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Abstract. We show that almost nonnegatively curved m -manifolds are, up to finite
cover, nilpotent spaces in the sense of homotopy theory and have C(m)-nilpotent fun-
damental groups. We also show that up to a finite cover almost nonnegatively curved
manifolds are fiber bundles with simply connected fibers over nilmanifolds.

1. Introduction

Almost nonnegatively curved manifolds were introduced by Gromov in the late 70s [Gro80],
with the most significant contributions to their study made by Yamaguchi in [Yam91] and
Fukaya and Yamaguchi in [FY92]. Building on their ideas, in the present article we estab-
lish several new properties of these manifolds which yield, in particular, new topological
obstructions to almost nonnegative curvature.

A closed smooth manifold is said to be almost nonnegatively curved if it can Gromov-
Hausdorff converge to a single point under a lower curvature bound. By rescaling, this
definition is equivalent to the following one, which we will employ throughout this article.

Definition 1.1. A closed smooth manifold M is called almost nonnegatively curved if it ad-
mits a sequence of Riemannian metrics {gn}n∈N whose sectional curvatures and diameters
satisfy sec(M, gn) > −1/n and diam(M, gn) 6 1/n.

Almost nonnegatively curved manifolds generalize almost flat as well as nonnegatively
curved manifolds. One main source of examples comes from a theorem of Fukaya and
Yamaguchi. It states that if F → E → B is a fiber bundle over an almost nonnega-
tively curved manifold B whose fiber F is compact and admits a nonnegatively curved
metric which is invariant under the structure group, then the total space E is almost non-
negatively curved [FY92]. Further examples are given by closed manifolds which admit a
cohomogeneity one action of a compact Lie group (compare [ST04]).

In this work we combine collapsing techniques with a non-smooth analogue of the gradient
flow of concave functions which we call the “gradient push”. This notion is based on the
construction of gradient curves of λ-concave functions used in [PP96] and bears many
similarities to the Sharafutdinov retraction [Sha78]. The gradient push plays a key role in
the proofs of two of the three main results in this paper, and we believe that it should also
prove useful for dealing with other problems related to collapsing under a lower curvature
bound.
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1.1. To put the main theorems of the present work into perspective, let us first briefly
recall some previously known results:

Let M = Mm be an almost nonnegatively curved m-manifold.

∗ Gromov proved in [Gro78] that the minimal number of generators of the fundamental
group π1(M) of M can be estimated by a constant C1(m) depending only on m , and
in [Gro81] that the sum of Betti numbers of M with respect to any field of coefficients
does not exceed some uniform constant C2 = C2(m).

∗ Yamaguchi showed that, up to a finite cover, M fibers over a flat b1(M ; R)-dimensionsal
torus and that Mm is diffeomorphic to a torus if b1(M ; R) = m [Yam91].

∗ Fukaya and Yamaguchi proved that π1(M) is almost nilpotent, i.e., contains a nilpotent
subgroup of finite index, and also that π1(M) is C3(m)-solvable, i.e, contains a solvable
subgroup of index at most C3(m) [FY92].

∗ If a closed manifold has negative Yamabe constant, then it cannot volume collapse with
scalar curvature bounded from below (see [Sch89, LeB01]). In particular, no such mani-
fold can be almost nonnegatively curved.

∗ The Â-genus of a closed spin manifold X of almost nonnegative Ricci curvature satisfies
the inequality Â(X) 6 2dim(X)/2 ([Gal83], [Gro96, page 41]).

Let us now state the main results of this article.

1.2. Our first result concerns the hitherto unexplored relation between curvature bounds
and the actions of the fundamental group on the higher homotopy groups.

Recall that an action by automorphisms of a group G on an abelian group V is called
nilpotent if V admits a finite sequence of G-invariant subgroups

V = V0 ⊃ V1 ⊃ . . . ⊃ Vk = 0

such that the induced action of G on Vi/Vi+1 is trivial for any i . A connected CW-complex
X is called nilpotent if π1(X) is a nilpotent group that operates nilpotently on πk(X) for
every k > 2.

Nilpotent spaces play an important role in topology since they enjoy some of the best
homotopy-theoretic properties of simply connected spaces, like a Whitehead theorem or
reasonable Postnikov towers. Furthermore, unlike the category of simply connected spaces,
the category of nilpotent ones is closed under many constructions such as the based loop
space functor or the formation of function spaces, and group-theoretic functors, like local-
ization and completion, have topological extensions in this category.

Theorem A (Nilpotency Theorem). Let M be a closed almost nonnegatively curved man-
ifold. Then a finite cover of M is a nilpotent space.

It would be interesting to know whether the order of this covering can be estimated solely
in terms of the dimension of M .

Example 1.2. Let h : S3 × S3 → S3 × S3 be defined by h : (x, y) 7→ (xy, yxy). This map
is a diffeomorphism with the inverse given by h−1 : (u, v) 7→ (u2v−1, vu−1). The induced

map h∗ on π3(S3 × S3) is given by the matrix Ah =
(

1 1
1 2

)
. Notice that the eigenvalues

of Ah are different from 1 in absolute value. Let M be the mapping cylinder of h . Clearly,
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M has the structure of a fiber bundle S3 × S3 → M → S1 , and the action of π1(M) ∼= Z
on π3(M) ∼= Z2 is generated by Ah . In particular, M is not a nilpotent space and hence,
by Theorem A, it does not admit almost nonnegative curvature. This fact doesn’t follow
from any previously known results.

1.3. Our next main result provides an affirmative answer to a conjecture of Fukaya and
Yamaguchi [FY92, Conjecture 0.15].

Theorem B (C -Nilpotency Theorem for π1 ). Let M be an almost nonnegatively curved
m-manifold. Then π1(M) is C(m)-nilpotent, i.e., π1(M) contains a nilpotent subgroup of
index at most C(m).

Notice that Theorem B is new even for manifolds of nonnegative curvature.

Example 1.3. For any C > 0 there exist prime numbers p > q > C and a finite group
Gpq of order pq which is solvable but not nilpotent. In particular, Gpq does not contain
any nilpotent subgroup of index less than or equal to C .

Whereas none of the results mentioned so far excludes Gpq from being the fundamental
group of some almost nonnegatively curved m-manifold, Theorem B shows that for C >
C(m) none of the groups Gpq can be realized as the fundamental group of such a manifold.

1.4. In [FY92] Fukaya and Yamaguchi also conjectured that a finite cover of an almost
nonnegatively Ricci curved manifold M fibers over a nilmanifold with a fiber which has
nonnegative Ricci curvature and whose fundamental group is finite. This conjecture was
later refuted by Anderson [And92].

It is, on the other hand, very natural to consider this conjecture in the context of almost
nonnegative sectional curvature. In fact, here Yamaguchi’s fibration theorem ([Yam91])
and the results of [FY92] easily imply that a finite cover of an almost nonnegatively curved
manifold is the total space of a Serre fibration over a nilmanifold with simply connected
fibers.

From mere topology, it is, however, not clear whether this fibration can actually always be
made into a genuine fiber bundle. Our next result shows that this is indeed true, and that
for manifolds of almost nonnegative sectional curvature Fukaya’s and Yamaguchi’s original
conjecture essentially does hold.

Theorem C (Fibration Theorem). Let M be an almost nonnegatively curved manifold.
Then a finite cover M̃ of M is the total space of a fiber bundle

F → M̃ → N

over a nilmanifold N with a simply-connected fiber F . Moreover, the fiber F is almost
nonnegatively curved in the sense of the following definition.

Definition 1.4. A closed smooth manifold M is called almost nonnegatively curved in
the generalized sense if for some nonnegative integer k there exists a sequence of complete
Riemannian metrics gn on M × Rk and points pn ∈ M × Rk such that

(1) the sectional curvatures of the metric balls of radius n around pn satisfy

sec(Bn(pn)) > −1/n;
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(2) for n → ∞ the pointed Riemannian manifolds ((M × Rk, gn), pn) converge in the
pointed Gromov-Hausdorff distance to (Rk, 0);

(3) the regular fibres over 0 are diffeomorphic to M for all large n.

Due to Yamaguchi’s fibration theorem [Yam91], manifolds which are almost nonnegatively
curved in the generalized sense play the same central role in collapsing under a lower curva-
ture bound as almost flat manifolds do in the Cheeger-Fukaya-Gromov theory of collapsing
with bounded curvature (see [CFG92]).

It is not known whether all manifolds which are almost nonnegatively curved in the gener-
alized sense are almost nonnegatively curved. Clearly, if k = 0, this definition reduces to
the standard one. Moreover, it is easy to see that all results of the present article, as well as
all results about almost nonnegatively curved manifolds mentioned earlier (except possibly
for the ones concerning the Â-genus and Yamabe constant), hold for manifolds which are
almost nonnegatively curved in the sense of Definition 1.4.

1.5. Let us now describe the structure of the remaining sections of this article.

In section 2, after providing some necessary background from Alexandrov geometry, we
introduce the gradient push, which is, roughly speaking, the gradient flow of the square of
a distance function. It serves as one of the main technical tools in the proofs of theorem A
and theorem B.

In section 3 we prove Theorem A by a direct application of the gradient push technique.

In section 4 we prove Theorem B. The proof is also based on the gradient push, but is
more involved and employs further technical tools such as “limit fundamental groups” of
Alexandrov spaces.

In section 5 we prove Theorem C. This section is completely independent from the rest of
the article.

In section 6 we discuss some further open questions related to our results.

Acknowledgements. We would like to express our thanks to the following people for helpful
conversations during the preparation of this work: I. Belegradek, V. Gorbunov, E. For-
manek, I. Kapovitch, A. Lytchak, R. Matveyev, D. Robinson, D. Sullivan, B. Wilking, and
Yu. Zarkhin.

2. Alexandrov geometry and the gradient push

This section provides necessary background in Alexandrov geometry and introduces the
gradient push. The results of sections 2.1-2.3 are mostly repeated from [PP96] and [Pet95].
The reader may consult [BGP92] for a general reference on Alexandrov spaces.

2.1. λ-concave functions.

Definition 2.1. (for a space without boundary) Let A be an Alexandrov space without
boundary. A Lipschitz function f : A → R is called λ-concave if for any unit speed mini-
mizing geodesic γ in A, the function

f ◦ γ(t)− λt2/2

is concave.



NILPOTENCY, ALMOST NONNEGATIVE CURVATURE AND THE GRADIENT PUSH 5

If A is an Alexandrov space with boundary, then its double Ã is also an Alexandrov space
(see [Per91, 5.2]). Let p : Ã → A be the canonical map. Given a function f on A , set
f̃ = f ◦ p.

Definition 2.2. (for a space with boundary) Let A be an Alexandrov space with boundary.
A Lipschitz function f : A → R is called λ-concave if for any unit speed minimizing geodesic
γ in Ã, the function

f̃ ◦ γ(t)− λt2/2
is concave.

Remark 2.3. Notice that the restriction of a linear function on Rn to a ball is not 0-
concave in this sense.

Remark 2.4. In the above definitions, the Lipschitz condition is only technical. With some
extra work, all results of this section can be extended to continuous functions.

2.2. Tangent cone and differential. Given a point p in an Alexandrov space A , we
denote by Tp = Tp(A) the tangent cone at p .

If d denotes the metric of an Alexandrov space A , let us denote by λA the space (A, λd).
Let iλ : λA → A be the canonical map. The limit of (λA, p) for λ → ∞ is the tangent
cone Tp at p (see [BGP92, 7.8.1]).

Definition 2.5. For any function f : A → R the function dpf : Tp → R such that

dpf = lim
λ→∞

λ(f ◦ iλ − f(p))

is called the differential of f at p.

It is easy to see that for a λ-concave function f the differential dpf is defined everywhere,
and that dpf is a 0-concave function on the tangent cone Tp .

Definition 2.6. Given a λ-concave function f : A → R, a point p ∈ A is called critical
point of f if dpf 6 0.

2.3. Gradient curves. With a slight abuse of notation we will call elements of the tangent
cone Tp the “tangent vectors” at p . The origin of Tp plays the role of the zero vector and
is denoted by o = op . For a tangent vector v at p we define its absolute value |v| as the
distance |ov| in Tp . For two tangent vectors u and v at p we can define their “scalar
product”

〈u, v〉 = (|u|2 + |v|2 − |uv|2)/2 = |u| · |v| cos α,

where α = ∠uov in Tp .

For two points p, q ∈ A we define logp q to be a tangent vector v at p such that |v| = |pq|
and such that the direction of v coincides with a direction from p to q (if such a direction
is not unique, we choose any one of them). Given a curve γ(t) in A , we denote by γ+(t)
the right and by γ−(t) the left tangent vectors to γ(t), where, respectively,

γ±(t) ∈ Tγ(t), γ±(t) = lim
ε→+0

logγ(t) γ(t± ε)
ε

.
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For a real function f(t), t ∈ R , we denote by f+(t) its right derivative and by − f−(t) its
left derivative. Note that our sign convention (which is chosen to agree with the notion of
right and left derivatives of curves) is not quite standard. For example,

if f(t) = t then f+(t) ≡ 1 and f−(t) ≡ −1.

Definition 2.7. Given a λ-concave function f on A, a vector g ∈ Tp(A) is called a
gradient of f at p ∈ A (in short: g = ∇pf ) if
(i) dpf(x) 6 〈g, x〉 for any x ∈ Tp , and
(ii) dpf(g) = 〈g, g〉.

It is easy to see that any λ-concave function has a uniquely defined gradient vector field.
Moreover, if dpf(x) 6 0 for all x ∈ Tp , then ∇pf = o (here o denotes the origin of the
tangent cone Tp ); otherwise,

∇pf = dpf(ξ)ξ
where ξ is the (necessarily unique) unit vector for which the function dpf attains its max-
imum.
Moreover, for any minimizing geodesic γ : [a, b] → U parameterized by arclength, the
following inequality holds:

(2.1) 〈γ+(a),∇γ(a)f〉+ 〈γ−(b),∇γ(b)f〉 > −λ(b− a).

Indeed,

〈γ+(a),∇γ(a)f〉+ 〈γ−(b),∇γ(b)f〉 > dγ(a)f(γ+(a)) + dγ(b)f(γ−(b)) =

= (f ◦ γ)+|a + (f ◦ γ)−|b > −λ(b− a).

Definition 2.8. A curve α : [a, b] → A is called an f -gradient curve if for any t ∈ [a, b]

α+(t) = ∇α(t)f.

Proposition 2.9. Given a λ-concave function f : A → R and a point p ∈ A there is a
unique gradient curve α : [0,∞) → A such that α(0) = p.
Moreover, if α and β are two f -gradient curves, then

|α(t1)β(t1)| 6 |α(t0)β(t0)| exp(λ(t1 − t0)) for all t1 > t0.

The gradient curve can be constructed as a limit of broken geodesics, made up of short
segments with directions close to the gradient. The convergence, uniqueness, as well as the
last inequality in Proposition 2.9 follow from inequality (2.1) above, while Corollary 2.11
below guarantees that the limit is indeed a gradient curve, having a unique right tangent
vector at each point.

Lemma 2.10. Let An
GH→ A be a sequence of Alexandrov spaces with curvature > k which

Gromov-Hausdorff converges to an Alexandrov space A.
Let fn → f , where fn : An → R is a sequence of λ-concave functions converging to
f : A → R.
Let pn → p, where pn ∈ An and p ∈ A.
Then

|∇pf | 6 lim inf
n→∞

|∇pnfn|.
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Corollary 2.11. Given a λ-concave function f on A and a sequence of points pn ∈
A, pn → p, we have

|∇pf | 6 lim inf
n→∞

|∇pnf |.

Proof of Lemma 2.10. Fix an ε > 0 and choose q near p such that

f(q)− f(p)
|pq|

> |∇pf | − ε.

Now choose qn ∈ An such that qn → q . If |pq| is sufficiently small and n is sufficiently
large, the λ-concavity of fn then implies that

lim inf
n→∞

dpnfn(vn)
|vn|

> |∇pf | − 2ε for vn = logpn
(qn) ∈ Tpn(An).

Therefore,
lim inf
n→∞

|∇pnfn| > |∇pf | − 2ε for any ε > 0,

i.e.,
lim inf
n→∞

|∇pnfn| > |∇pf |.

�

Lemma 2.12. Let f be a λ-concave function, λ > 0 and α(t) be an f -gradient curve,
and let ᾱ(s) be its reparameterization by arclength. Then f ◦ ᾱ is λ-concave.

Proof.

(f ◦ ᾱ)+(s0) = |∇ᾱ(s0)f | >
dᾱ(s0)f(logᾱ(s0)(ᾱ(s1))

|ᾱ(s1) ᾱ(s0)|
>

>
f(ᾱ(s1))− f(ᾱ(s0))− λ|ᾱ(s1) ᾱ(s0)|2/2

|ᾱ(s1) ᾱ(s0)|
>

f(ᾱ(s1))− f(ᾱ(s0))
s1 − s0

− λ|ᾱ(s1) ᾱ(s0)|/2.

Since |ᾱ(s1) ᾱ(s0)|
(s1−s0) → 1 as s1 → s0+, it follows that f ◦ ᾱ is λ-concave.

�

2.4. Gradient push. Let f be a λ-concave function on an Alexandrov space A . Consider
the map ΦT

f : A → A defined as follows: ΦT
f (x) = αx(T ), where αx : [0,∞) → A is the

f -gradient curve with αx(0) = x . The map ΦT
f is called f -gradient push at time T . From

Proposition 2.9 it is clear that ΦT
f is an exp(λT )-Lipschitz map. Next we want to prove

that this map behaves nicely under Gromov-Hausdorff-convergence.

Theorem 2.13. Let An
GH→ A be a sequence of Alexandrov spaces with curvature > k

which converges to an Alexandrov space A.

Let fn → f , where fn : An → R is a sequence of λ-concave functions and f : A → R.

Then ΦT
fn
→ ΦT

f .

Theorem 2.13 immediately follows from the following Lemma:
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Lemma 2.14. Let An
GH→ A be a sequence of Alexandrov spaces with curvature > k which

converges to an Alexandrov space A.

Let fn → f , where fn : An → R is a sequence of λ-concave functions and f : A → R.

Let αn : [0,∞) → An be the sequence of fn -gradient curves with αn(0) = pn and let
α : [0,∞) → A be the f -gradient curve with α(0) = p.

Then αn → α .

Proof. We may assume without loss of generality that f has no critical points. (Otherwise
consider instead the sequence A′

n = An × R with f ′n(a× x) = fn(a) + x .)

Let ᾱn(s) denote the reparameterization of αn(t) by arc length. Since all ᾱn are 1-
Lipschitz, we can choose a converging subsequence from any subsequence of ᾱn . Let β̄ :
[0,∞) → A be its limit.

Clearly, β̄ is also 1-Lipschitz and hence |β̄+| 6 1. Therefore, by Lemma 2.10,

lim
n→∞

fn ◦ ᾱn|ba = lim
n→∞

∫ b

a
|∇ᾱn(s)fn|ds >

>
∫ b

a
|∇β̄(s)f | >

∫ b

a
dβ(t)f(β+(t)) = f ◦ β|ba

On the other hand, since ᾱn → β̄ and fn → f we have fn ◦ ᾱn|ba → f ◦ β̄|ba . Therefore, in
both of these inequalities in fact equality holds.

Hence, |∇β̄(s)f | = limn→∞ |∇ᾱn(s)fn|, |β̄+(s)| = 1 and the directions of β̄+(s) and ∇β̄(s)f

coincide almost everywhere. This implies that β̄(s) is a gradient curve reparameterized by
arc length. In other words, if ᾱ(s) denotes the reparameterization of α(t) by arc length,
then β̄(s) = ᾱ(s) for all s . It only remains to show that the original parameter tn(s) of
αn converges to the original parameter t(s) of α .

Notice that |∇ᾱn(s)fn|dtn = ds or dtn/ds = ds/d(fn ◦ ᾱn). Likewise, dt/ds = ds/d(f ◦ ᾱ).
Then the convergence tn → t follows from the λ-concavity of fn ◦ ᾱn (see Lemma 2.12)
and the convergence fn ◦ ᾱn → f ◦ ᾱ. �

Remark 2.15. (A few words about the name “gradient push”)

At first sight, it might look strange why we call “gradient push” something which is normally
referred to as the gradient flow. The reason for this name stems from the relation of this
notion to moving furniture inside a room by pushing it around. If a piece of furniture is
located in the middle of a room, one can push it to any other place in the room. But as
soon as it is pushed to a wall one cannnot push it back to the center; and once it is pushed
into a corner one cannot push it anywhere. The same is true for the gradient push in an
Alexandrov space, where the role of walls and corners is played by extremal subsets.

2.5. Gradient balls.

Let A be an Alexandrov space and let S ⊂ A be a subset of A . A function f : A → R
which can be represented as

f =
∑

i

θi
dist2ai

2
with θi > 0,

∑
i

θi = 1 and ai ∈ S
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will be called cocos-function with respect to S (where “cocos” stands for convex combination
of squares of distance functions). A broken gradient curve for a collection of such functions
will be called cocos-curve with respect to S .

For p ∈ A and T, r ∈ R+ , let us define “the gradient ball with center p and radius T with
respect to Br(p)”, βr

T (p), as the set of all end points of cocos-curves with respect to Br(p)
that start at p with total time 6 T .

Lemma 2.16.

(I) There exists T = T (m) ∈ R+ such that for any m-dimensional Alexandrov space A
with curvature > −1 and any q ∈ A there is a point p ∈ A such that

(i) |pq| 6 1, and
(ii) B1(p) ⊂ β1

T (p).
(II) There exists T ′ = T ′(m) ∈ R+ such that the following holds. Let A be an Alexandrov

space which is a quotient A = Ã/Γ of an m-dimensional Alexandrov space Ã with
curvature > −1 by a discrete action of a group of isometries Γ. Let q ∈ A and
p = p(q) ∈ A be as in part I above.

Then for any lift p̃ ∈ Ã of p one has that B1(p̃) ⊂ β1T ′(p̃).

Proof. The proof is similar to the construction of a strained point in an Alexandrov space
(see [BGP92]).

Set δ = 10−m . Take a1 = q and take b1 to be a farthest point from a1 in the closed ball
B̄1(a1). Take a2 to be a midpoint of a1b1 and let b2 be a farthest point from a2 such that
|a1b2| = |a1a2| and |a2b2| 6 δ|a1b1| , etc. On the k -th step we have to take ak to be a
midpoint of ak−1bk−1 and bk to be a farthest point from ak such that |aibk| = |aiak| for
all i < k and |akbk| 6 δ|ak−1bk−1| .
After m steps, take p to be a midpoint of ambm . We only have to check that we can find
T = T (m) such that β1T (p) ⊃ B1(p).

Let ti be the minimal time such that B|aibi|/δm(p) ⊂ β1ti(p). Then one can take T = t1 .
Therefore it is enough to give estimates for tm and tk−1/tk only in terms of δ and m . Look-
ing at the ends of broken gradient curves starting at p for the functions dist2p /2, dist2ai

/2
and dist2bi

/2, we easily see that tn 6 1/δm . Now, looking at the ends of broken gradient
curves starting at B|ak−1bk−1|/δm(p) for the functions dist2p /2, dist2ai

/2 and dist2bi
/2, we

have that tk−1/tk 6 1/δm . Therefore t1 6 1/δm2 = 10−m3 . This finishes the proof of part
(I).

For part (II), notice that

∗ for any r, t > 0 we have βr
t (p) ⊂ Bret(p);

∗ if βr
t (p) ⊃ Bρ(p), then βr

t+τ (p) ⊃ Bρeτ (p);
∗ if ρ = |px| and x ∈ βr+ρ

t (p), then βr
τ (x) ⊂ βr+ρ

t+τ (p).

Take ε = e−T /4 and apply part (I) of the lemma to 1
ε Ã to find a point p′ ∈ Ã such

that |p̃p′| 6 ε and Bε(p′) ⊂ βε
T (p′) ⊂ Ã . Then for some deck transformation γ we have

γp′ ∈ βε
T (p) ⊂ BεeT (p). Therefore it holds that γp′ ∈ B1/2(p̃). Hence, taking

T ′ = 2T + 1/ε = 2T + 4eT ,
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we obtain
β1T ′(p) ⊃ βε

T+1/ε(γp′) ⊃ B1(p̃).
�

3. Nilpotency of almost nonnegatively curved manifolds

In this section we prove Theorem A.

3.1. Short basis. We will use the following construction due to Gromov.

Given an Alexandrov space A with a marked point p ∈ A , and a group Γ acting discretely
on A one can define a short basis of the action of Γ at p as follows:

For γ ∈ Γ define |γ| = d(p, γ(p)). Choose γ1 ∈ Γ with the minimal norm in Γ. Next choose
γ2 to have minimal norm in Γ\ < γ1 > . On the n-th step choose γn to have minimal norm
in Γ\ < γ1, γ2, ..., γn−1 > . The sequence {γ1, γ2, ...} is called a short basis of Γ at p . In
general, the number of elements of a short basis can be finite or infinite. In the special case
of the action of the fundamental group π1(A, p) on the universal cover of A one speaks of
the short basis of π1(A, p).

It is easy to see that for a short basis {γ1, γ2, ...} of the fundamental group of an Alexandrov
space A the following is true:

(1) If A has diameter d then |γi| 6 2d .
(2) If A is compact then {γi} is finite.
(3) For any i > j we have |γi| 6 |γ−1

j γi| .

The third property implies that if p̃ ∈ Ã is in the preimage of p in the universal cover Ã
of A and p̃i = γi(p̃), then

|p̃ip̃j | > max{|p̃p̃i|, |p̃p̃j |}.

As was observed by Gromov, if A is an Alexandrov space with curvature > κ and diameter
6 d , the last inequality implies that ∠p̃ip̃p̃j > δ = δ(κ, d) > 0. This yields an upper bound
on the number of elements of a short basis in terms of κ, d and the dimension of A .

3.2. In the proof, we will use the following simple observation. Let G be a group acting on
an abelian group V via a representation ρ : G → Aut(V ). It is obvious from the definition
that the action of G on V is nilpotent iff the actions of G on Tor(V ) and V/Tor(V ) are
nilpotent. It easily follows from Engel’s theorem that if V is finitely generated and if for
any g ∈ G all eigenvalues of the induced action of g on V ⊗ R are equal to 1, then G
contains a finite index subgroup whose action on V is nilpotent.

Let M be an almost nonnegatively curved manifold. Let us denote by Mn = (M, gn),
n ∈ N , a sequence of Riemannian metrics on M such that KMn > −1/n and diam(Mn) 6
1/n . Let us denote by M̃ the universal covering of M , and by M̃n → Mn the universal
Riemannian covering of Mn (i.e., M̃n is M̃ equipped with the pullback of the Riemannian
metric gn ).

Key Lemma 3.1. Given ε > 0 and r2 > r1 > 0, let M̃n ⊃ Br2(pn) ⊃ Br1(pn). Then,
for n sufficiently large, there is a (1 + ε)-Lipschitz map Φn : Br2(pn) → Br1(pn) which is
homotopic to the identity on Br2(pn).



NILPOTENCY, ALMOST NONNEGATIVE CURVATURE AND THE GRADIENT PUSH 11

Proof. Fix R >> r2 (here R > 1000(1+1/ε)r2 will suffice). Notice that as n →∞ , we have
that BR(pn) → BR ⊂ Rq . Choose a finite R/1000-net {ai} of ∂BR ⊂ Rq . Let ai,n ∈ Mn

be sequences such that ai,n → an . Consider the sequence of functions fn : Mn → R with
fn = mini dist2ai,n

.

For large n , the functions fn are 2-concave in BR(pn), so that, in particular, the gradient
pushs ΦT

fn
|Br2 (pn) are e2T -Lipschitz. Moreover, if ξx denotes the starting vector of a unit

speed shortest geodesic from x to pn , then for any x ∈ Br2(pn)\Br1(pn) we have 〈ξx,∇f〉 >

R/2. Therefore, if T = 2r2/R , then ΦT
fn

(Br2(pn)) ⊂ Br1(pn). Thus Φn = Φ2r2/R
fn

provides
a 4r2/R-Lipschitz map Br2(pn) → Br1(pn), and it is (1 + ε)-Lipschitz if one chooses R
sufficiently large. �

Corollary 3.2. Let M be almost nonnegatively curved manifold. Let h : π1(M) →
Aut(H∗(M̃, Z)/tor) be the natural action of π1(M) on (H∗(M̃). Then there is a sequence
of norms || ∗ ||n on H∗(M̃, Z)/tor such that the following holds. Given any ε > 0, there is
n ∈ Z+ such that for any γ ∈ π1(M) with |γ|n 6 2diam(Mn) we have ||h(γ)||n 6 1 + ε.

Proof. [FY92, theorem 0.1] and Yamaguchi’s fibration theorem [Yam91] imply that if n is
sufficiently large, for any fixed r ∈ R+ we have that for any pn ∈ M̃n the inclusion map
Br(pn) → M̃n is a homotopy equivalence.

Let || ∗ ||n,r denote the L∞ -norm on differential forms on Br(pn) ⊂ M̃n .

Fix r2 > r1 > 0. If ω is a differential form on Br1(pn) ⊂ Mn and n is sufficiently large,
Lemma 3.1 implies that

||Φ∗
n(ω)||n,r2 6 (1 + ε)||ω||n,r1 and 2diam(Mn) 6 r2 − r1.

If now ω is a form on Br2(pn) ∈ M̃n and γ ∈ π1(M) such that

|γ|n = |pn γ(pn)| 6 2diam(Mn) 6 r2 − r1,

then Br1(pn) ⊂ Br2(γ(pn)) ⊂ M̃n , whence

||Φ∗
n(γ∗(ω))||n,r2 6 (1 + ε)||γ∗(ω)||n,r1 6 (1 + ε)||ω||n,r2 .

Thus, for the induced norms on the de Rham cohomology of M̃ (and on its integral subspace
H∗(M̃, Z)/tor)) we have

||[γ∗(ω)]||n,r2 6 (1 + ε)||[ω]||n,r2 .

Therefore the sequence of norms ||∗||n = ||∗||n,r2 satisfies the conditions of the Corollary. �

Lemma 3.3. There exists a constant N = N(n, k) ∈ Z+ such that the following holds. If
G is a subgroup of GL(n, Z) and S is a set of generators of G with #(S) 6 k such that
the eigenvalues of each element of SN are all equal to 1 in absolute value, then the same
is true for the eigenvalues of all elements of G.

Proof. Let B be the set of all matrices in GL(n, Z) for which all of their eigenvalues are
equal to 1 in absolute value. Since the characteristic polynomials of such matrices are
uniformly bounded and have integer coefficients, there are only finitely many of them. Let
B̄ be the Zariski closure of B in the set of all real n×n matrices. By the above, all elements
of B̄ satisfy that the absolute values of all of their eigenvalues are equal to 1.
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Consider now the space V = Rkn2 of k -tuples of real n× n matrices.
Consider a collection of matrices (M1,M2, ...,Mk) ∈ V , where Mi ∈ GL(n, R). Let Fk be
a free group on k generators, generated by S = {γ1, γ2, ..., γk} , and let h : Fk → GL(n, R)
be the homomorphism defined by h(γi) = Mi . The property that for any γ ∈ Fk h(γ) be
an element of B̄ then describes an algebraic subset Aγ ⊂ V .
The intersection A = ∩γ∈Fk

Aγ is also algebraic, and therefore there is a finite number
N = N(n, k) such that for SN ⊂ Fk , A = ∩γ∈SN Aγ . �

Lemma 3.4. Let Γ be a subgroup of GL(n, Z) such that the eigenvalues of each element
of G are equal to 1 in absolute value. Then Γ contains a subgroup Γ′ of finite index all of
whose elements have eigenvalues equal to 1.

Proof. Let G denote the Zariski closure of Γ in GL(n, R) . Then G , being an algebraic
group, is a Lie group with finitely many components. Let G◦ be the identity component of
G . By the same argument as in the proof of the previous lemma, the set of all characteristic
polynomials of the elements of G is finite. Therefore the characteristic polynomial of any
element of G◦ is identically equal to (x− 1)n .
Therefore, the subgroup Γ′ = Γ ∩G◦ satisfies all conditions of the Lemma. �

Proof of Theorem A. Let M be an almost nonnegatively curved manifold. Denote, as usual,
by Mn = (M, gn), n ∈ N , a sequence of Riemannian metrics on M such that KMn > −1/n

and diam(Mn) 6 1/n , by M̃ the universal covering of M , and by M̃n → Mn the universal
Riemannian covering of Mn .
After passing to a finite cover of M , by [FY92] we may assume that π1(M) is nilpotent.
Fix p ∈ M and let {γi,n} be a short basis of π1(Mn, p). Then, if n is sufficiently large, the
short basis {γi,n} has at most k = k(dim M) elements and its elements satisfy |γi,n|n 6 2/n
for every i . Moreover, Corollary 3.2 implies that given ε > 0, for all large n and every i
we have ||h(γi,n)||n < 1 + ε and ||h(γ−1

i,n )||n < 1 + ε .

Take N = N(k, m) as in Lemma 3.3. One can choose ε > 0 so small that if p is a
polynomial with integer coefficients for which all of its roots have absolute values lying
between 1/(1+ ε)N and (1+ ε)N , then all roots of p have absolute values equal to 1. This
follows from the fact that the total number of integer polynomials all of whose roots are
contained in a fixed bounded region is finite.
Set Sn := {γi,n} . Then for any γ ∈ SN

n we have ||h(γ)||n < (1 + ε)N and ||h(γ−1)||n <
(1 + ε)N . Therefore the absolute values of all eigenvalues lie between 1/(1 + ε)N and
(1 + ε)N . Since the characteristic polynomial of h(γ) has integer coefficients, the absolute
values of all the eigenvalues of h(γ) are in fact equal to 1.
Apply now Lemma 3.3. It follows that for any γ ∈ π1(M) the absolute values of all
eigenvalues of h(γ) are equal to 1.
Then Lemma 3.4 implies that after passing to a finite cover M ′ of M , for any γ ∈ π1(M ′)
all eigenvalues of h(γ) are equal to 1. By Engel’s theorem, one can choose an integral basis
of H∗(M̃, R) such that the action of π1(M) on H∗(M̃, Z)/tor is given by upper triangular
matrices.
Therefore, by passing to a finite cover M ′′ of M ′ , we can assume that the action of π1(M ′′)
on H∗(M̃, Z) (and on H∗(M̃, Z)) is nilpotent.
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Recall (see e.g. [HMR75, 2.19]) that a connected CW complex with nilpotent fundamental
group is nilpotent if and only if the action of its fundamental group on the homology of its
universal cover is nilpotent. Thus M ′′ is a nilpotent space, whence the proof of Theorem A
is complete. �

4. C-nilpotency of the fundamental group

In this section we will prove Theorem B. It will follow from the following somewhat stronger
result.

Theorem 4.1. For any integer m there exist constants ε(m) > 0 and C(m) > 0 such that
the following holds. If Mm is a closed smooth m-manifold which admits a Riemannian
metric with sec(Mm) > −ε(m) and diam(Mm) < 1, then the fundamental group of Mm

is C(m)-nilpotent, i.e., π1(Mm) contains a nilpotent subgroup of index 6 C(m).

Remark 4.2. The proofs of Theorems A and C show that corresponding versions of those
results also do hold when these theorems are reformulated in a fashion similar to Theo-
rem 4.1.

By an argument by contradiction, Theorem 4.1 follows from the following statement:
Given a sequence of Riemannian m-manifolds (Mn, gn) with diameters diam(Mn, gn) 6 1/n
and sectional curvatures Kgn > −1/n , one can find C ∈ R such that π1(Mn) is C -nilpotent
for all sufficiently large n .
To prove this statement, we will make use of the following two algebraic lemmas.
Recall that the group of outer automorphisms Out(G) of a group G is defined as the quo-
tient of its automorphism group Aut(G) by the subgroup of inner automorphisms Inn(G).

Lemma 4.3 (A characterization of C -nilpotent groups). Let

{1} = Gl ⊆ . . . ⊆ G1 ⊆ G0 = G

be a sequence of groups satisfying the following properties:
For any i

(i) Gi � G is normal in G;
(ii) the image of the conjugation homomorphism hi : G → Out(Gi/Gi+1) is finite of order
at most Ci ;
(iii) Inn(Gi/Gi+1) has order 6 ci .
Then G contains a nilpotent subgroup N of index at most C =

∏
i ciCi , where N is of

nilpotency class 6 l .

Proof. First of all, notice that property (i) assures that the objects described in parts (ii)
and (iii) of the lemma are well-defined.
Properties (ii) and (iii) imply that the image of the conjugation homomorphism fi : G →
Aut(Gi/Gi+1) is finite, and that this image has order at most Cici .
Let N = ∩i ker fi . Then N satisfies the conclusion of the Lemma. Indeed, it is clear that
[G : N ] 6 C =

∏
i Cici . Furthermore , let Ni = N ∩ Gi . Then we obviously have that

Ni � N for any i . By construction, we also have that Ni/Ni+1 is contained in the center
of N/Ni+1 , which means that N is nilpotent of nilpotency class 6 l .
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Trivial Lemma 4.4 (A characterization of finite actions). If S is a finite set of generators
of a group G with S−1 = S , and h : G → H is a homomorphism with |h(Sn)| < n for
some n > 0, then h(Sn) = h(G) and, in particular, |h(G)| < n.

Let now Γ be a group which acts discretely by isometries on an Alexandrov space A with
curvature > −1. Choose a marked point p ∈ A . Assume that {γ1, γ2, . . . , γn} is a finite
short basis of Γ at p , and that θ 6 |γi| 6 1, where |γ| def= |pγ(p)| . Let #(R) denote the
number of delements γ ∈ Γ with |γ| 6 R . The Bishop-Gromov inequality implies that

#(R) 6 vm
−1(R)/vm

−1(θ),

where m = dim A and vm
−1(r) is the volume of the ball of radius r in the m-dimensional

simply connected space form of curvature − 1. Therefore, if ##(L) denotes the number
of homomorphisms h : Γ → Γ with norm 6 L (i.e., the number of homomorphisms for
which it holds that for any γ ∈ Γ one has that |h(γ)| 6 L|γ|), then

(4.1) ##(L) 6 #(L)n 6
[vm

−1(L)
vm
−1(θ)

]n
.

4.1. The construction.

For n →∞ , the manifolds Mn clearly converge to a point =: A0 .

Set Mn,1 := Mn and ϑn,1 := diamMn,1 .

Rescale now Mn,1 by 1
ϑn,1

so that diam(Mn,1/ϑn,1) = 1. Passing to a subsequence if
necessary, one has that the manifolds 1

ϑn,1
Mn,1 converge to A1 , where A1 is a compact

nonnegatively curved Alexandrov space with diameter 1.

Now choose a regular point p̄1 ∈ A1 , and consider distance coordinates around p̄1 ∈ U1 →
Rk1 , where k1 is the dimension of A1 . The distance functions can be lifted to Un,1 ⊂

1
ϑn,1

Mn,1 .

Let Mn,2 be the level set of Un,1 → Rk1 that corresponds to p̄1 . Clearly, Mn,2 is a
submanifold of codimension k1 . Set ϑn,2 := diamMn,2 .

Passing again to a subsequence if necessary, one has that the sequence 1
ϑn,2

Mn,2 converges to
some Alexandrov space A2 . As before, A2 is a compact nonnegatively curved Alexandrov
space with diameter 1. Set k2 := k1 + dim A2 . If one now chooses a marked point in Mn,2 ,
then, as n →∞ , Mn/ϑn,2 converges to A2 × Rk1 , which is of some dimension k2 > k1 .

We repeat this procedure until, at some step, kl = m .

As a result one obtains a sequence {Ai} of compact nonnegatively curved Alexandrov spaces
with diameter 1 that satisfies

dimAi = ki − ki−1, so that
l∑

i=1

dimAi = m.

We also obtain a sequence of rescaling factors ϑn,i = diamMn,i , and a nested sequence of
submanifolds

{pn} = Mn,l ⊂ · · · ⊂ Mn,2 ⊂ Mn,1 = Mn,
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which in turn induces a sequence of homomorphisms

{1} = π1(Mn,l)
ı→ · · · ı→ π1(Mn,2)

ı→ π1(Mn,1) = π1(Mn).

Let Gi := Gi(n) := ıiπ1(Mn,i).

For n sufficiently large, the subgroups Gi(n) are clearly those which are generated by
elements of norm 6 3ϑn,i . Equivalently, if one takes a short basis {γi} of G(n), then Gi

is the subgroup generated by all elements γi such that |γi| 6 3ϑn,i .

4.2. Limit fundamental groups of Alexandrov spaces.

We will now define the “limit” or “L-fundamental groups” of the Alexandrov spaces Ai

constructed above. This notion is similar to the notion of the fundamental group of an
orbifold. However, we note in advance that the construction of the L-fundamental group
does not only depend on the spaces Ai , but also on the chosen rescaled subsequence of Mn .
In fact, the following construction shows that the limit fundamental group of Ai , πL

1 (Ai), is
isomorphic to π1(Mn,i,Mn,i+1) for all sufficiently large n . But, unlike π1(Mn,i), the groups
πL

1 (Ai) will not depend on n .

The limit fundamental groups of Ai . Consider the converging sequence (Mn/ϑn,i, pn) →
(Ai×Rki−1 , p̄i× 0) (here the interesting case is collapsing). Recall that p̄i ∈ Ai is a regular
point. Fix ε > 0 such that distp̄i on Ai does not have critical values in (0, 2ε). Take a
sequence Rn which converges very slowly to infinity (here we will need Rnϑn,i/ϑn,i−1 → 0
and Rn →∞).

Consider then a sequence of Riemannian coverings Π: (B̃n, p̃n) → (BRn(pn), pn) of BRn(pn) ⊂
Mn/ϑn,i with π1(B̃n, p̃n) = π1(Bε(pn), pn), where Bε(pn) ⊂ Mn/ϑn,i .

After passing to a subsequence if necessary, the sequence (B̃n, p̃n) converges to a nonnega-
tively curved Alexandrov space Ãi ×Rki−1 , where the space Ãi has the same dimension as
Ai . Indeed, by construction it contains an isometric copy of Bε(pn,i), and therefore

dim Ãi + ki−1 = dim lim
i→∞

Bε(pn,i) = dim Ai + ki−1.

Let us show that for all sufficiently large n ,

ı(π1(Mn,i+1)) E π1(Mn,i).

Assume that Π(q̃n) = p̃n and that q̃n → q̄n ∈ Ãi . Connect p̄n and q̄n by a geodesic
which, by [Pet98], only passes through regular points. Note that in a small neighborhood
of this geodesic in Mn we have two copies of Mn,i+1 , near p̃n and q̃n . Therefore, applying
Yamaguchi’s Fibration Theorem in a small neighborhood of this geodesic, we can construct
a diffeomorphism from Mn,i+1 to itself. This implies that for any loop γ which after lifting
connects p̃nq̃n , we have γ−1ıπ1(Mn,i+1)γ ⊂ ıπ1(Mn,i+1), i.e., ıπ1(Mn,i+1) � π1(Mn,i) (for
an alternative argumen see also [FY92]).

This easily yields that Ai = Ãi/Γi , where Γi is a group of isometries which acts discretely
on Ãi . The group Γi is denoted by πL

1 (Ai) (the limit or L-fundamental group of Ai ). This
group is clearly isomorphic to

π1(Mn,i,Mn,i+1) = π1(Mn,i)/ı(π1(Mn,i+1))
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for all sufficiently large n , and the space Ãi will be called the universal covering of Ai .
Since Ãi is nonnegatively curved and Ai = Ãi/πL

1 (Ai) is compact, by Toponogov’s splitting
theorem Ãi isometrically splits as Ãi = Ki×Rsi , where Ki is a compact Alexandrov space
with curv > 0. Since πL

1 (Ai) is a group of isometries that acts discretely on Ãi , it follows
that πL

1 (Ai) is a virtually abelian group.

Consider now the corresponding series

{1} = Gl(n) ⊂ . . . ⊂ G1(n) ⊂ G0(n) = π1(Mn).

The theorem then follows from the following

Lemma 4.5. For all sufficiently large n, the series

{1} = Gl(n) ⊂ . . . ⊂ G1(n) ⊂ G0(n)

constructed above satisfies the assumptions of Lemma 4.3 for numbers Ci and ci which do
not depend on n.

We first prove the following

Sublemma 4.6. Each subgroup Gi is normal in G.

Proof. We will show by reverse induction on k that Gi � Gk for any k 6 i . Let us assume
that we already know that Gi � Gk+1 . Since

ıπ1(Mn,k+1) � π1(Mn,k),

we know that Gk+1 � Gk . Consider the covering Πk+1 : (M̃n,k+1, p̃n,k+1) → (Mn, pn) with
covering group Γk+1 .
Clearly (M̃n,k+1, p̃n,k+1) → Rsi for some integer si . Applying Lemma 2.16, it follows
that for any a ∈ G with |a| < 1 there is a cocos-curve γ in M̃n,k+1 with total time T

connecting p̃n and a(p̃n) in M̃n,k+1 . Then clearly γ ∼ ga for some g ∈ Gk+1 . Let us
denote by ΦT : M̃n,i → M̃n,i the gradient push corresponding to γ .
Let γj be a loop from the short basis of Gi . As was mentioned in 4.1, if n is large,
then length γj 6 3ϑn,i . Let us denote by γ̃j a lift of γj to M̃n,i . Let p̃n,j ∈ M̃n,i be its
starting point. Since [γj ] ∈ Gi , we have that γ̃j is a loop in M̃n,i . Consider then the loop
γ′j = Π ◦ ΦT ◦ γ̃j . Clearly,

[γj ] = a−1g−1[γ′j ]ga, or [γ′j ] = ga[γj ]a−1g−1.

Now Proposition 2.9 implies that

length(γ′j) 6 exp(2T ) length(γj).

Thus, for sufficiently large n ,
ga[γj ]a−1g−1 ∈ Gi,

and since g ∈ Gi � Gk+1 it follows that

a[γj ]a−1 ∈ Gi,

i.e., Gi � Gk .
�
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Proof of Lemma 4.5. The group

πL
1 (Ai) = π1(Mn,i,Mn,i+1) = π1(Mn,i)/ı(π1(Mn,i))

is virtually abelian. Let di be the minimal index of an abelian subgroup of πL
1 (Ai). The

epimorphism ıi : π1(Mn,i) → Gi induces an epimorphism πL
1 (Ai) → Gi(n)/Gi+1(n).

Therefore, Gi(n)/Gi+1(n) is di -abelian for all large n . Thus, setting ci = di! , we have
| Inn(Gi(n)/Gi+1(n))| 6 ci .

Consider the covering Πi : M̃n,i → Mn with covering group Gi , and let p̃n,i be a preimage
of pn . Clearly (M̃n,i, p̃n,i) → Rs

i for some integer si . Applying Lemma 2.16, it follows that
for any a ∈ G with |a| < 1 there is a cocos-curve γ in M̃n,i which connects p and a(p).
Then clearly γ ∼ ga for some g ∈ Gi . Let us denote by ΦT : M̃n,i → M̃n,i the gradient
push corresponding to γ .

Let b ∈ Gi and β be a loop representing b . Let us denote by β̃ a lift of β to M̃n,i . Let
p̃n,i ∈ M̃n,i be its starting point. Since [β] ∈ Gi , we have that β̃ is a loop in M̃n,i .

Consider now the loop β′ = Π ◦ ΦT ◦ β̃ . Clearly,

b = [β] = a−1g−1[β′]ga, or [β′] = gaba−1g−1.

Proposition 2.9 then implies that

length(β′) 6 exp(2T ) length(β)

Therefore, if ha : Gi/Gi+1 → Gi/Gi+1 is induced by the conjugation b → aba−1 , then for
any a ∈ G there is g ∈ Gi such that |hga| 6 exp(2T ).

Let now δi be the minimal norm of the elements of πL
1 (Ai), where πL

1 (Ai) acts on Ãi .
Then (4.1) implies that the image of the action of G by conjugation in Out(Gi/Gi+1) is
Ci -finite, where Ci depends only on ci , T , and δi . �

End of the proof of Theorem 4.1. Apply now Lemma 4.3 to obtain that G is C -nilpotent
for C =

∏
i Cici , whence the proof of Theorem 4.1 is complete. �

Remark 4.7. Theorem 4.1 can be reformulated as follows: There exists a constant ε(m) > 0
such that if Nm is a Riemannian manifold which admits a discrete free isometric action by
a group Γ such that sec(N) > −ε(m) and diam(N/Γ) < 1, then Γ is C(m)-nilpotent.

As was pointed out to us by B. Wilking, in the above reformulation of Theorem 4.1 one can
actually easily remove the assumption that the Γ action be free.

Corollary 4.8. There exists a constant ε(m) > 0 such that if Nm is a Riemannian mani-
fold which admits a discrete isometric action by a group Γ such that sec(N) > −ε(m) and
diam(N/Γ) < 1, then Γ is C(m)-nilpotent.

Proof. Let ε = ε(m) be as provided by Theorem 4.1 and suppose N satisfies the assumptions
of the corollary for this ε . Let F be the frame bundle of N . Then the action of Γ on N lifts
to a free isometric action on F . As was observed in [FY92], using Cheeger’s rescaling trick F
can be equipped with a Γ invariant metric satisfying sec(F ) > −ε(m) and diam(F/Γ) < 1.
Since the induced action of Γ on F is free, the claim of the corollary now follows from
Theorem 4.1. �
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5. Proof of the Fibration Theorem

Let M be an almost nonnegatively curved manifold. Let us denote by Mn = (M, gn) a
sequence of Riemannian metrics on M such that KMn > −1/n and diam(Mn) 6 1/n .

Let us denote by M̃ the universal cover of M and by M̃n → Mn the universal Riemannian
covering of Mn (i.e., M̃ equipped with the pull back of the metric gn on M ).

By [FY92], passing to a finite cover we may assume that Γ = π1(M) is a nilpotent group
without torsion. Hence, to prove the topological part of Theorem C , it is enough to show
the following:

Theorem 5.1. Let M be a closed almost nonnegatively curved m-manifold such that Γ =
π1(M) is a nilpotent group without torsion. Then M is the total space of a fiber bundle

F → M → N

where the base N is a nilmanifold and the fiber F is simply connected.

The assumption on Γ implies that we can fix a series Γ = Γ0 � Γ1 � Γ2 � . . . � Γl = {1}
such that Γi is normal in Γ and Γi/Γi+1

∼= Z .

Let us first us give an informal proof.

5.1. An informal proof of Theorem 5.1. We use induction to construct the bundles
Fi → M

fi→ Ni , where each Ni is a nilmanifold with π1(Ni) = Γ/Γi and π1(Fi) ∼= Γi .
Since the base of induction is trivial, we are only interested in the induction step.

Fix p ∈ Ni , and let Fi(p) be the fiber over p . For any sufficiently large n choose a subgroup
Gi = Gi(n) such that Γi � Gi � Γi+1 and [Γi : Gi] is finite, but large enough so that the
cover F̄i(p) of Fi(p) corresponding to Gi is Hausdorff close to a unit circle S1 .

Construct now a bundle map ϕp : F̄i(p) → S1 by lifting distance functions from S1 (This
can be done by a slight generalization of a construction in [FY92] and [BGP92]). Let
ωp = dϕp .

Then ωp is a closed integral non-degenerate one-form on Fi(p). Since deck transformations
are isometries, after averaging by Za , where a = [Γi : Gi] , we can assume that ωp is Za -
invariant. Thus ωp descends to a form on Fi(p) which when integrated gives a bundle map
Fi(p) onto a small S1 .

Note that although this bundle is defined only up to rotations of S1 , its fibers are well-
defined.

Since Γi+1 is normal in Γ, the choice of the covering F̄i(p) of Fi(p) is unambiguous for all
p ∈ Ni . By using a partition of unity on Ni we can glue the forms ωp into a global 1-form
on M which satisfies the following properties:

a) ω|F (p) is closed and integral for any p ;
b) ω|F (p) is non-degenerate.

Integrating ω over the various F (p)’s we construct a continuous family of bundles Fp → S1 .
The level sets partition each F (p) and hence the whole M into fibers of a fiber bundle,
whose quotient space is then a circle bundle Ni+1 over Ni .
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5.2. This gives a good idea of the proof. However, to make it precise some extra work has
to be done. In particular, one has to be careful with the construction of ω . To make this
construction possible we have to keep track of how F (p) was obtained. Namely, we have to
use that the fiber F (p) was obtained by a construction as in Yamaguchi’s fibration theorem
(see [Yam91] or [BGP92]). This makes the induction proof quite technical.

We now proceed with the rigorous proof of Theorem 5.1.

5.3. Proof of Theorem 5.1. Let us denote by M̃n,i the Riemannian covering of Mn with
respect to Γi .

For any choice of marked points pn we have that (M̃n,i, pn, π1(M)) → (Ri, 0, Ri) in equi-
variant Gromov-Hausdorff convergence, where Ri acts on itself by translations. Indeed,
the limit space must be a nonnegatively curved simply connected Alexandrov space, and
since diamMn → 0 we have that it possesses a transitive group action by a nilpotent group.
Then Euclidean space, acting as a group of translations, is here the only choice, and it is
easy to see that the dimension of the limit must be equal to i .

Therefore (M̃n, pn, π1(M)) → (Rl, 0, Rl), and we may also assume that for each i we have
that (M̃n, pn,Γi) → (Rl, 0, Rl−i), where Rl−i is the coordinate subspace of Rl which corre-
sponds to the first l − i elements of the standard basis.

Now, let us give a technical definition:

If R is a Riemannian manifold, let us denote by d̃istp the average of a distance function
over a small ball around p . This enables us to work with the C1 function d̃istp instead of
the Lipschitz function distp .

Definition 5.2. Let Rn → R be a sequence of Riemannian m-manifolds with curvature
> κ which Gromov-Hausdorff converges to a Riemannian m′ -manifold R , where m′ 6 m.
A sequence of forms ωn on Rn is said to ε-approximate a form ω on R , if

(i) for any point p ∈ R there is a neighborhood U 3 p which admits a distance chart
f : U → Rm′

,
f(x) = (dista1(x),dista2(x), ...,distam′ (x))

which is a smooth regular map, and

(ii) smooth lifts of f to Un ⊂ Rn give, for n large enough, regular maps

fn(x) = (d̃ista1,n(x), d̃ista2,n(x), ..., d̃istam′,n(x))

with ai,n ∈ Mn , ai,n → an such that

|(fn ◦ f−1)∗(ω)− ωn|C0 < ε

for all sufficiently large n.

Theorem 5.1 now easily follows from the following lemma:

Lemma 5.3. Given ε > 0 there is a sequence of one-forms {ω1,n, ω2,n, · · · , ωk,n} on M̃n

with the following properties:

(i) For each i, ωi,n is a π1(M)-invariant form on M̃n .
(ii) The forms ωi,n ε-approximate the coordinate forms dxi on Rk . In particular, the

forms {ωi,n} are nowhere zero and almost orthonormal at each point.
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(iii) If for any j < i it holds that ωj,n(X) = ωj,n(Y ) = 0, then dωi,n(X, Y ) = 0. In
particular, for each i and all sufficiently large n, the distribution corresponding to the
system of equations

ωj,n(X) = 0 for all j 6 i

defines on M̃n a foliation Fi,n .
(iv) If F̃i,n(x) ⊂ M̃n denotes the fiber of the foliation Fi,n through the point x ∈ M̃n , then

each F̃i,n(x) is Γi -invariant, i.e., for any γ ∈ Γi one has that F̃i,n(x) = F̃i,n(γx).
Moreover, the action of Γi on F̃i,n(x) is cocompact for each i. In particular, Fi,n

induces on Mn the structure of a fiber bundle.

Proof. We will construct these forms by induction. Assume that we have already con-
structed one-forms ω1, ω2, . . . , ωi−1 which meet all the required properties. They give a
π1(M)-invariant fibration of M̃n by submanifolds F̃i−1,n(x) through each point x ∈ M̃n ,
with tangent spaces defined by the equations ωj(X) = 0 for j = 1, . . . , i− 1.

Denote by θ : R → [0, 1] a smooth monotone function which is equal to 1 before 0 and 0
after 1. Choose numbers δn > 0 slowly converging to 0, and let Θi,n : M̃n → R+ be the
function defined by

Θi,n(x) = min
y∈Fi−1,n(x)

θ(|pny|/δn).

Clearly Θi,n is a continuous Γi−1 -invariant function which is constant on each Fi−1,n(x).
Moreover, for large n , Θi,n has support in some Ciδn -neighborhood of Fi−1,n(pn), and is
equal to 1 in some ciδn -neighborhood of Fi−1,n(pn).

Now let ϕ : R → [0, 1] be a smooth nondecreasing function which is 0 before 1/2 and 1
after 3/2. Consider the form

ω′i,n = Θi,n · d(ϕ ◦ d̃istΓiai,n),

where ai,n ∈ M̃n is a sequence of points converging to −ei ∈ Rl , and d̃istΓiai,n is the average
of distΓix for x in a small ball around ai,n . The support of ω′i has two components, one
which contains pn (notice here that pn → 0 ∈ Rl ), and another which does not. (It follows
from the construction that the limit of Fi−1,n(pn) is a coordinate plane in Rl ).

Set ω′′i,n := ω′i,n on the component of pn , and let this form be 0 otherwise. Clearly, ω′′i,n
is then a continuous Γi -invariant form whose restriction to F̃i−1,n(x) is exact. Moreover,
each level set of its integral over F̃i−1,n(x) is Γi -invariant.

By construction, the form ω′′/|ω′′| is now (in the sense of definition 5.2) close to dxi at the
points where |ω′′| 6= 0. Take

ωi,n = c
∑

γ∈Γ/Γi

γω′,

where the coefficient c is chosen in such a way that |ωi,n(pn)| = 1. As δn is a sequence
slowly converging to zero, we may assume that diam(Mn)/δn → 0. Therefore, ωi,n is the
form we need. �

Notice that the proof of Theorem 5.1 actually also shows that the fibers in Theorem 5.1 are
almost nonnegatively curved manifolds in the generalized sense with k = l . Therefore, the
proof of Theorem C is complete. �
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6. Open questions

We would like to conclude this work by posing a number of related open questions.

Question 6.1. Is it true that manifolds which are almost nonnegatively curved in the gen-
eralized sense are almost nonnegatively curved?

In view of Theorems A and B it is reasonable to ask the following questions:

Question 6.2. Is it true that almost nonnegatively curved m-manifolds Mm are C(m)-
nilpotent spaces?

It is clear from the proof of Theorems A and B that this is true if the universal cover of
Mm has torsion free integral cohomology.

In view of Theorem B it is natural to ask the following question:

Question 6.3. Can one give an explicit bound on C(m) in Theorem B ?

Theorem A also gives rise to the following question.

Question 6.4. Do almost nonnegatively curved manifolds admit Riemannian metrics with
zero topological entropy ?

We take interest in this question since it has been shown in [PP04] that for the pointed loop
space ΩM of a closed nilpotent manifold M which admits a Riemannian metric with zero
topological entropy, π∗(ΩM) ⊗ Q is finite dimensional. Notice that for simply connected
manifolds this last condition is equivalent to saying that M is a rationally elliptic space.
Moreover, to include the case of infinite fundamental groups Totaro has proposed a general
definition of an elliptic space as follows: A topological space X is elliptic if it is homotopy
equivalent to a finite CW complex, it has a finite covering which is a nilpotent space and
the loop space homology of the universal covering of X grows polynomially with any field
of coefficients. If the above question has a positive answer, Theorem A and the above result
from [PP04] will show that almost nonnegatively curved manifolds are rationally elliptic in
this broader sense.

As was pointed out in the discussion in the Introduction before Theorem C, it already
follows from Yamaguchi’s fibration theorem and [FY92] that a finite cover of an almost
nonnegatively curved manifold admits a Serre fibration onto a nilmanifold with simply
connected fibers. While this is formally weaker than the statement of Theorem C, it would
be interesting to have an answer to the following, purely topological, question:

Question 6.5. Let F → M
f→ N be a Serre fibration of closed manifolds where N is a

nilmanifold and F is simply connected. Is it true that after passing to a finite cover, the
map f becomes homotopic to a fiber bundle projection ?
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