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Structure of the talk

1 Background on lower sectional curvature bounds
Toponogov comparison
Short basis.
Bishop-Gromov volume comparison
Gromov-Hausdorff convergence
Equivariant Gromov-Hausdorff convergence
Yamaguchi’s fibration theorem
Semiconcave functions
Topological results for sectional curvature bounded below

2 Background in Ricci curvature bounded below
Bochner’s formula
Segment Inequality
Stability
Structure of limit spaces of manifolds with lower Ricci curvature
bounds
Submetries
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Structure of the talk

3 Main Results

4 Finite generation of fundamental groups
Gap Lemma
Finite generation

5 Maps which are on all scales close to isometries.
Properties and examples
The Rescaling Theorem.

6 Margulis Lemma.
Idea of the proof of the Margulis Lemma
The Induction Theorem for C-Nilpotency
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Theorem (Toponogov comparison)

Let (Mn, g) be a complete Riemannian manifold of Ksec ≥ 0. Let
∆ABC be a geodesic triangle in M and let ∆ÃB̃C̃ be a comparison
triangle in R2, i.e. |AB| = |ÃB̃|, |AC| = |ÃC̃|, |CB| = |C̃B̃|.
Then α ≥ α̃, β ≥ β̃, γ ≥ γ̃.

α ≥ α̃, β ≥ β̃, γ ≥ γ̃

Mn, K ≥ 0
R2, K = 0

Ã

α̃

C̃

α

A γ

β̃

γ̃

β

B̃

C

B
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Gromov’s short basis

Given a complete Riemannian manifold (M, g) and a point p ∈M let
Γ = π1(M) acting on the universal cover M̃ and let p̃ be a lift of p.
For γ ∈ Γ we will refer to |γ| := d(p̃, γ(p̃)) as the norm of γ. Choose
γ1 ∈ Γ with the minimal norm in Γ. Next choose γ2 to have minimal
norm in Γ\〈γ1〉. On the i-th step choose γi to have minimal norm in
Γ\〈γ1, γ2, ..., γi−1〉. The sequence {γ1, γ2, ...} is called a short basis
of Γ at p. In general, the number of elements of a short basis can be
infinite.
For any i > j we have |γi| ≤ |γ−1j γi|.

|γi|

p̃

γi(p̃)γj(p̃) |γ−1j γi|

|γi| ≤ |γ−1j γi||γj|
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If M is closed then |γi| ≤ 2 diamM for all i and {γ1, γ2, ...} is finite.

L(σiγ|[titi+1]σ
−1
i+1) ≤ 2D + ε

p

γ(t)

γ(ti+2)
γ(ti+1)

γ(ti)

σi+1

L(σi) ≤ D

σi

L(γ|[titi+1]) ≤ ε

γ =
∏

i(σiγ|[titi+1]σ
−1
i+1)
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Theorem (Gromov)

Let (Mn, g) have sec ≥ k, diam ≤ D. Then π1(M) can be generated
by ≤ C(n, k,D) elements.

Proof.

Let γ1, . . . , γi, . . . be a short basis of π1(M). Let vi ∈ Tp̃M̃ be the
direction of a shortest geodesic from p̃ to γi(p̃). Then for any i 6= j
by above we have that the angle ∠vivj = α ≥ α̃ ≥ π/3. This means
that the vectors v1, v2, . . . ∈ Sn−1 are at least π/3-separated which
immediately implies the result.
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α ≥ α̃ ≥ π
3

p̃

γi(p̃)γj(p̃) |γ−1j γi|

|γi| ≤ |γ−1j γi||γj| |γi|

K ≥ 0

α
vj

vi
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Bishop-Gromov volume comparison

Theorem (Bishop-Gromov’s Relative Volume Comparison)

Suppose Mn has RicM ≥ (n− 1)k. Then

(1)
Vol (∂Br(p))

Vol(∂Bkr (0))
and

Vol (Br(p))

Vol(Bkr (0))
are nonincreasing in r.

In particular,

Vol (Br(p)) ≤ Vol(Bkr (0)) for all r > 0,(2)

Vol (Br(p))

Vol (BR(p))
≥ Vol(Bkr (0))

Vol(BkR(0))
for all 0 < r ≤ R,(3)

and equality holds if and only if Br(p) is isometric to Bkr (0). Here
Bkr (0) is the ball of radius r in the n-dimensional simply connected
space of constant curvature k.

Note that this implies that if the volume of a big ball has a lower
bound, then all smaller balls also have lower volume bounds
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Idea of the proof for Ksec ≥ 0

Consider the following contraction map f : BR(p) → Br(p). Given
x ∈ BR(p) let γ : [0, 1] → M be a shortest geodesic from p to x.
Define f(x) = γ( rR ). At points where the geodesics are not unique we
choose any one. By Toponogov comparison we have that

|f(x)f(y)| ≥ r

R
|xy|

Therefore

VolBr(p) ≥ Volf(BR(p)) ≥ (
r

R
)nVolBR(p)
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ỹ

|f(x)f(y)|
|xy| ≥ | ˜f(x) ˜f(y)|

|x̃ỹ| = r
R

p

x

yf(x)

f(y)

B(p, r)
B(p,R)

R2

x̃

0

f̃(x)

f̃(y)
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Corollary (δ-separated net bound)

Let (Mn, g) have Ric ≥ k(n− 1). Let p ∈M, 0 < δ < R/2.
Suppose x1, . . . xN is a δ-separated net in BR(p). Then

N ≤ C(n,R, δ)

Proof.

By Bishop-Gromov we have VolBδ/2(xi) ≥ c(n,R, δ)VolB2R(p).
Since the balls Bδ/2(xi) are disjoint we have
VolB2R(p) ≥

∑
i VolBδ/2(xi) ≥ N · c(n,R, δ)VolB2R(p) and the

result follows.
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|xixj| ≥ δ
xi

xj

xk

Bδ/2(xk)

p

R

2R

VolBδ/2(xi)

VolB2R(p)
≥ c(n, δ, R)

The balls Bδ/2(xi) are disjoint therefore

there can only be so many of them.
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Definition

Let X,Y be two compact inner metric spaces. A map f : X → Y is
called an ε-Hausdorff approximation if

||f(p)f(q)| − |pq|| ≤ ε for any p, q ∈ X;

For any y ∈ Y there exists p ∈ X such that |f(p)y| ≤ ε
We define the Gromov-Hausdorff distance between X and Y as
dG−H(X,Y ) = inf ε such that there exist ε-Hausdorff approximations
from X to Y and from Y to X.

Gromov-Hausdorff distance turns out to be a distance on the set of
isometry classes of compact inner metric spaces.

Remark

If f : X → Y is an ε-Hausdorff approximation then there exist
g : Y → X which is a 2ε-Hausdorff approximation. In particular,
dG−H(X,Y ) ≤ 2ε.
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Definition

Let Xi
G−H−→
i→∞

X. Suppose Γi is a closed subgroup of Isom(Xi) and

Γis a closed subgroup of Isom(X). We say that (Xi,Γi) converges
to (X,Γ) in equivariant Gromov-Hausdorff topology if there is εi → 0
such that

For any g ∈ Γ there is gi ∈ Γi which is εi-close to g;

For any gi ∈ Γi there is g ∈ Γ which is εi-close to g.

Remark

One can similarly define pointed (equivariant) Gromov-Hausdorff
convergence of pointed proper spaces.
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The following observation of Gromov is crucial.

Theorem (Gromov)

Let M be a class of compact inner metric spaces satisfying the
following property. There exists a function N : (0,∞)→ (0,∞) such
that
for any δ > 0 and any X ∈M there are at most N(δ) points in X
with pairwise distances ≥ δ.
Then M is precompact in the Gromov-Hausdorff topology.

By the Corollary on δ-separated net bound this immediately implies

Corollary

The class MRic(n, k,D) of complete n-manifolds with
Ric ≥ k(n− 1),diam ≤ D is precompact in the the
Gromov-Hausdorff topology.
The class of complete pointed n-maniolfds (Mn, p) with
Ric ≥ k(n− 1) is precompact in the pointed Gromov-Hausdorff
topology.
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Remark

The Corollary on δ-separated net bound also easily implies that limit
points of MRic(n, k,D) have Hausdorff dimension ≤ n.

Theorem (Yamaguchi)

Let Mn
i → Nm as i→∞ in Gromov-Hausdorff topology. where

sec(Mn
i ) ≥ k and N is a smooth manifold. Then for all large i there

exists a fiber bundle Fi →Mn
i → N .

Example

Consider S3 with the metric gε given by (S3 × S1
ε )/S1 where S1

ε is
the circle of radius ε and S1 acts on S3 × S1

ε diagonally by the Hopf
action on S3 and by rotations on S1

ε . Then (S3, gε) has sec ≥ 0 and
(S3, gε) Gromov-Hausdorff converges to the round S2 of radius 1

2 as
ε→ 0.
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Theorem (Toponogov comparison alternate formulation)

Let (Mn, g) be a complete Riemannian manifold of Ksec ≥ 0. Let
∆ABC be a geodesic triangle in M and let ∆ÃB̃C̃ be a comparison
triangle in R2. Let D be a point on the side BC and let B̃ be the
point on the side B̃C̃ with |BD| = |B̃D̃| and |CD| = |C̃D̃| .
Then |AD| ≥ |ÃD̃|.

C̃

Mn, K ≥ 0
R2, K = 0

Ã
A

B̃

C

B

D
D̃

|AD| ≥ |ÃD̃|
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How concave is that?

This means that distance function to a point is more concave than
the distance function to a point in the space of constant curvature.
How concave is that?

Definition

Define mdk(r) by the formula

mdk(r) =


r2

2 if r = 0
1
k (1− cos(

√
kr)) if k > 0

1
k (1− cosh(

√
|k|r)) if k < 0

Then
mdk(0) = 0,md′k(0) = 1 and md′′k + kmdk ≡ 1
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Let f(x) = mdk(|xp|) where p ∈ Snk - simply connected space form of
constant curvature k we have Hessxf = (1− kf(x))Id. In particular,
for any unit speed geodesic γ(t) we have that

f(γ(t))′′ + kf(γ(t)) = 1

Note that for k = 0 this means that Hessxf = Id and

f(γ(t))′′ = 1
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Theorem (Toponogov restated)

Let Mn have sec ≥ k and p ∈M . Let f(x) = mdk(|xp|).
Then

Hessxf ≤ (1− kf(x))Id

and
f(γ(t))′′ + kf(γ(t)) ≤ 1

For any unit speed geodesic γ.

These inequalities can be understood in the barrier sense or in the
following sense.

Definition

A function f : M → R is called λ-concave if for any unit speed
geodesic γ(t) we have

f(γ(t)) +
λt2

2
is concave
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Why do we care?

This means that manifolds with sec ≥ k naturally possess a LOT of
semiconcave functions. Why do we care? They provide a useful
technical tools.
Specifically, the following simple observation is of crucial importance.

Theorem

Gradient flow of a concave function f on a complete Riemannian
manifold Mn is 1-Lipshitz.

Proof.

Let p, q ∈ M and let γ : [0, d] → M be a unit speed geodesic with
γ(0) = p, γ(d) = q. Here d = |pq|. Let φt be the gradient flow of f .
Then

|φt(p)φt(q)|′+(0) ≤ L(φt(γ))′(0)
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Aside. Recall

First variation formula

Let γ : [0, d]× (−ε, ε)→Mn be a smooth family of curves with
c(s) = γ(s, 0) being a unit speed geodesic. Let X = ∂

∂tγ(s, t) be the
variation vector field.
Then L(γt)

′(0) = 〈X(d, 0), c′(d)〉 − 〈X(0, 0), c′(0)〉

γ0(s) = c(s)

X(0, 0)

c′(d)

c′(0)

X(d, 0)

γt(s)
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Applying first variation formula gives

L(φt(γ))′(0) = 〈∇qf, γ′(d)〉−〈∇pf, γ′(0)〉 = f(γ(d))′−f(γ(0))′ ≤ 0

since f(γ(s)) is concave.

φt(γ(s))

q

φt(p)

φt(q)

∇pf

∇qf

p

γ(s)
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A similar argument shows that if f is λ-concave then φt is eλt-Lipschitz.
Yamaguchi’s Fibration Theorem and gradient flows of semi-concave
functions are key technical tools for proving topological results about
manifolds with lower sectional curvature bounds.

Theorem (Almost splitting theorem)

Let (Mn
i , pi)

G−H−→
i→∞

(X, p) where secMi ≥ − 1
i . Suppose X contains a

line.
Then X is isometric to Y × R for some metric space Y .

Remark

If Xn is an Alexandrov space of curv ≥ 0 and X contains a line then
X ∼= Y × R for some Y .
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If secMn ≥ 0 and M is closed then one can use the Splitting
Theorem to show that M̃ ∼= Rk ×K where K is compact. This can
be used to show

Theorem (Cheeger-Gromoll)

If secMn ≥ 0 and M is closed then a finite cover of M is
diffeomorphic to T k ×K where K is simply connected.

Theorem (Gromov)

Let Mn have sec ≥ k,diam ≤ D. Then

n∑
i=0

βi(M) ≤ C(n, k,D)

Theorem (Perelman’s stability theorem)

Let Mn
i be a sequence of compact manifolds with sec ≥ k

Gromov-Hausdorff converging to X where dimX = n. Then Mi is
homeomorphic to X for all large i.
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Example

Let secN ≥ k and let f : N → R be convex. Let fi : N → R be
smooth convex functions converging to f . Let c be any value in the
range of f different from max f . Then {fi = c} is a smooth
manifold of sec ≥ k and {fi = c} Gromov-Hausdorff converges to
{f = c} with respect to intrinsic metrics.

{fi = c}

{f = c} {fi = c} G−H−→
i→∞

X = {f = c}
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Corollary (Grove-Petersen-Wu)

The class of n-manifolds with sec ≥ k, diam ≤ D,Vol ≥ v contains
≤ C(n, k,D, v) homeomorphism types.

Definition

A closed smooth manifold M is called almost nonnegatively curved if
it admits a sequence of Riemannian metrics {gi} on M whose
sectional curvatures and diameters satisfy

sec(M, gi) ≥ −1/i and diam(M, gi) ≤ 1/i.
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Example

Let N3 be the space of real 3× 3 of the form1 x z
0 1 y
0 0 1


N3 is a nilpotent Lie group. Let Γ = N ∩SL(3,Z). Then M3 = N/Γ
admits almost nonnegative sectional curvature. But it does not admit
nonnegative sectional curvature because Γ is not virtually abelian.

Theorem (C-Nilpotency Theorem for π1, K-Petrunin-Tuschmann,
2006)

Let M be an almost nonnegatively curved m-manifold. Then π1(M)
is C(m)-nilpotent, i.e., π1(M) contains a nilpotent subgroup of index
at most C(m).
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Bochner’s formula

The most basic tool in studying manifolds with Ricci curvature bounds
is Bochner’s formula.

Theorem (Bochner’s formula)

For a smooth function f on a complete Riemannian manifold
(Mn, g),

1

2
∆|∇f |2 = |Hessf |2 + 〈∇f,∇(∆f)〉+ Ric(∇f,∇f).
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Bochner’s formula applied to distance functions can be used to prove

Theorem (Global Laplacian Comparison)

Let RicMn ≥ (n− 1)k, p ∈M and let f(x) = mdk(|xp|). Then

∆xf ≤ (1− kf(x))n

in the weak sense.

Recall

Theorem (Toponogov restated)

Let Mn have sec ≥ k and p ∈M . Let f(x) = mdk(|xp|).
Then

Hessxf ≤ (1− kf(x))Id
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By applying the Bochner formula to f = log u with an appropriate
cut-off function and looking at the maximum point one has
Cheng-Yau’s gradient estimate for harmonic functions.

Theorem (Gradient Estimate, Cheng-Yau 1975)

Let RicMn ≥ (n− 1)k on BR2
(p) and u : BR2

(p)→ R satisfying
u > 0,∆u = 0. Then for R1 < R2, on BR1(p),

(4)
|∇u|
u
≤ c(n, k,R1, R2).
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Bishop-Gromov volume comparison

Theorem (Bishop-Gromov’s Relative Volume Comparison)

Suppose Mn has RicM ≥ (n− 1)k. Then

(5)
Vol (∂Br(p))

Vol(∂Bkr (0))
and

Vol (Br(p))

Vol(Bkr (0))
are nonincreasing in r.

In particular,

Vol (Br(p)) ≤ Vol(Bkr (0)) for all r > 0,(6)

Vol (Br(p))

Vol (BR(p))
≥ Vol(Bkr (0))

Vol(BkR(0))
for all 0 < r ≤ R,(7)

and equality holds if and only if Br(p) is isometric to Bkr (0). Here
Bkr (0) is the ball of radius r in the n-dimensional simply connected
space of constant curvature k.
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Segment Inequality

Theorem (Cheeger–Colding Segment inequality)

Given n and r0 there exists τ = τ(n, r0) such that the following
holds. Let Ric(Mn) ≥ −(n− 1) and let g : M → R+ be a
nonnegative function. Then for r ≤ r0

−
∫
Br(p)×Br(p)

[ ∫ |xy|
0

g(γx,y(t))
]
dµxdµy ≤ τ · r · −

∫
B2r(p)

g(q) dµq

where γx,y denotes a minimal geodesic from x to y.
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y

p

r

2r

γx,y(t)

x

Vitali Kapovitch Ricci curvature and the fundamental group



Ricci curvature
and the

fundamental
group

Vitali Kapovitch

Background on
lower sectional
curvature bounds

Background in
Ricci curvature
bounded below

Bochner’s
formula

Segment
Inequality

Stability

Structure of
limit spaces

Submetries

Comparison to lower sectional curvature bounds

Toponogov Comparison does not hold

Fibration Theorem does not hold

L2-Toponogov comparison holds for long thin triangles (Colding)

Almost splitting theorem holds

Theorem (Cheeger–Colding Almost splitting theorem)

Let (Mn
i , pi)

G−H−→
i→∞

(X, p) with Ric(Mi) ≥ − 1
i . Suppose X has a line.

Then X splits isometrically as X ∼= Y × R.

As far as I know, this crucial property does not hold for any
synthetic definition of metric spaces with lower Ricci curvature
bounds. For example, Banach spaces satisfy such definitions but
fail this property.
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Topological stability theorem aka Perelman does not hold

Example

There exists a sequence of metrics on K3 with Ric ≡ 0 converging to
T 4/Z2 where the Z2 action is given by complex conjugation
(z1, z2, z3, z4) 7→ (z̄1, z̄2, z̄3, z̄4). The quotient T 4/Z2 is not a
topological manifold as neighbourhoods of fixed points are
homeomorphic to cones over RP3.
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Theorem (Volume and topological stability. Colding,
Cheeger-Colding)

Let Mn
i
G−H−→
i→∞

Nn with Ric(Mi) ≥ k(n− 1) and N is a closed

smooth manifold. Then

VolMi → VolN .

For all large i Hausdorff approximations Mi → N are close to
diffeomorphisms.

Corollary

Let (Mn
i , pi)→ (Rn, 0) with RicMi

> −1. Then BR(pi) is
contractible in BR+ε(pi) for all i ≥ i0(R, ε).
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Theorem

Suppose (Mn
i , pi)→ (Rk, 0) with RicMi

≥ −1/i. Then there exist
harmonic functions bi1, . . . , b

i
k : B2(pi)→ R such that

|∇bij | ≤ C(n) for all i and j

and

−
∫
B(pi,1)

∑
j,l

∣∣〈∇bij ,∇bil〉 − δj,l∣∣+
∑
j

‖Hessbij‖
2 dµ→ 0 as i→∞.

Moreover, the maps Φi = (bi1, . . . , b
i
k) : Mi → Rk provide

εi-Gromov–Hausdorff approximations between B1(pi) and B1(0) with
εi → 0.
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Re1

Rk

0

pi

r = 2

r = 2

Mi

xji

x1i

Rejf ij(x) = |xx
j
i | −R

fj(x) = |x−Rej| −R ≈ xj
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The functions bij in the above theorem are constructed as follows. Fix

a large R. Approximate Busemann functions fj in Rk given by
fj = d(·, Rej))−R are lifted to Mi using Hausdorff approximations
to corresponding functions f ij . Here ej is the j-th coordinate vector in

the standard basis of Rk. The functions bij are obtained by solving

the Dirichlet problem on B(pi, 2) with bij |∂B(pi,2) = f ij |∂B(pi,2).

Note that |f ij(x)| ≤ 3 on B(pi, 2) and therefore |∇bij is uniformly
bounded on B(pi, 1) by Chen-Yau gradient estimate.
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Lemma (Weak type 1-1 inequality)

Suppose (Mn, g) has Ric ≥ −(n− 1) and let f : M → R be a
nonnegative function. Define Mx f(p) := supr≤1−

∫
Br(p)

f . Then the

following holds

(a) If f ∈ Lα(M) with α ≥ 1 then Mx f is finite almost everywhere.

(b) If f ∈ L1(M) then Vol
{
x | Mx f(x) > c

}
≤ C(n)

c

∫
M
f for any

c > 0.

(c) If f ∈ Lα(M) with α > 1 then Mx f ∈ Lα(M) and
||Mx f ||α ≤ C(n, α)||f ||α.

If f ∈ Lα(M) with α > 1 then we have pointwise

Mx((Mx f)α)(x) ≤ C(n, α) Mx(fα)(x).
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What is known about limit spaces?

Recall that the class of pointed n-manifolds with Ric ≥ k(n − 1) is
precompact in pointed Gromov–Hausdorff topology. Let (X, q) be a
limit point of this class.

Definition

A tangent cone, TpX, at p ∈ X is the pointed Gromov-Hausdorff
limit of a sequence of the rescaled spaces (λiX, p), where λi →∞ as
i→∞.

Tangent cones need not be unique and need not be metric cones.

Definition

A point, y ∈ X, is called regular if for some k, every tangent cone at
y is isometric to Rk.

Theorem (Cheeger-Colding)

The set of regular points in X has full measure and in particular is
dense.
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Definition

A map π : X → Y is called a submetry if π(Br(x)) = Br(π(y)) for
any p ∈ X, r > 0.

Example

Let G act on X by isometries. Then π : X → X/G is a submetry.

Submetries are 1-Lipschitz.

Fibers of submetries are equidistant.

Exercise

Let X be proper and let π : X → Y be a submetry. Let γ(t) be a
shortest geodesic in Y and let p ∈ X be a lift of γ(0), i.e.
π(p) = γ(0).
Then there exists a lift of γ starting at p, i.e. there exists a geodesic
γ̃ in X such that γ̃(0) = p and π(γ̃(t)) = γ(t).
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γ̃(t) X

Y

π

γ(t)

p

x y

Fx
Fy
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Fundamental group results

Sectional curvature

If secM > δ > 0 then π1(M) is
finite. (Myers)

Ricci curvature

If RicM > δ > 0 then π1(M) is
finite. (Myers)

If secM ≥ 0 and M is compact
then π1(M) is virtually abelian.
(Cheeger-Gromoll)

If RicM ≥ 0 and M is compact
then π1(M) is virtually abelian.
(Cheeger-Gromoll)

If secMn ≥ k, diam ≤ D then
π1(M) is generated by
≤ C(n, k,D) elements.

???
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Fundamental group results

If Mn admits almost nonnegative
sectional curvature then π1(M) is
C(n)-nilpotent. (KPT)

Conjecture (Gromov): If Mn

admits almost nonnegative Ricci
curvature then π1(M) is virtually
nilpotent.

If Mn admits almost nonnegative
sectional curvature and π1(M) is

finite then diam M̃
diamM ≤ C(n).

Fukaya-Yamaguchi (incorrect
proof)

???

If secMn ≥ 0 then π1(M) is
finitely generated.

Conjecture (Milnor): If
RicMn ≥ 0 then π1(M) is finitely
generated.
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Margulis Lemma.

joint with B. Wilking

Theorem (Finite generation of fundamental group)

Given n, k,D there exists C(n, k,D) such that for any n-manifold
with Ric ≥ −k(n− 1) and diam(M, g) ≤ D, the fundamental group
π1(M) can be generated by at most C elements.

We call a generator system b1, . . . , bn of a group N a nilpotent basis
if the commutator [bi, bj ] is contained in the subgroup 〈b1, . . . , bi−1〉
for 1 ≤ i < j ≤ n. Having a nilpotent basis of length n implies in
particular that N is nilpotent of rank(N) ≤ n.
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Theorem (Generalized Margulis Lemma)

In each dimension n there are positive constants C(n), ε(n) such
that the following holds for any complete n-dimensional Riemannian
manifold (M, g) with Ric > −(n− 1) on a metric ball B1(p) ⊂M .
The image of the natural homomorphism

π1
(
Bε(p), p

)
→ π1

(
B1(p), p

)
contains a nilpotent subgroup N of index ≤ C(n). Moreover, N has a
nilpotent basis of length at most n.
We will also show that equality in this inequality can only occur if M
is homeomorphic to an infranilmanifold.
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joint with B. Wilking

Corollary (π1 of Ricci almost nonnegatively curved manifolds)

Let (M, g) be a compact manifold with Ric > −(n− 1) and
diam(M) ≤ ε(n) then π1(M) contains a nilpotent subgroup N of
index ≤ C(n). Moreover, N has a nilpotent basis of length ≤ n.

Conjecture (Milnor)

If Mn is open with Ric ≥ 0 then π1(M) is finitely generated.

Corollary

Let (M, g) be an open n-manifold with nonnegative Ricci curvature.
Then π1(M) contains a nilpotent subgroup N of index ≤ C(n) such
that any finitely generated subgroup of N has a nilpotent basis of
length ≤ n.
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Margulis Lemma.

joint with B. Wilking

Milnor: if RicM ≥ 0 and π1(M) is finitely generated then it has
polynomial growth.
Gromov: If Γ is finitely generated and has polynomial growth then it
is virtually nilpotent.

Problem

Rule out Mn with Ric ≥ 0 and π1(M) ∼= Q.

Theorem (Compact Version of the Margulis Lemma)

Given n and D there are positive constants ε0 and C such that the
following holds: If (M, g) is a compact n-manifold M with
Ric > −(n− 1) and diam(M) ≤ D, then there is ε ≥ ε0 and a
normal subgroup N � π1(M) such that for all p ∈M :

1 the image of π1(Bε/1000(p), p)→ π1(M,p) contains N,

2 the index of N in the image of π1(Bε(p), p)→ π1(M,p) is ≤ C
and

3 N is a nilpotent group which has a nilpotent basis of length ≤ n.
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Theorem (Finiteness of π1 mod nilpotent subgroup)

For each D > 0 and each dimension n there are finitely many groups
F1, . . . ,Fk such that the following holds: If M is a compact
n-manifold with Ric > −(n− 1) and diam(M) ≤ D, then there is a
nilpotent normal subgroup N � π1(M) with a nilpotent basis of
length ≤ n− 1 and rank(N) ≤ n− 2 such that π1(M)/N ∼= Fi for
suitable i.

Theorem (Diameter Ratio Theorem)

For n and D there is a D̃ such that any compact manifold M with
Ric ≥ −(n− 1) and diam(M) = D satisfies:
If π1(M) is finite, then the diameter of the universal cover M̃ of M
is bounded above by D̃.
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Lemma (Product Lemma)

Let Mi be a sequence of complete manifolds with RicMi
> −εi → 0

satisfying

1 RicMi
> −εi → 0

2 for every i and j = 1, . . . , k there are harmonic functions
bij : Mi → R which are L-Lipschitz and fulfill

−
∫
B(pi,R)

k∑
j,l=1

|〈∇bij ,∇bil〉 − δjl|+
k∑
j=1

‖Hessbij‖
2 dµ→ 0

For all R > 0

Then (Mi, pi) subconverges in the pointed Gromov–Hausdorff
topology to a metric product (Rk ×X, p∞) for some metric space X.
Moreover, (bi1, . . . , b

i
k) converges to the projection onto the Euclidean

factor.
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Proof.

The main problem is to prove this in the case of k = 1. Put bi = bi1.
After passing to a subsequence we may assume that (Mi, pi) converges
to some limit space (Y, p∞). We also may assume that bi converges
to an L-Lipschitz map b∞ : Y → R.
Step 1. b∞ is 1-Lipschitz.
Indeed, fix x, y ∈ BR(p) and a small δ � |xy|. Let xi, yi ∈ Mi be a
sequence of points converging to x and y respectively. By the Segment
Inequality we have that

−
∫
Bδ(xi)×Bδ(yi)

(

∫
γz1,z2

||∇bi|−1|) ≤ τ(R, δ, n) ·−
∫
BR(pi)

||∇bi|−1| → 0

as i→∞.
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Margulis Lemma.

Therefore, for some z1 ∈ Bδ(xi), z2 ∈ Bδ(yi) we have∫
γz1,z2

||∇bi| − 1|) ≤ hi → 0

Therefore

|bi(z1)− bi(z2)| ≤ |z1z2|+ hi

and
|bi(xi)− bi(yi)| ≤ 2Lδ + |bi(z1)− bi(z2)| ≤

≤ 2Lδ + |z1z2|+ hi ≤ 4Lδ + |xiyi|+ hi

Passing to the limit

|b∞(x)− b∞(y)| ≤ 2Lδ + |xy|

Since δ > 0 was arbitrary this gives the claim.
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γz1z2

pi
R

δ

δ

xi

yi

z1

z2
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Step 2. b∞ is a submetry.
Fix r > 0, t0 > 0. Let φit be the gradient flow of bi on Mi.

−
∫
Br(pi)

(bi(φit0(x))− bi(x)) = −
∫
Br(pi)

∫ t0

0

d

dt
bi(φit(x)) =

−
∫
Br(pi)

∫ t0

0

|∇bi(φt(x)|2 =

∫ t0

0

−
∫
B(pi,1)

|∇bi(φt(x)|2 =

∫ t0

0

−
∫
φt(Br(pi))

|∇bi(x)|2 = t0 ± εi

where εi → 0.
bi is harmonic and hence φit is measure preserving.
For most points x ∈ Br(pi)

(8) bi(φit0(x))− bi(x) = t0 ± εi
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By the first variation formula

−
∫
B(pi,1)

|φit0(x)x| ≤ −
∫
B(pi,1)

∫ t0

0

|∇bi(φt(x)| =

=

∫ t0

0

−
∫
φt(B(pi,1))

|∇bi(φt(x)| = t0 ± εi

by the same argument as above. This means that for most
x ∈ B(pi, 1) we have

(9) φit0(x) ∈ Bt0+εi(x)

Combining (8) and (9) we get that in the limit space Y

φ∞t0 (x) ∈ Bt0(x) and b∞(φ∞t0 (x))− b∞(x) = t0

i.e. b is a submetry.

Vitali Kapovitch Ricci curvature and the fundamental group



Ricci curvature
and the

fundamental
group

Vitali Kapovitch

Main Results

Finite generation
of fundamental
groups

Gap Lemma

Finite generation

Maps which are
on all scales close
to isometries.

Margulis Lemma.

bi(x)

x
φit0(x)

bi

t0

bi(φ
i
t0
(x)) = bi(x) + t0 ± εi
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Lemma A

Let (Yi,Gi, pi)
G−H−→
i→∞

(Y∞,G∞, p∞).

Let Gi(ε) denote the subgroup generated by those elements that
displace pi by at most ε, i ∈ N ∪ {∞}. Suppose G∞(ε) = G∞(a+b2 )
for all ε ∈ (a, b) and 0 ≤ a < b.
Then there is some sequence εi → 0 such that Gi(ε) = Gi(

a+b
2 ) for

all ε ∈ (a+ εi, b− εi).

Proof

Suppose on the contrary we can find gi ∈ Gi(ε2) \ Gi(ε1) for fixed
ε1 < ε2 ∈ (a, b). Without loss of generality d(pi, gipi) ≤ ε2.
Because of gi 6∈ Gi(ε1) it follows that for any finite sequence of
points pi = x1, . . . , xh = gipi ∈ Gi ? pi there is one j with
d(xj , xj+1) ≥ ε1. Clearly this property carries over to the limit and
implies that g∞ ∈ G∞(ε2) is not contained in G((ε1 + a)/2) – a
contradiction.
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|xjxj+1| ≥ ε1

x2

xj = gji pi

xj+1 = gj+1
i pi

xn = gipi

pi = x1
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Lemma B

Suppose (Mn
i , qi) converges to (Rk ×K, q∞) where RicMi ≥ −1/i

and K is compact. Assume the action of π1(Mi) on the universal
cover (M̃i, q̃i) converges to a limit action of a group G on some limit
space (Y, q̃∞).
Then G(r) = G(r′) for all r, r′ > 2 diam(K).

Proof

Since Y/G is isometric to Rk ×K, it follows that there is a submetry
σ : Y → Rk. It is immediate from the splitting theorem that this
submetry has to be linear, that is, for any geodesic c in Y the curve
σ ◦ c is affine linear. Hence we get a splitting Y = Rk × Z such that
G acts trivially on Rk and on Z with compact quotient K. We may
think of q̃∞ as a point in Z. For g ∈ G consider a mid point x ∈ Z of
q̃∞ and gq̃∞. Because Z/G = K we can find g2 ∈ G with
d(g2q̃∞, x) ≤ diam(K).
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Clearly

d(q̃∞, g2q̃∞) ≤ 1
2d(q̃∞, gq̃∞) + diam(K)

d(q̃∞, g
−1
2 gq̃∞) = d(g2q̃∞, gq̃∞) ≤ 1

2d(q̃∞, gq̃∞) + diam(K).

This proves G(r) ⊂ G
(
r/2 + diam(K)

)
and the lemma follows.

|g−12 g|

q̃∞

gq̃∞
r/2

r/2

x

g2q̃∞

g−12 gq̃∞

d ≤ diamK

|g−12 g|
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Lemma (Gap Lemma)

Suppose we have a sequence of manifolds (Mi, pi) with a lower Ricci
curvature bound converging to some limit space (X, p∞) and suppose
that the limit point p∞ is regular. Then there is a sequence εi → 0
and a number δ > 0 such that the following holds. If γ1, . . . , γli is a
short basis of π1(Mi, pi) then either |γj | ≥ δ or |γj | < εi.

Moreover, if the action of π1(Mi) on the universal cover (M̃i, p̃i)
converges to an action of the limit group G on (Y, p̃∞), then the
orbit G ? p̃∞ is locally path connected.

This means there is a gap in lengths of short generators. They are
either very short or longer than δ.

Proof

Idea. By rescaling reduce to the case X ∼= Rk. Apply Lemma B
(with K = {pt}) to conclude G(r) = G(r′) for any r, r′ > 0. Apply
Lemma A to get the result.
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Finite generation of π1

Theorem (Finite generation of π1)

Given n and R there is a constant C such that the following holds.
Suppose (Mn, g) has Ric ≥ −(n− 1), p ∈M , and π1(M,p) is
generated by loops of length ≤ R.
Then there is a point q ∈ BR/2(p) such that any Gromov short
generator system of π1(M, q) has at most C elements.

Observation

If RicMn ≥ −(n− 1) then the number of short generators of
π1(M,p) with 0 < r1 < |γi| < r2 is bounded above by C(n, r1, r2).
This immediately follows from Bishop-Gromov volume comparison.

Proof of Finite generation theorem

Arguing by contradiction we get a sequence (Mn
i , pi) satisfying

RicMi
≥ −(n− 1).

For all qi ∈ B1(pi) the number of short generators of π1(Mi, qi)
of length ≤ 4 is larger than 2i.
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By precompactness we may assume that (Mi, pi) converges to some
limit space (X, p∞). We put

dim(X) = max
{
k | there is a regular p ∈ B1/4(p∞) with TxX ∼= Rk

}
Reverse induction on dim(X). Base of induction. dim(X) ≥ n+ 1.

It is well known that this can not happen so there is nothing to prove.
Induction step.
Step 1. For any contradicting sequence (Mi, pi) converging
to (X, p∞) there is a new contradicting sequence converging to
(Rdim(X), 0).
Can assume p∞ is regular. Then use the observation above to find
a slow rescaling λi → ∞ such that after passing to a subsequence
(λiMi, pi) → (Rdim(X), 0) and the number of short generators of
length ≤ 4 in π1(λiMi, qi) is still ≥ 2i for any qi ∈ BλiMi

1 (pi) =
BMi

λi
(pi).
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Step 2. If there is a contradicting sequence converging to Rk, then
we can find a contradicting sequence converging to a space whose
dimension is larger than k. WLOG RicMi

≥ −1/i.
By Cheeger-Colding we can find harmonic functions
(bi1, . . . , b

i
k) : B1(qi)→ Rk with

−
∫
B1(qi)

k∑
j,l=1

|〈∇bil,∇bij〉 − δlj |+ ‖Hess(bil)‖2 = ε2i → 0

and
|∇bij | ≤ C(n).

By the weak (1,1) inequality we can find zi ∈ B1/2(qi) with

−
∫
Br(zi)

k∑
j,l=1

|〈∇bil,∇bij〉 − δlj |+ ‖Hess(bil)‖2 ≤ Cεi → 0

for all r ≤ 1/4.
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By the Product Lemma, for any sequence µi → ∞ the spaces
(µiMi, zi) subconverge to a metric product (Rk × Z, z∞) for some
Z depending on the rescaling.
Choose ri ≤ 1 maximal with the property that there is yi ∈ Bri(zi)
such that the short generator system of π1(Mi, yi) contains one gen-
erator of length ri. By the Gap Lemma, ri → 0
By the Product Lemma, (Ni, zi) subconverges to a product (Rk ×
Z, z∞). Lemma B impies imply that Z can not be a point and the
claim is proved.
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For a map f : X → Y between metric spaces we define the

dtfr (p, q) = min{r, |d(p, q)− d(f(p), f(q))|}.

we call dtfr (p, q) the distortion on scale r.
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Maps close to isometries on all scales

Definition

Let (Mi, p
1
i ) and (Ni, p

2
i ) be two sequences of complete Riemannian

manifolds with RicMi
> −C for some C, all i and j = 1, 2. We say

that a sequence of diffeomorphisms fi : Mi → Ni is close to
isometry on all scales if the following holds:
There exist R0 > 0, sequences ri →∞, εi → 0 and subsets
B2ri(p

j
i )
′ ⊂ B2ri(p

j
i ) (j = 1, 2) satisfying

a) Vol
(
B1(q)∩B2ri(p

j
i )
′) ≥ (1− εi)Vol(B1(q)) for all q ∈ Bri(p

j
i ).

b) For all p ∈ Bri(p1i )′, all q ∈ Bri(p2i )′ and all r ∈ (0, 1] we have

−
∫
Br(p)×Br(p)

dtfir (x, y)dµ(x)dµ(y) ≤ rεi and

−
∫
Br(q)×Br(q)

dtf
−1
i
r (x, y)dµ(x)dµ(y) ≤ rεi.

c) There are subsets Sji ⊂ B1(pji ) with Vol(Sji ) ≥ 1
2Vol

(
B1(pji )

)
(j = 1, 2) and f(S1

i ) ⊂ BR0(p2i ) and f−1(S2
i ) ⊂ BR0(p1i ).
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Properties

if fi : (Mi, p
1
i )→ (Ni, p

2
i ) is close to isometry on all scales and

(Mi, p
1
i )

G−H−→
i→∞

(X, p1), (Ni, p
2
i )

G−H−→
i→∞

(Y, p2) Then fi converges

in a weakly measured sense to an isometry f : X → Y .

If fi : Mi → Ni and gi : Ni → Pi is close to isometry on all
scales then fi ◦ gi is also close to isometries on all scales.

The main source of such maps are gradient flows of modified
distance functions with small L2 norms of hessians. If b : M → R
is a modified harmonic distance function let X = ∇b and let φt be the
gradient flow.
Let p, q ∈ M and let γ : [0, d] → M be a unit speed geodesic with
γ(0) = p, γ(d) = q. Here d = |pq|. Then

|φt(p)φt(q)|′+(0) ≤ L(φt(γ))′(0) ≤
∫
γ

|∇X| =
∫
γ

|Hessb|
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Main Example

If −
∫
BR(pi)

|Hessbi |2 → 0 we can use the weak 1-1 inequality, the Seg-

ment inequality and the fact that φit is measure preserving to show
that φit is close to isometry on all scales.

Proposition (Main example)

Let (Mi, gi)
G−H−→
i→∞

(Rk × Y, p∞) satisfy RicMi
> −1/i.

Then for each v ∈ Rk there is a sequence of diffeomorphisms
fi : [Mi, pi]→ [Mi, pi] close to isometries on all scales which
converges in the weakly measured sense to an isometry f∞ of
Rk × Y that acts trivially on Y and by w 7→ w + v on Rk.
Moreover, fi is isotopic to the identity and there is a lift
f̃i : [M̃i, p̃i]→ [M̃i, p̃i] of fi to the universal cover which is also close
to isometry on all scales

Remark

This is EASY for manifolds with sec ≥ −1/i using gradient flows of
distance functions.
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The Rescaling Theorem

Theorem (Rescaling Theorem)

Let (Mn, pi)
G−H−→
i→∞

(Rk, 0) for some k < nwhere RicMi
> −1/i.

Then after passing to a subsequence we can find a compact metric
space K with diam(K) = 10−n

2

, a sequence of subsets

G1(pi) ⊂ B1(pi) with Vol(G1(pi))
Vol(B1(pi)

→ 1 and λi →∞ such that

1 For all qi ∈ G1(pi) the isometry type of the limit of any
convergent subsequence of (λiMi, qi) is given by the metric
product Rk ×K.

2 For all ai, bi ∈ G1(pi) we can find a sequence of diffeomorphisms

fi : [λiMi, ai]→ [λiMi, bi]

close to isometries on all scales such that fi is isotopic to the
identity. Moreover, for any lift ãi, b̃i ∈ M̃i of ai and bi to the
universal cover M̃i we can find a lift f̃i of fi such that

f̃i : [λiM̃i, ãi]→ [λiM̃i, b̃i]

are close to isometries on all scales as well.

Finally, if π1(Mi, pi) is generated by loops of length ≤ R for all i,
then we can find εi → 0 such that π1(Mi, qi) is generated by loops of
length ≤ 1+εi

λi
for all qi ∈ G1(pi).
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The Rescaling Theorem serves as Ricci curvature substitute for
the Fibration theorem.

Idea of the proof of the Rescaling Theorem

Let bi : Mi → Rk be the modified harmonic distance functions
Put

hi =
k∑

j,l=1

| < ∇bij ,∇bil > −δj,l|+
∑
j

‖Hessbij‖
2.

After passing to a subsequence by Cheeger–Colding we have

−
∫
B1(pi)

hi ≤ ε2i with εi → 0.

(10) G1(pi) :=
{
x ∈ B1(pi) | Mxhi(x) ≤ εi

}
.

We will call elements of G1(pi) ”good points” in B1(pi).
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Most points in B1(pi) are good by the weak 1-1 inequality.
Let x be a good point. Use induction on the size of the ball to show
that one can get from x to most points in Br(x) with r ≤ 1 by
composing gradient flows of appropriate modified distance functions
which produce maps close to isometries on all scales.
Induction step: If true for r/100 then true for r.

φt(x)

x r/100

r

100r
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Given good points x, y ∈ B1(pi) can connect them to most points in
B1(pi) and hence to each other by composition.

B1(pi)

1

pi

x

y

z
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Idea of the proof of the Margulis Lemma.

Let pi →∞ be a sequence of odd primes and let Γi := Z n Zpi be
the semidirect product where the homomorphism Z→ Aut(Zpi)
maps 1 ∈ Z to ϕi given by ϕi(z + piZ) = 2z + piZ.
Suppose, contrary to the Margulis Lemma, we have a sequence Mn

i

with Ric > −1/i and diam(Mi) = 1 and fundamental group Γi.

A typical problem would be that Mi
G−H−→
i→∞

S1 and M̃i
G−H−→
i→∞

R.

We then replace Mi by Bi = M̃i/Zpi and in order not to loose
information we endow Bi with the deck transformation fi : Bi → Bi
representing a generator of Γi/Zpi ∼= Z. Then Bi will converge to R
as well.

πi

Mi

π1(Mi) = Z n Zpi
S1

”Unwrap” Z

Bi

Rπ
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Then one can find λi →∞ such that the rescaled sequence λiBi
converges to R×K with K being compact but not equal to a point.
Suppose for illustration that λiBi → R× S1 and λiM̃i → R2 and
that the action of Zpi converges to a discrete action of Z on R2.

Bi

λiBi
x1

R× S1

xi λi
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The maps fi : λiBi → λiBi do not converge, because typically fi
would map a base point xi to some point yi = fi(xi) with
d(xi, yi) = λi →∞ with respect to the rescaled distance.
We use gradient flows of modified distance functions to construct
diffeomorphisms gi : [λiBi, yi]→ [λiBi, xi] with the zooming in
property.

x1 λiBi

R× S1

fi(xi)

gi

fi
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The composition fnew,i := fi ◦ gi : [λiBi, xi]→ [λiBi, xi] also has
the zooming in property and thus converges to an isometry of the
limit.
Moreover, a lift f̃new,i : λiM̃i → λiM̃i of fnew,i has the zooming in
property, too. Since gi can be chosen isotopic to the identity, the
action of f̃new,i on the deck transformation group Zpi = π1(Bi) by
conjugation remains unchanged.
On the other hand, the Zpi-action on M̃i converges to a discrete

Z-action on R2 and f̃new,i converges to an isometry f̃new,∞ of R2

normalizing the Z-action. This implies that f̃2new,∞ commutes with
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the Z-action and it is then easy to get a contradiction.Theorem (Induction Theorem)

Suppose (Mn
i , pi) satisfies

1 RicMi ≥ −1/i;

2 There is some R > 0 such that π1(BR(pi))→ π1(Mi) is
surjective for all i;

3 (Mi, pi)
G−H−→
i→∞

(Rk ×K, (0, p∞)) where K is compact.

Suppose in addition that we have k sequences
f ji : [M̃i, p̃i]→ [M̃i, p̃i] which are close to isometries on all scales
where p̃i is a lift of pi, and which normalize the deck transformation
group acting on M̃i, j = 1, . . . k.
Then there exists a positive integer C such that for all sufficiently
large i, π1(Mi) contains a nilpotent subgroup N � π1(Mi) of index at
most C such that N has an (f ji )C!-invariant (j = 1, . . . , k) cyclic
nilpotent chain of length ≤ n− k, that is:
We can find {e} = N0 � · · · � Nn−k = N such that [N,Nh] ⊂ Nh−1
and each factor group Nh+1/Nh is cyclic. Furthermore, each Nh is
invariant under the action of (f ji )C! by conjugation and the induced
automorphism of Nh/Nh+1 is the identity.
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We argue by contradiction. After passing to a subsequence we can

assume (M̃i,Γi, p̃i)
G−H−→
i→∞

(Rk × Rl × K̃,G, (0, p̃∞)), where K̃ is

compact and the action of G on the first Rk factor is trivial.

Structure of the Proof

1 Without loss of generality we can assume that K is not a point.
If K = {pt} use the Rescaling Theorem to get a contradicting
sequence with K 6= {pt} .

2 WLOG we can assume that f ji converges in the measured sense
to the identity map of the limit space Rk×Rl× K̃, j = 1, . . . , k.
Use gradient flows of harmonic functions and the fact that
Isom(K̃) is compact so that a high power of any element is
close to identity.
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3 By the Gap Lemma there is an ε > 0 and εi → 0 such that
Γi(ε) = Γi(εi) for large i. Then WLOG [Γi : Γi(ε)]→∞.
If not can assume after passing to a bounded cover that
Γi = Γi(ε) = Γi(εi).
Then use Rescaling Theorem to get a contradicting sequence
converging to a space which splits Rk′ with k′ > k.

4 Show that after passing to a bounded cover, we can assume that
Γi(ε) � Γi is normal in Γi.

5 Tle limit group G acts on Rl cocompactly by ρ. Since
[Γi : Γi(ε)]→∞ the ρ(G)/ρ(G)0 is infinite and virtually
abelian.
One can can ”unwrap” one Z from it and find corresponding
subgroups Γ′i ≤ Γi with Γi/Γ

′
i cyclic of order going to infinity.

Replace Mi by M ′i = M̃i/Γ
′
i and add one new fk+1

i given by the
deck transformation generating Γi/Γ

′
i. Then M ′i → X which

splits off Rk+1 and we can use the induction assumption.
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