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Abstract. Let M be a complete Riemannian metric of sectional curvature
within [−a2,−1] whose fundamental group contains a k -step nilpotent sub-
group of finite index. We prove that a ≥ k answering a question of M. Gro-
mov. Furthermore, we show that for any ǫ > 0, the manifold M admits a
complete Riemannian metric of sectional curvature within [−(k + ǫ)2,−1].

1. Introduction

If the fundamental group of a complete pinched negatively curved manifold is
amenable, it must be finitely generated and virtually nilpotent [BS87, Bow93,
BGS85]. In this paper we relate the nilpotency degree of the group to the
pinching of the negatively curved metric.

Theorem 1.1. Let M be complete Riemannian manifold with sectional cur-

vature satisfying −a2 ≤ sec(M) ≤ −1. If Γ is a k -step nilpotent subgroup of

π1(M), then a ≥ k . In particular, if a ∈ [1, 2), then Γ is abelian.

If the cohomological dimension cd(Γ) of Γ equals to dim(M) − 1, which if
dim(M) > 2 is equivalent to assuming that Γ acts cocompactly on horospheres,
Theorem 1.1 follows from the proof of Gromov’s theorem of almost flat mani-
folds (see [BK81, Corollary 1.5.2]), by combining the commutator estimate in
almost flat horosphere quotients with the displacement estimate coming from
the exponential convergence of geodesics.

More recently, Gromov sketched in [Gro91, p.309] a proof of the more general
estimate

a ≥
k

r + 1
for r =

[

dim(M) − 1 − cd(G)

2

]

,

where [x] denotes the largest integer satisfying ≤ x . If k ≤ r + 1, the estimate
gives no information, so Gromov asked [Gro91, p.309] whether it can be im-
proved to an estimate that is nontrivial for all cd(G) < dim(M). Theorem 1.1
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provides a satisfying answer that involves no dimension assumptions whatso-
ever. The proof of Theorem 1.1 follows the original Gromov’s idea in [BK81], ex-
cept that the commutator estimate is run in a “central” orbit of an N-structure
given by the collapsing theory of J. Cheeger, K. Fukaya, and Gromov [CFG92].
In [BK] we proved the following classification theorem:

Theorem 1.2. [BK] A smooth manifold M with amenable fundamental group

admits a metric of pinched negative curvature if and only if it is diffeomorphic to

the Möbius band, or to the product of a line and the total space a flat Euclidean

vector bundle over a compact infranilmanifold.

The ”if” direction in Theorem 1.2 involves an explicit warped product construc-
tion of a negatively pinched metric on the product of R and the total space
of a flat Euclidean bundle over a closed infranilmanifold. By improving this
warped product construction, we show that the pinching bounds provided by
Theorem 1.1 are essentially optimal.

Theorem 1.3. If M be a pinched negatively curved manifold such that π1(M)
has a k -step nilpotent subgroup of finite index, then M admits a complete

Riemannian metric of sec(M) ∈ [−(k + ǫ)2,−1] for any ǫ > 0.

The metric constructed in Theorem 1.3 has cohomogeneity one, specifically
M/Iso(M) is diffeomorphic to R (with the only exception when M is the
Möbius band equipped with a hyperbolic metric).

We do not know whether M in Theorem 1.3 always admits a complete metric
with sec(M) ∈ [−k2,−1]. This does happen for k = 1, since as we show
in [BK] any complete pinched negatively curved manifolds with virtually abelian
fundamental group admits a complete hyperbolic metric.

Another way to phrase the optimality of Theorem 1.1 is via the concept of
pinching. Given a smooth manifold M , we define pinchdiff(M) to be the
infimum of a2 ≥ 1 such that M admits a complete Riemannian metric of
−a2 ≤ sec(M) ≤ −1. If M admits no complete metric of pinched negative cur-
vature, it is convenient to let pinch(M)diff = +∞ . We then define pinchtop(M)

to be the infimum of all pinchdiff(N) where N is homeomorphic to M , and

define pinchhom(M) to be the infimum of pinchdiff(N)’s where N is mani-
fold with dim(N) = dim(M) that is homotopy equivalent to M . Of course,

pinchdiff(N) ≥ pinchtop(M) ≥ pinchhom(N) ≥ 1.

In general, the pinching invariants are hard to estimate and even harder to
compute (see [Gro91] and [Bel01, Section 5] for surveys). Combining Theo-
rems 1.1–1.3, we compute the invariants in case π1(M) is virtually nilpotent.

Corollary 1.4. If M be a pinched negatively curved manifold such that π1(M)

has a k -step nilpotent subgroup of finite index, then pinchdiff(M) = pinchtop(M) =

pinchhom(M) = k2 .
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2. Proof of Theorem 1.1

A Riemannian metric is called A-regular if A = {Ai} is a sequence of nonneg-
ative reals such that the norm of the curvature tensor satisfies ||∇iR|| ≤ Ai .
We call a metric regular if it is is A-regular for some A . The collapsing theory
works best for regular metrics, and the Ricci flow can be used to deform any
metric with bounded sectional curvature to a complete Riemannian metric that
is close to the original metric in uniform C1 topology, has almost the same
sectional curvature bounds, and is regular. (This fact has been known to some
experts, but the first written account only recently appeared in [Kap]). Thus
we fix an arbitrary δ > 0 and replace the given metric on M by a nearby
A-regular metric g with secg ∈ [−(a+ δ)2,−1], and then prove that a+ δ ≥ k ,
which would imply a ≥ k because δ is arbitrary.

Since the Riemannian covering of (M,g) corresponding to Γ ≤ π1(M) has the
same curvature bounds as (M,g), we can assume that π1(M) = Γ. Denote
the universal cover of M by X . If k = 1, all we assert is a ≥ 1 which
is trivially true, so we assume from now on that k > 1. Then Γ fixes a
unique point at infinity of the universal cover X of M ; let c(t) be a ray
asymptotic to the point. Since sec(X) is bounded below, the family (X, c(t),Γ)
has a subsequence (X, c(ti),Γ) that converges in the equivariant GH-topology
topology to (X∞, c∞,Γ∞). Since sec(X) is also bounded above and X has
infinite injectivity radius, the convergence (X, c(ti)) → (X∞, c∞) is in fact in
C1,α topology. Then the quotients (X/Γ, pi) converge in pointed GH-topology
to (X∞/Γ∞, p∞), where pi , p∞ are the projections of c(ti), c∞ , respectively.

We now review the main results of [CFG92] as they apply to our situation; we
refer to [CFG92] for terminology. Fix ǫ , λ with 0 < ǫ ≪ 1 ≪ λ . By [CFG92,
Theorems 1.3, 1.7, Proposition 7.21], there are positive constants ρ , κ , ν , σ ,
depending only on n , ǫ , A such that for each large i , the manifold M carries
an N -structure Ni and an Ni -invariant (ρ, κ)-round metric gi that is ǫ-close
to g in uniform Cλ -topology. Furthermore, there exists an orbit Oi of Ni such
that
(i) the metric on Oi induced by gi has diam(Oi) → 0 as i → ∞ ,
(ii) pi lies in the ρ-neighborhood Vi of Oi ,
(iii) the normal injectivity radius of Oi is ≥ ρ ,
(iv) the norm of the second fundamental form of Oi is ≤ ν , and | sec(Oi)| ≤ σ .

(v) if Ṽi → Vi is the Riemannian universal cover, then Ṽi admits a isometric
effective action of a connected nilpotent Lie group Gi that acts transitively on
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the preimage Õi of Oi under Ṽi → Vi , and intersects π1(Vi) ∼= π1(Oi) in a
normal subgroup that is cocompact in Gi and has index ≤ κ in π1(Vi).

The above results are stated in [CFG92] in a different form, and their proofs are
often omitted or merely sketched, so for reader’s convenience we briefly explain
in the appendix how to deduce (i)-(iv). For (v) see [CFG92, pp.364–365].

Now we show that the inclusion Vi → M is π1 -surjective for all large i . Indeed,
let V̄i be a connected component of the preimage of Vi under the cover X →
M , and as before let Ṽi , Õi be the universal covers of Vi , Oi , respectively.
Fix q̃i ∈ Õi , and its projections, q̄i ∈ V̄i and qi ∈ Oi ⊂ Vi . By (i)-(ii) the
sequence qi subconverges to some q∞ ∈ X∞/Γ∞ , hence for any γ ∈ Γ, we have
d(γ(q̄i), q̄i) → 0 as i → ∞ . So since Γ is finitely generated, if i is sufficiently
large, then (i)-(ii) implies that V̄i contains the images of q̄i under some finite
generating set S of Γ. By (iii) we see that V̄i contains the geodesic segment
[q̄i, s(q̄i)] with s ∈ S , whose projection to Vi ⊂ M represent the generator of
π1(M, qi) ∼= Γ corresponding to s .

Hence the surjection π1(Oi) → Γ takes π1(Oi)∩Gi onto a normal subgroup of
Γ of index ≤ κ . The intersection of all normal subgroups of Γ of index ≤ κ is a
subgroup Γ0 of finite index ≤ nκ2 where n = dim M . (In fact, |Γ : Γ0| ≤ κ · νκ

where νκ is the number of normal subgroups of index ≤ κ . Since Γ is nilpotent
of cd(Γ) < n , it can be generated by < n elements, so there is a surjection
from a rank n free group Fn onto Γ, and νκ equals to the number of normal
subgroups of Fn of index ≤ κ , i.e. the number of elements in Hom(Fn, Zκ),
which is at most nκ .)

Denote d(q̄i, γ(q̄i)) by dγ . Below this notation is used for different distance
functions, and each time we specify which metric we use.

Since |Γ : Γ0| < ∞ , the nilpotency degree of Γ0 is k . Thus there are γj ∈ Γ0 ,
j = 1, . . . , k satisfying

[γ1, [γ2, [γ3, [. . . [γk−1, γk]...] = γ 6= 1.

Since Γ0 lies in the image of π1(Oi) → Γ, we can think of each γj as acting
on Ōi ⊂ X , where Ōi is the preimage of Oi under the cover X → M . Note
that one can choose γj ’s so that in the intrinsic metric on Ōi induced by gi

we have dγj
≤ 2nκ2 · diam(Oi). (Indeed, the Γ0 -action on Ōi ⊂ X has a

fundamental domain Fi of diameter ≤ nκ2 · diam(Oi). Then Γ0 is generated
by S = {s ∈ Γ0 : s(F̄i) ∩ F̄i 6= ∅}, and each element of S has displacement at
most 2nκ2 · diam(Oi). Then there is a nontrivial k -fold commutator formed
by elements of S , because otherwise the identity [a, bc] = [a, b] · [b, [a, c]] · [a, c]
implies that any k -fold commutator in Γ0 is trivial, so its nilpotency degree is <
k ). In particular, for the intrinsic metric induced on Oi by gi the displacements
of γj ’s satisfy dγj

→ 0 as i → 0.
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By (i) and (iv) we see that each Oi with intrinsic metric induced by gi is almost
flat, so the commutator estimate of [BK81, Proposition 3.5 (iii), Theorem 2.4.1
(iii)] for the intrinsic metric on Oi induced by gi gives

(2.1) dγ ≤ c
∏

j

dγj
,

where the constant c depends only on n , a .

By Rauch comparison for Jacobi fields, the normal exponential map is bi-
Lipschitz on the ρ-neighborhood in the normal bundle to Oi , with Lipschitz
constants depending on a , n , ρ . Hence the nearest point projection of the ρ-
tubular neighborhood of Ōi onto Ōi is K -Lipschitz for K = K(a, n, ρ), so any
gi -geodesic of length ≤ 2ρ with endpoints on Ōi is projected by the nearest
point projection to a curve of length ≤ 2ρK . Since the intrinsic displacements
of γj ’s are < 2ρ for all large i , the estimate (2.1) holds with a different c , for
the distance function of the extrinsic metric gi , and again c only depends on
n , a , ǫ , λ .

Finally, since the distance functions of g and gi are bi-Lipschitz on B1(pi)),
we get the same estimate (2.1) for the original metric g , with c depending on
n , a , ǫ , k , λ .

For the rest of the proof we work with displacements in metric g . Passing to a
subsequence of pi ’s, we can find j such that dγj

≥ dγl
for all l , i . Taking logs

we get
ln dγ ≤ ln C + ln dγ1

+ ... + ln dγk
≤ ln C + k ln dγj

Since ln dγj
< 0 and limi→∞ dγj

= 0, we deduce

lim sup
t→∞

ln dγ

ln dγj

≥ lim sup
t→∞

ln C

ln dγj

+ k = k

On the other hand, by exponential convergence of geodesic rays, for any two
elements of Γ, and in particular for γ, γj we get

lim sup
t→∞

ln dγ

ln dγj

≤ a + δ

so a + δ ≥ k , which completes the proof.

Remark 2.2. The weaker conclusion a ≥ k−1 can be obtained by the following
easier argument that does not use collapsing theory. The collapsing theory
was used in the above proof to get the commutator estimate (2.1), which is a
combination of the two independent estimates in [BK81], namely:
(a) an upper bound on the displacement of the commutator of two elements
in terms of their displacements and rotational parts [BK81, Corollary 2.4.2 (i)]
that only uses bounded curvature assumption, and
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(b) an upper bound of the rotational part of γj by a constant multiple of dγj

that uses almost flatness [BK81, Proposition 3.5 (i)]).
An alternative way to get (b) in our case is via the rotation homomorphism
φ : Γ → O(n), introduced by B. Bowditch [Bow93], which is the holonomy
of a Γ-invariant flat connection on X . A key property of φ is that φ(γ)
approximates the rotational part of any γ ∈ Γ with error ≤ dγ . Now since
any nilpotent subgroup of O(n) is abelian, φ must have a kernel of nilpotence
degree k − 1. Hence, there is a (k − 1)-fold commutator in Γ whose entries
lie in the kernel of φ , and hence their rotational parts are bounded by their
displacements. Repeating the argument at the end of the proof of Theorem 1.1
for this commutator, we get a ≥ k − 1.

3. Infranilmanifolds are horosphere quotients

Let G be a simply-connected nilpotent Lie group acting on itself by left trans-
lations, and let K be a compact subgroup of Aut(G), so that the semidirect
product G ⋊ K acts on G by affine transformations. The quotient of G by
a discrete torsion free subgroup of G ⋊ K is called an infranilmanifold. We
showed in [BK] that any pinched negatively curved manifold with amenable
fundamental group is either the Möbius band or product of an infranilmani-
fold with R , and conversely, each of these manifolds admits an explicit warped
product metrics of pinched negative curvature.

This section contains a slight improvement of the warped product construction,
that yields Theorem 1.3. Consider the product of the above G ⋊ K -action on
G with the trivial G ⋊ K -action on R . For the G ⋊ K -action on G × R , we
prove the following.

Theorem 3.1. If G has nilpotence degree k , then for any ǫ > 0, G×R admits

a complete G ⋊ K -invariant Riemannian metric of sectional curvature within

[−(k + ǫ)2,−1].

Proof. The Lie algebra L(G) can be written as

L(G) = L1 ⊃ L2 ⊃ · · · ⊃ Lk ⊃ Lk+1 = 0

where Li+1 = [L1, Li] . Note that [Li, Lj ] ⊂ Li+j+1 . Indeed, assume i ≤ j
and argue by induction on i . The case i = 1 is obvious and the induction
step follows from the Jacobi identity and the induction hypothesis, because
[Li, Lj ] = [[L1, Li−1], Lj ] lies in

span([[Li−1, Lj ], L1], [[L1, Lj], Li−1]) ⊂ span([Li+j , L1], [Lj+1, Li−1]) = Li+j+1

The group K preserves each Li , so we can choose a K -invariant inner product
〈 , 〉0 on L . Let

Fi = {X ∈ Li : 〈X,Y 〉0 = 0 for Y ∈ Li+i}.
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Then L = F1 ⊕ · · · ⊕ Fk . Define a new K -invariant inner product 〈 , 〉r on L
by 〈X,Y 〉r = hi(r)

2〈X,Y 〉0 for X,Y ∈ Fi , and 〈X,Y 〉r = 0 if X ∈ Fi , Y ∈ Fj

for i 6= j , where hi are some positive function defined below. This defines a
G ⋊ K -invariant Riemannian metric gr on G.

Let αi = i with i = 1, · · · , k and a = k . Given ρ > 0, we define the warping
function hi to be a positive, smooth, strictly convex, decreasing function that
is equal to e−αir if r ≥ ρ , and is equal to e−ar if r ≤ −ρ ; such a function

exists since a ≥ ai for each i . Thus h′

i < 0 < h′′

i , and the functions
h′

i

hi
,

h′′

i

hi
are

uniformly bounded away from 0 and ∞ .

Define the warped product metric on G×R by g = s2gr + dr2 , where s > 0 is
a constant; clearly g is a complete G ⋊ K -invariant metric. A straightforward
tedious computation (mostly done e.g. in [BW]) yields for g -orthonormal vector
fields Ys ∈ Fs that

〈Rg(Yi, Yj)Yj , Yi〉g = 1
s2 〈Rgr(Yi, Yj)Yj, Yi〉gr −

h′

ih
′

j

hihj
,

〈Rg(Yi, Yj)Yl, Ym〉g = 1
s2 〈Rgr(Yi, Yj)Yl, Ym〉gr if {i, j} 6= {l,m},

〈Rg(Yi,
∂
∂r

) ∂
∂r

), Yi〉g = −
h′′

i

hi
, 〈Rg(Yi,

∂
∂r

) ∂
∂r

), Yj〉g = 0 if i 6= j,

〈Rg(
∂
∂r

, Yi)Yj, Yl〉g =
(

h′

j

2hj
+

h′

l

2hl

)

(〈[Yj , Yi], Yl〉g + 〈[Yi, Yl], Yj〉g + 〈[Yj , Yl], Yi〉g) .

Since [Li, Lj ] ⊂ Li+j+1 , we have for Z =
∑k

i=1 Zi and W =
∑k

j=1 Wj with
Zi,Wi ∈ Fi

|[Z,W ]|gr ≤
∑

ij

|[Zi,Wj ]|gr ≤
∑

ij

∑

s>i+j

hs|[Zi,Wj ]|0

The above choice of ai ’s implies that if r ≥ ρ , then
∑

s>i+j hs ≤ khihj . Also

|[Zi,Wj ]|0 ≤ C|Zi|0|Wj |0 where C only depends on the structure constants of
L , so that we conclude

|[Z,W ]|gr ≤ Ck|Zi|0|Wj |0
∑

ij

hihj ≤ Ck2|Z|gr |W |gr .

It follows that if r ≥ ρ , then the norm of the curvature tensor of gr is bounded
in terms of C , k [CE75, Proposition 3.18]. The same conclusions trivially hold
for r ≤ −ρ , because then gr is the rescaling of g0 by a constant e−ar > 1,
and also for r ∈ [−ρ, ρ] by compactness, since gr is left-invariant and depends
continuously of r . Hence 〈Rg(Yi, Yj)Yl, Ym〉g → 0 as s → ∞ if {i, j} 6= {l,m}.

Also 〈Rg(
∂
∂r

, Yi)Yj , Yl〉g → 0 as s → ∞ , because

|〈[Yj , Yi], Yl〉g| = s2|〈[Yj , Yi], Yl〉gr | ≤ s2Ck2|Yj|gr |Yi|gr |Yl|gr ≤ Ck2/s,

where the last inequality holds since s|Y |gr = 1 for any g -unit vector Y .
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It follows that as s → ∞ , then Rg uniformly converges to a tensor R̄ whose
nonzero components are

R̄(Yi, Yj , Yj , Yi) = −
h′

ih
′

j

hihj
and R̄

(

Yi,
∂

∂r
,

∂

∂r
, Yi

)

= −
h′′

i

hi
.

Thus g has pinched negative curvature for all large s . Finally, we show that
for any ǫ > 0 there exists ρ such that secg ∈ [−(k + ǫ)2,−1]. Note that

h′

i

hi
= ln(hi)

′ and
h′′

i

hi
= ln(hi)

′′ + (ln(hi)
′)2.

By construction | ln(hi)
′| ≤ k . Also let ρ be large enough, so that one can

choose hi on [−ρ, ρ] to satisfy | ln(hi)
′′| ≪ ǫ . Then for all sufficiently large s ,

the sectional curvature of g is within [−(k + ǫ)2,−1]. �

Proof of Theorem 1.3. By [BK] if a pinched negatively curved manifold contains
has a virtually k -step nilpotent fundamental group, then it is diffeomorphic to
the quotient of G × R by a discrete torsion free subgroup of G ⋊ K . Thus we
are done by Theorem 3.1. �

Appendix A. On collapsing theory

The purpose of this appendix is to outline the proof of the claims (i)-(iv) made
in the proof of Theorem 1.1. Some details can be found in [CFG92].

Since g is regular, so is the corresponding metric g̃ on the frame bundle FM .
The balls (FB1(x), g̃) form an O(n)-GH-precompact family, where FB1(x) de-
notes the frame bundle over the unit ball B1(x), x ∈ M . By [Fuk88] the closure
of the family consists of regular Riemannian manifolds. So for an arbitrary se-
quence pi ∈ M , the manifolds (FB1(pi), g̃) subconverge in O(n)-GH-topology
to a pointed regular Riemannian manifold (Y, y).

By the local version of Fukaya’s fibration theorem for some sequence δi > 0
satisfying δi → 0 as i → ∞ , there exists for each large i an O(n)-equivariant
δi -almost Riemannian submersion FB1(pi) → Y with nilmanifolds as fibers,
which is also an O(n)-δi -Hausdorff approximation. Furthermore, each FB1(pi)

carries an O(n)-invariant N-structure Ñi whose orbits are the nilmanifold fibers
of the above submersion, and because of the O(n)-invariance, the structure de-
scends to an N-structure Ni on B1(pi). By [CFG92, Proposition 7.21] FB1(pi)
carries a metric g̃i that is ǫ-close to g̃ in Cλ -topology, and is both O(n)-

invariant and Ñi -invariant. Hence g̃i induces unique Riemannian submersion
metrics ḡi on Y , and gi on B1(x).

To see (ii)-(iv), note that if l ≤ λ− 2, then ||∇lRḡi
|| is bounded independently

of i , so the sequence ḡi is precompact in Cλ−2 -topology. Then by [PT99,
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Lemma 2.7] ḡi is precompact in O(n)-Cλ−2 -topology, i.e. after pulling back
by self-diffeomorphisms of Y , the metrics smoothly subconverge and share the
same isometric O(n)-action. Thus there exists ρ > 0 such that for each large
i , the point y ∈ (Y, ḡi) lies in a ρ-neighborhood of an O(n)-orbit that has
normal injectivity radius ≥ ρ . The preimage Oi of the O(n)-orbit under the
Riemannian submersion (FB1(pi), g̃i) → (Y, ḡi) satisfies (ii)-(iii). Finally, (iii)
implies the second fundamental form bound in (iv), which by Gauss formula
gives a bound on | sec(Oi)| .

To see (i) note that the g̃ -diameter of any orbit of Ñi is ≤ δi , so since g̃ and

g̃i are bi-Lipschitz, the g̃i -diameter of any orbit of Ñi tends to zero as i → ∞ ,
and the same holds for orbits of Ni because FB1(pi) → B1(pi) is distance non-
increasing. Finally, the ambient diameter bound implies the intrinsic diameter
bound, because Rauch comparison for Jacobi fields gives bounds on bi-Lipschitz
constants of the normal exponential map of Oi , and in particular, the Lipschitz
constant of the nearest point projection of the ρ-tubular neighborhood of Oi

onto Oi depends only on a , n , ρ , ǫ , λ .
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