we see that the cover Π: C × T → C × T given by the formula
(c, z1, ..., zk) 7→ (c, zm

1 , ..., zm
k ) where m = |πi−1(F )| has the property that

Π∗(Oi) = 0. Therefore, the lift of c′ ◦ Π given by f ◦ Π can be extended
over the relative i-th skeleton of (C × T,C × ∗). This completes the proof of
the induction step and hence the proof of the theorem. �

Remark 4.6. Note that by construction the cover Π depends only on n and
dim(C × T ).

Remark 4.7. The proof of 4.5 shows how to compute the characteristic classes
of a bundle with the classifying map f . For example, represent e′ as

∑k
j=0 e′j

where e′j ∈ Hn−j(C, Z) ⊗ Hj((T, ∗), Z). Then the Euler class of f is given
by

∑k
j=0 mje′j where dim(T ) = k . The same result is of course true for any

Pontrjagin class of f .

In particular, if e′ = e′j for some j > 0, then an integer multiple of e′ is realized
as the Euler class of some bundle over C × T .

Example 4.8. We shall often use 4.5 in the following situation. Assume
H4i(C × T,C, Z) is infinite and let p′i ∈ H4i((C × T,C), Z) be a nontorsion
class and j be any nonzero integer. Let ξ be the trivial bundle of some rank
> 2i . Then by 4.5 there exists a bundle ηj over C × T and a finite cover
Π: C × T → C × T such that the restriction of ηj to C × ∗ is isomorphic to ξ
and Π∗(jp′i) = pi(ηj). Clearly, the bundles ηj are pairwise nonisomorphic.

5. Vector bundles with no nonnegatively curved metrics

In this section we obtain concrete examples of bundles without nonnegatively
curved metrics. Throughout this section T is a torus of positive dimension
and C is a closed connected smooth manifold. (Note that C is not assumed
to be simply-connected so the results of this section are slightly more general
than the ones stated in the introduction.) We shall often use that the tangent
bundle to C × T is stably isomorphic to the pullback of TC via the projection
C × T → C . All (co)homology groups and characteristic classes in this section
have rational coefficients.

Corollary 5.1. Let η be a vector bundle over C and let ξ be a vector bundle
over T such that the total space of η×ξ admits a complete nonnegatively curved
metric. Then ξ becomes stably trivial in a finite cover. Furthermore, if either
rank(η) = 0, or η is orientable with e(η) 6= 0, then ξ becomes trivial in a finite
cover.

Proof. Denote η⊕TC by η′ so that the tangent bundle to the total space of η×ξ
restricted to the zero section is stably isomorphic to η′×ξ . Let i be the largest
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nonnegative integer such that pi(η′) 6= 0. Arguing by contradiction assume that
pk(ξ) 6= 0 for some k > 0. Using the product formula p(η′ × ξ) = p(η′)× p(ξ),
we conclude that the component of pi+k(η′× ξ) in the group H4i(C)⊗H4k(T )
is equal to pi(η′)×pk(ξ). Since the cross product of nonzero classes is nonzero,
pi+k(η′ × ξ) is nonzero. On the other hand, the component of pi+k(η′ × ξ) in
H4i+4k(C)⊗H0(T ) is pi+k(η′)×1 = 0×1 = 0. We now apply 3.6 for Q = pi+k

to get a contradiction. By 4.4, ξ becomes stably trivial in a finite cover.

Now assume that either rank(η) = 0, or e(η) 6= 0. By 4.4 it suffices to show
that e(ξ) = 0. Of course, we can assume that rank(ξ) > 0. The pullback
of η × ξ to C has zero Euler class because the pullback is the Whitney sum
of η and a trivial bundle of the same rank as ξ . Hence according to 3.6,
e(η × ξ) = 0. Thus if rank(η) = 0, we get e(ξ) = 0. Otherwise, note that
e(η × ξ) = e(η)× e(ξ) and since e(η) 6= 0 it implies e(ξ) = 0 as wanted. �

Remark 5.2. The assumption that e(η) 6= 0 is certainly necessary, in general.
For example, let η be the trivial line bundle over C and let ξ be the bundle
over T 2n which is the pullback of TS2n via a degree one map T 2n → S2n . Then
the bundle η × ξ is trivial so its total space is nonnegatively curved whenever
sec(C) ≥ 0.

Theorem 5.3. Let H4i(C × T,C) 6= 0 for some i > 0 and let Q′ be a polyno-
mial in rational Pontrjagin classes pj where 0 < j < i such that the projection
of pi(TC) + Q′(TC) to H4i(C) is zero. Then, in each rank > 2i, there ex-
ist infinitely many vector bundles over B = C × T whose total spaces are not
nonnegatively curved.

Proof. Set Q = pi + Q′ . Since H4i(C × T,C) 6= 0, we can use 4.5 to find a
vector bundle ξ over C × T of rank 2i + 1 such that pj(ξ) = 0 for 0 < j < i
and pi(ξ) is a nonzero class whose projection to C is zero. Using the Whitney
sum formula for Pontrjagin classes we get pi(TB ⊕ ξ) = pi(TB) + pi(ξ) and
pj(TB ⊕ ξ) = pj(TB) for 0 < j < i . Thus, looking at the projection to
H4i(C × T ), we get

Q(TB ⊕ ξ) = pi(TB ⊕ ξ) + Q′(TB ⊕ ξ) = pi(TB) + pi(ξ) + Q′(TB) = pi(ξ)

where the last equality is true because

pi(TB) + Q′(TB) = (pi(TC) + Q′(TC))× 1 = 0× 1 = 0.

Thus, we can apply 3.6. �

Corollary 5.4. Let H4i(C × T,C) 6= 0 for some i > 0 and let phi(TC) = 0,
where phi is the component of the Pontrjagin character that lives in the 4ith
cohomology. Then, in each rank > 2i, there exist infinitely many vector bundles
over B = C × T whose total spaces are not nonnegatively curved.
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Proof. Take Q′ = phi − pi . �

Corollary 5.5. Let H4i(C × T,C) 6= 0 and pi(TC) = 0 for some i > 0, then
there exists a vector bundle ξ over C×T of any rank > 2i such that E(ξ) has
no metric of nonnegative curvature.

Proof. Take Q = 0. �

Remark 5.6. In particular, 5.5 shows that if H4(C×T,C) 6= 0 and p1(TC) =
0, then there exist infinitely many bundles of every rank > 2 whose total spaces
are not nonnegatively curved.

Corollary 5.7. If H2i(C×T,C) 6= 0 for some i > 0, then there exist infinitely
many rank 2i vector bundles over C×T with different Euler classes whose total
spaces are not nonnegatively curved.

Proof. It follows from 4.5 that there exists a bundle ξ (and, in fact, infinitely
many such bundles) of rank 2i over C × T such that e(ξ) is a nonzero class
whose H2i(C) component is zero. By 3.6 E(ξ) is not nonnegatively curved. �

Corollary 5.8. Let dim(C) = 4m + 2 and pm(TC) 6= 0, and let dim(T ) ≥ 2.
Then there exist infinitely many bundles of each rank ≥ 2 over C × T whose
total spaces are not nonnegatively curved.

Proof. By Poincaré duality find y ∈ H2(C) such that pm(TC)y 6= 0 ∈ H4m+2(C).
Take any t ∈ H2(T ) and realize y⊗1+1⊗t as the Euler class of an oriented rank
2 bundle ξ over C×T = B . Then p1(ξ) = (y⊗1+1⊗t)2 = y2⊗1+2y⊗t+1⊗t2 .
Note that pm(TB)p1(ξ) 6= 0. (Indeed, it suffices to show that the projection
of pm(TB)p1(ξ) to H4m+2(C) ⊗H2(T ) is nonzero. which is true because the
projection is equal to 2pm(TC)y ⊗ t .) Also the Whitney sum formula implies
that pm+1(TB ⊕ ξ) = pm(TB)p1(ξ) 6= 0 and the projection of pm+1(TB ⊕ ξ)
to C vanishes because H4m+4(C) = 0. Hence, we are done by 3.6. By adding
trivial bundles to ξ one can make its rank arbitrary large. �

Corollary 5.9. If H4i(C×T,C) 6= 0 for some i > 0, then there exist infinitely
many vector bundles over B = C×T of any rank ≥ dim(C) whose total spaces
are not nonnegatively curved.

Proof. Let ν(C) be a rank dim(C) bundle over C which is stably isomorphic to
stable normal bundle of C . By 4.5 we can find a bundle ξ (and, in fact, infinitely
many such bundles) of rank dim(C) over C ×T such that the pullback of ξ to
C is isomorphic to ν(C) and pi(ξ) has a nonzero projection to H4i(C ×T,C).

Look at the bundle TE(ξ|B) ∼= ξ ⊕ TB . Note that the pullback of ξ ⊕ TB to
C is isomorphic to ν(C)⊕ TC which is stably trivial, hence pi(TE(ξ|C)) = 0.
On the other hand the projection of p(ξ⊕ TB) = p(ξ)p(TB) to H4i(C × T,C)
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is equal to pi(ξ), in particular the projection of pi(ξ ⊕ TB) to H4i(C × T,C)
is nontrivial. By 3.6 E(ξ) is not nonnegatively curved. �

Remark 5.10. The method of 5.9 can be used with some other bundles in
place of ν(C). To illustrate the idea we discuss the case when C is the total
space S(η) of the sphere bundle associated with a vector bundle η over S4 .

First, let us handle the easier case when e(η) 6= 0. Then rank(η) is necessarily
4 and it follows from the Gysin sequence that S(η) is a rational homology 7-
sphere. In particular, all the Pontrjagin classes of S(η) vanish. Now 4.5 implies
that there are infinitely many rank 4 bundles over S(η)× T with nonzero p2 .
By 5.5 their total spaces admit no nonnegatively curved metrics and as usual
we can add trivial bundles to make the rank ≥ 4.

Now assume e(η) = 0. Recall that p1(η)[S4] is necessarily even and further-
more, any even integer can be realized as p1(ξ)[S4] where ξ is a 4-bundle [Mil56].
Thus we can find a 4-bundle ξ′ over S4 with p1(ξ′)[S4] = −p1(η)[S4] so that
p1(η ⊕ ξ′) = 0. Note that TS(η) is stably isomorphic to the pullback of η
via the bundle projection π : S(η) → S4 . Setting ξ = π#ξ′ , we get that
p1(TS(η)⊕ ξ) = 0. Since e(η) = 0, the Gysin sequence implies that π induces
an isomorphism on H4 , and by the Poincaré duality H3(S(η)) 6= 0. Hence
by 4.5 there are infinitely many rank 4 bundles over S(η) × T with nonzero
p1 such that their pullback to S(η) is ξ . So the proof of 5.9 applies and these
bundles admit no nonnegatively curved metrics.

It is interesting to see whether rank(ξ) can be lowered to 3. Recall that an
integer k can be realized as p1(ξ)[S4] for a 3-bundle over S4 iff k is a multiple
of 4 [Mil56]. Thus, if p1(η)[S4] is divisible by 4, the argument of the previous
paragraph applies and we get infinitely many 3-bundles over S(η)×T with no
nonnegatively curved metrics.

Now assume that p1(η)[S4] ≡ 2mod(4). We are looking for a 3-bundle ξ over
S(η) such that p1(TS(η) ⊕ ξ) = 0. Since e(η) = 0, the bundle S(η) → S4

has a section s . Setting ξ′ = s#ξ , we would get a 3-bundle ξ′ over S4 with
p1(η ⊕ ξ′) = 0. In particular, p1(ξ′)[S4] ≡ 2mod(4) which is impossible for a
3-bundle.

Thus, the methods of this paper fail here. For instance, we do not have exam-
ples of 3-bundles over S(η) × S1 that admit no nonnegatively curved metrics
whenever p1(η)[S4] ≡ 2mod(4). Note that 4.5 produces many 3-bundles over
S(η)× S1 which do not become pullbacks of bundles over S(η).

Metastable range, sphere bundles, and surgery. We now describe yet another
variation of 5.9. When the method works, it gives a result similar to 5.9 with
sometimes lower rank. We showed above that, under certain assumptions on the
Pontrjagin classes of B = C × T , there are vector bundles over B whose total
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spaces admit no nonnegatively curved metric. Now the idea is to replace C by
a homotopy equivalent closed manifold C ′ with “nicer” (e.g. trivial) Pontrjagin
classes. Then theorems of this section can be used to produce a vector bundle
over C ′×T whose total space admits no nonnegatively curved metric, and can
often use it to get a similar bundle over C × T .

Indeed, let f : B → B′ be a homotopy equivalence of closed smooth manifolds
and let ξ be a vector bundle over B′ with total space E(ξ). Assume now that
2rank(ξ) ≥ dim(B)+3 ≥ 5, that is, we are in the metastable range. By [Hae61],
the homotopy equivalence f : B → E(ξ) is homotopic to a smooth embedding
e : B → E(ξ). The above inequality implies that rank(ξ) ≥ 3, hence by [Sie69,
Thm 2.2] E(ξ) is diffeomorphic to the total space of the normal bundle to
E(νe). Clearly, E(ξ) is nonnegatively curved iff so is E(νe).

Theorem 5.11. Let T be a torus and let C be a closed smooth manifold
homotopy equivalent to a closed manifold C ′ such that T and C ′ satisfy the
assumptions of 5.3 or 5.8. Then, in each rank > 1 + dim(C × T )/2, there exist
infinitely many vector bundles over B = C × T whose total spaces are not
nonnegatively curved.

Proof. By 5.3 or 5.8 we can find a bundle ξ over C ′ × T whose total space
E(ξ) is not nonnegatively curved in any rank > 2i . Assume now that the rank
is > 1 + dim(C × T )/2 (note that 1 + dim(C × T )/2 > 2i because H4i(C ×
T,C) 6= 0. This puts us in the in metastable range so the homotopy equivalence
f × id : C × T → C ′ × T ↪→ E(ξ) is homotopic to an embedding whose normal
bundle has total space diffeomorphic to E(ξ). Of course, the total space of
this normal bundle is not nonnegatively curved. By varying ξ (or, rather, the
Pontrjagin class of ξ ), we get infinitely many such examples. �

One way to replace C by a manifold C ′ with “nicer” Pontrjagin classes is by
surgery. Namely, assume π1(C) = 1 and let τ be a vector bundle over C so
that τ and TC are stably fiber homotopy equivalent. Then, if the surgery
obstruction vanishes (which always happens if dim(C) is odd [Bro72, II.3.1]),
then there is a closed smooth manifold C ′ and a homotopy equivalence f : C ′ →
C such that TC ′ is stably isomorphic to f#τ .

In general, it is not easy to decide when a given vector bundle, such as TC , is
stably fiber homotopy equivalent to a bundle with “nicer” Pontrjagin classes.
However, each bundle with “nice” Pontrjagin classes is usually stably fiber
homotopy equivalent to infinitely many different bundles.

Indeed, recall that two vector bundles are stably fiber homotopy equivalent if the
corresponding spherical fibrations are stably equivalent. The stable equivalence
spherical fibrations over C (or any finite simply connected cell complex) are
in one-to-one correspondence with [C,BSG] . The Whitney sum gives BSG
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and BSO an H -group structure, and the natural map BSO → BSG that
assigns to a vector bundle the corresponding spherical fibration induces a group
homomorphism [C,BSO] → [C,BSG] . After tensoring with rational the group
[C,BSO] becomes ⊕i>0H

4i(C, Q) while [C,BSG] becomes the trivial group.
In particular, if ⊕i>0H

4i(C, Q) 6= 0, each stable fiber homotopy equivalence
class contains infinitely many vector bundles in any rank ≥ dim(C).
For example, let C be the total space of a sphere bundle over closed simply-
connected manifold V associated with a vector bundle η . (Due to [GW00]
such manifolds could be a good source of nonnegatively curved manifolds.)
The bundle TC is the pullback of TV ⊕ η via the bundle projection C → V ,
hence TC is stably fiber homotopy trivial whenever so are TV and η . This
construction gives many manifolds with stably fiber homotopy trivial tangent
bundles.

6. Sphere bundles with no metric of nonnegative curvature

It was shown in [GW00] that the total space of the sphere bundle associated
with the normal bundle to the soul has a nonnegatively curved metric. Thus,
potentially, sphere bundles provide a good source of closed nonnegatively curved
manifolds.

Theorem 6.1. For k > 0, let E → F be a k -sphere Serre fibration over a flat
manifold F with nonzero rational Euler class. Let P be closed smooth manifold
such that there is a map P → E that induces an isomorphism of fundamental
groups. Then P admits no metric of nonnegative Ricci curvature.

Proof. Arguing by contradiction, assume that P admits a metric of nonnegative
Ricci curvature. Pass to a finite cover P̃ → P so that P̃ is diffeomorphic to
C × T where C is simply connected and T is a torus.
Look at the corresponding covers Ẽ → E and F̃ → F . Note that π1(F̃ ) is free
abelian because π1(F̃ ) is a torsion free group which is the image of a finitely
generated abelian group π1(Ẽ) ∼= π1(P̃ ). The k -sphere fibration Ẽ → F̃ still
has nonzero rational Euler class since since it is a pullback of E → F and since
finite covers induce injective maps on rational cohomology.
First consider the case k = 1. The circle fibration Ẽ → F̃ induces an epimor-
phism φ : π1(Ẽ) → π1(F̃ ) of finitely generated free abelian groups. Therefore,
φ has a section. Since Ẽ is aspherical, this section is induced by a continuous
map F̃ → Ẽ which defines a homotopy section of the circle fibration Ẽ → F̃ .
Thus, the Euler class must be zero which is a contradiction.
Now assume that k > 1 so that Ẽ → F̃ induces a π1 -isomorphism. Then the
inclusion T → (C × T ) = P̃ followed by the map P̃ → Ẽ → F̃ induces a π1 -
isomorphism hence is a homotopy equivalence. Let s be its homotopy inverse.
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Then s followed by the inclusion T → P̃ and the map P̃ → Ẽ is a homotopy
section of the fibration Ẽ → F̃ . The Euler class then must be zero which gives
a contradiction. �

Remark 6.2. The above argument is a special case of the following phenome-
non. Suppose we have a Serre fibration C → P → F where F is a flat manifold
and C is connected and simply-connected. Look at the spectral sequence of this
fibration with rational coefficients. Then if there exists a nonzero differential,
then P does not admit a nonnegatively curved metric.

Indeed, if P is nonnegatively curved, then a finite cover P̃ of P splits topolog-
ically as M × T where M is simply connected and T is a torus. By naturality
we can see that spectral sequence of the pullback fibration C → P̃ → T also has
a nonzero differential. Since the universal cover of P̃ is homotopy equivalent
to both M and C , they are homotopy equivalent to each other. In particu-
lar dim H∗(M) = dim H∗(C) and hence dim H∗(P̃ ) = dim H∗(M)⊗H∗(T ) =
dim(H∗(C) ⊗H∗(T )). On the other hand if there is a nonzero differential we
should have that dim H∗(P̃ ) < dim(H∗(C)⊗H∗(T )) which is a contradiction.

Theorem 6.3. Let E(ξ) be the total space of a vector bundle ξ over a closed
smooth manifold B and let S(ξ) → B be the associated sphere bundle. Assume
that ξ has zero rational Euler class and there exists a polynomial Q in rational
Pontrjagin classes such that Q(TE(ξ)) 6= 0 and Q(TẼ(ξ)) = 0 for the universal
cover π : Ẽ(ξ) → E(ξ). Then S(ξ) admits no metric of nonnegative Ricci
curvature.

Proof. First, we introduce several notations. Let q : B̃ → B be the universal
covering and j : S(ξ) → E(ξ) be the inclusion. Also denote by π and i the
bundle projection and the zero section of ξ , respectively.

Since S(ξ) ⊂ E(ξ) is an oriented codimension one hypersurface, TS(ξ) is sta-
bly isomorphic to j#TE(ξ), hence Q(TS(ξ)) = j∗Q(TE(ξ)). Also TE(ξ) is
isomorphic to (i ◦ π)#TE(ξ) since i ◦ π is homotopic to the identity of TE(ξ).
We get Q(TS(ξ)) = j∗π∗Q(i#TE(ξ)). By assumption Q(TE(ξ)), and hence
Q(i#TE(ξ)) is nonzero. Also j∗π∗ = (π ◦ j)∗ where π ◦ j : S(ξ) → B is the
bundle projection. It follows from the Gysin sequence that π ◦ j is injective in
cohomology because the kernel of (π ◦ j)∗ consists of the cup-multiples of the
Euler class which is zero by assumption. Thus, Q(TS(ξ)) 6= 0.

On the other hand, the inclusion S(q#ξ) ↪→ E(q#ξ) takes Q(TE(q#ξ)) = 0
to Q(TS(q#ξ)). Hence, Q(TS(q#ξ)) = 0 and we are in position to apply the
theorem 3.4. �

Corollary 6.4. Let ξ be a bundle over a flat manifold F with associated sphere
bundle S(ξ) and let C be a closed smooth simply-connected manifold. If C ×
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S(ξ) admits a metric of nonnegative Ricci curvature, then ξ becomes trivial in
a finite cover.

Proof. By 4.4 it suffices to show that e(ξ) = 0 and p(ξ) = 1. Vanishing of e(ξ)
follows from 6.1. Vanishing of all Pontrjagin classes follows exactly as in the
proof of 5.1 where instead of referring to 3.4 we use 6.3. �

7. The classification of nonnegatively curved vector bundles
over S1 × S3

In this section we prove the theorem 1.4. Note that the converse of 1.4 is
trivially true, i.e. both the trivial bundle and the product of the trivial bundle
over S3 and Möbius band line bundle over S1 are nonnegatively curved.

Proof of 1.4. Any vector bundle over a 4-complex is the Whitney sum of a
trivial bundle and a bundle of rank ≤ 4, hence it suffices to consider the bundles
of rank k at most 4.
First, assume that ξ is orientable. Let q : R× S3 → S1 × S3 be the universal
cover of S1 × S3 . Then since any vector bundle over S3 is trivial we have
that q#(ξ) is trivial. In particular, p1(q#(ξ)) = e(q#(ξ)) = 0. Therefore,
according to 3.4. the classes p1(ξ) and e(ξ) vanish. Thus, it suffices to prove
the following.

Lemma 7.1. Let η be an orientable vector bundle over S1 × S3 such that
p1(η) = e(η) = 0. Then η is trivial.

Proof. Since H1(S1 × S3, Z/2Z) = 0 = H2(S1 × S3, Z), any rank one or rank
two orientable bundle over S1 × S3 is trivial.
Assume that η is an orientable bundle of rank 4. Let f : S1 × S3 → BSO(4)
denote a classifying map for η , i.e η ∼= f∗γ4 where γ4 is the universal 4-
bundle over BSO(4). The first four homotopy groups of BSO(4) are as follows:
π0(BSO(4)) = 0, π1(BSO(4)) = 0, π2(BSO(4)) = Z/2Z, π3(BSO(4)) = 0 and
π4(BSO(4)) = Z ⊕ Z . Consider the standard product cell decomposition of
S1 × S3 coming from canonical cell decompositions S1 = e0

⋃
e1 and S3 =

e0
⋃

e3 . Then the 3-skeleton of S1 × S3 is the wedge S1
∨

S3 . Since any
orientable vector bundle over S1 or S3 is trivial, f |S1

∨
S3 is homotopic to a

point and therefore by the homotopy extension property we can assume that
f send S1

∨
S3 to a point to begin with. In other words, f can be written

as a composition f = f̄ ◦ π where π is the factorization map π : S1 × S3 →
S1 × S3/(S1

∨
S3) ∼= S4 . Since π induces an isomorphism on H4 , the bundle

f̄∗(γ4) has zero Euler and Pontrjagin classes. It is a well known that a bundle
over S4 with zero Euler and Pontrjagin classes is trivial. (Indeed, the map
(e, p1) : π4(BSO(4)) → Z⊕Z which associates to a 4-bundle over S4 its Euler
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and Pontrjagin classes is a rational homotopy equivalence. Then the induced
map on π4 has finite, and hence trivial, kernel because π4(BSO(4)) ∼= Z× Z .)
Thus f̄ , and hence f , is nullhomotopic.

A very similar argument shows that any orientable 3-bundle over S1 × S3

with zero first Pontrjagin class is trivial. Again, everything can be reduced
to 3-bundles over S4 with zero p1 . The map p1 : BSO(3) → K(Z, 4) is a
rational homotopy equivalence, in particular, the induced map on π4 has finite,
and hence trivial, kernel because π4(BSO(3)) ∼= Z . Hence, only the trivial
3-bundle over S4 has zero p1 . �

Now suppose that ξ is not orientable and its total space admits a metric of non-
negative curvature. Since Z has a unique subgroup of index 2 the orientation
double cover for ξ is given by the map πS = (z → z2)× id : S1×S3 → S1×S3 .
Then the pullback π#

S (ξ) is orientable and also admits a metric of nonnega-
tive curvature. By above, the pullback π#

S (ξ) is trivial. The following lemma
completes the proof of 1.4 in the nonorientable case. �

Lemma 7.2. Let η be a nonorientable rank k bundle over S1 × S3 whose
orientation lift is a trivial bundle. Then η is isomorphic to the product µ1×εk−1

of the Möbius band line bundle µ1 over S1 and a trivial rank (k − 1)-bundle
εk−1 over S3 .

Proof. Since H1(S1 × S3, Z/2Z) = Z/2Z , there is only one nonorientable line
bundle over S1 × S3 , namely, µ1 × ε0 .

Case of rank four. Let f : S1 × S3 → BO(4) be the classifying map for η
and f0 : S1 × S3 → BO(4) be the classifying map for µ1 × ε3 . We want to
show that these maps are homotopic. The same argument as in the proof of 7.1
shows that f and f0 are homotopic on the 3-skeleton. Let us show that this
homotopy can be extended over the 4-cell.

Let πB : BSO(4) → BO(4) be the canonical double cover. Then each of the
maps f ◦ πS and f0 ◦ πS lifts to a map f̃ : S1 × S3 → BSO(4) which is the
classifying map for π∗Sη . In other words, we have the following commutative
diagram

S1 × S3 f̃−→ BSO(4)
↓ πS ↓ πB

S1 × S3 f−→ BO(4)

By construction, the map f̃ is equivariant under the action of the group of deck
transformations Z/2Z where the nontrivial element i ∈ Z/2Z acts on S1 × S3

by the formula (z, q) 7→ (−z, q) and acts on BSO(4) by reversing orientations
of 4-planes.
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Clearly the maps f and f0 are homotopic iff the maps f̃ and f̃0 are equiv-
ariantly homotopic. By above we can assume that f̃ and f̃0 are equivariantly
homotopic on the 3-skeleton of S1 × S3 . Next we compute the equivariant
cohomology group H4

eq(S
1 × S3, {π4(BSO(4))}) that contains the obstruction

for extending the homotopy over the 4-skeleton and show that in our situation
the obstruction has to vanish.

In order to explicitly describe equivariant cochains we have to identify the action
of Z/2Z on π4(BSO(4)). Recall that π4(BSO(4)) classifies the isomorphism
classes of orientable 4-bundles over S4 . On the other hand, π4(BSO(4)) ∼=
π3(SO(4)) ∼= Z ⊕ Z where the last isomorphism can be described explicitly as
(m,n) 7→ (q → qn · v · qm) where we identify R4 with the quaternions H and
S3 with the set of unit quaternions q . According to [Mil56], the classes p1, e ∈
H4(S4, Z) ∼= Z of the bundle (m, n) are given by p1(m,n) = 2(m − n) and
e(m,n) = m + n . The action of i on BSO(4) sends the canonical oriented 4-
bundle γ4 to −γ4 (i.e the same bundle with its orientation reversed). Therefore,
i∗(p1(γ4)) = p1(γ4) and i∗(e(γ4)) = −e(γ4), and hence the action of i on
π3(SO(4)) is given by i(m, n) = (−n,−m).

Now once the action is identified, a straightforward computation shows that
H4

eq(S
1 × S3, {π4(BSO(4))}) ∼= (Z ⊕ Z)/diagonal ∼= Z . Let O4 ∈ H4

eq(S
1 ×

S3, {π4(BSO(4))}) be the obstruction for the equivariant extension of the ho-
motopy between f̃ and f̃0 over the 4-skeleton. It remains to show that O4

vanishes. The double cover πS induces a homomorphism

π∗S : H4
eq(S

1 × S3, {π4(BSO(4))}) → H4
eq(S

1 × S3, π#
S {π4(BSO(4))})

where the last group is equal to H4(S1×S3, π4(BSO(4)) because the pullback
bundle of coefficients π#

S {π4(BSO(4))} is trivial. We claim that this map
is injective. (Indeed, since both groups are isomorphic to Z , it suffices to
show that the map is nonzero. If π∗S were zero, the orientation lift of any
nonorientable 4-bundle over S1 × S3 would be trivial which is certainly not
the case since there exist nonorientable bundles over S1 ×S3 with nonzero p1 .
An example of such a bundle is the Whitney sum of a nontrivial line bundle
and the pullback of a 3-bundle over S4 with nonzero p1 via a degree one map
S1 × S3 → S4 .) Since both f ◦ πS and f0 ◦ πS are null homotopic we know
that π∗S(O4) = 0 and hence O4 vanishes.

Case of rank three and two. Again, the classifying maps f and f0 are
homotopic on the 3-skeleton and one has to compute the obstruction O4 to
extending the homotopy over the 4-skeleton.

If the rank is three, Z/2Z action on the coefficient group is trivial and the
obstruction group H4

eq(S
1×S3, {π4(BSO(3))}) reduces to H4(S1×S3, Z). As

before we have π∗S(O4) = 0 and since in this case π∗S is clearly injective, we
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conclude that O4 vanishes. In the rank two case the obstruction is always zero
simply because π4(BSO(2)) = 0. �

Proposition 7.3. The total space of any vector bundle over S1 × S2 has a
complete metric of nonnegative curvature such that the zero section is a soul.

Proof. Since all vector bundles over S1 and S2 admit nonnegatively curved
metric such that the zero sections are souls, it suffices to show that any vector
bundle over S1 × S2 is isomorphic to the product of a bundle over S1 and a
bundle over S2 .

First of all observe that two rank k vector bundles over S1×S2 are isomorphic
iff their restrictions to the two-skeleton S1∨S2 are isomorphic. Indeed, we only
need to extend the homotopy of the classifying maps S1 × S2 → BO(k) from
S1 ∨ S2 to the remaining 3-cell. This is always possible since π3(BO(k)) ∼=
π2(O(n)) = 0.

Now let ξ be a vector bundle of rank k over S1 × S2 with the classifying map
f : S1 × S2 → BO(k).

The case k = 1 is obvious because line bundles are classified by w1 and the
inclusion S1 ↪→ S1 × S2 induces an isomorphism on H1( , Z/2Z) so that any
line bundle over S1 × S2 is a pullback of a bundle over S1 . Similarly, if k = 2
and ξ is orientable, then ξ is completely determined by its Euler class. Since
the inclusion S2 ↪→ S1 × S2 induces an isomorphism on H2( , Z), we conclude
that ξ is a pullback of a bundle over S2 .

Assume that k ≥ 3. Since π2(BSO(k)) = Z/2Z , there are exactly two k -
bundles over S2 , namely the trivial bundle and the Whitney sum of a trivial
bundle and a 2-bundle with nonzero w2 . Let κ be a 2-bundle over S2 that has
the same w2 as the restriction of ξ to S2 and let λ be a line bundle over S1

with the same w1 as the restriction of ξ to S1 . Finally, let g be the classifying
map for the the Whitney sum of κ× λ and the trivial bundle of rank (k − 3).
By construction the restrictions of f and g to the two-skeleton S1 ∨ S2 are
homotopic as needed.

Finally, suppose that k = 2 and ξ is not orientable. Note that the orientable
two-fold cover ξ̃ of ξ has zero Euler class. (Indeed, since S2 represents the
generator of H2(S1 × S2, Z) it suffices to show that the intersection number of
S2 and the zero section of ξ̃ inside the total space E(ξ̃) is zero. To compute
the intersection number put S2 in the general position to the zero section of ξ
and then look at the the preimage of the manifolds inside E(ξ̃). The covering
action of Z/2Z on E(ξ̃) preserves the orientation on the base and changes the
orientation of the total space. Thus, points of intersection come in pairs: one
with plus sign and the other with minus sign. So the intersection number is
zero.) This implies that the restriction of ξ to S2 has zero Euler class, and so
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ξ|S2 is a trivial bundle. By above ξ is isomorphic to the product of ξ|S1 and
the rank zero bundle over S2 . �
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