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Abstract. In this paper we prove that in the class of metric measure space

with Alexandrov curvature bounded from below the Riemannian curvature-
dimension condition RCD(K,N) with K ∈ R & N ∈ [1,∞) is preserved under

doubling and gluing constructions.

Contents

1. Introduction and Statement of Main Results 1
1.1. Application to heat flow with Dirichlet boundary condition 4
2. Preliminaries 5
2.1. Curvature-dimension condition 5
2.2. Alexandrov spaces 7
2.3. Gluing 8
2.4. Semi-concave functions 10
2.5. 1D localisation of generalized Ricci curvature bounds. 11
2.6. Characterization of curvature bounds via 1D localisation 13
3. Applying 1D localisation 14
3.1. First application 14
3.2. Second application 15
4. Semiconcave functions on glued spaces 18
5. Proof of Theorem 1.1 21
References 23

1. Introduction and Statement of Main Results

A way to construct Alexandrov spaces is by gluing together two or more given
Alexandrov spaces along isometric connected components of their intrinsic bound-
aries. The isometry between the boundaries is understood w.r.t. induced length
metric. A special case of this construction is the double space where one glues
together two copies of the same Alexandrov space with nonempty boundary. It was
shown by Perelman that the double of an Alexandrov space of curvature ≥ k is
again Alexandrov of curvature ≥ k. Petrunin later showed [Pet97] that the lower
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curvature bound is preserved in general for any gluing of two possibly different
Alexandrov spaces.

In this article we study Ricci curvature bounds in the sense of Lott, Sturm
and Villani for this setup. More precisely, we consider the class of n-dimensional
Alexandrov spaces with some lower curvature bound equipped with a Borel measure
of the form ΦHn = m for a semi-concave function Φ : X → [0,∞) such that
the corresponding metric measure space (X, d,m) satisfies a curvature-dimension
condition CD(K,N) for K ∈ R and N ∈ [n,∞). Here K does not necessarily
coincide with k(n− 1). In particular, it’s possible that k < 0 but K ≥ 0.

To state our main theorem we recall the following. The Alexandrov boundary
of (X, d) is denoted as ∂X equipped with the induced length metric d∂X . We
write Σp for the space of direction at p ∈ X that is an Alexandrov space with
curvature bounded below by 1. We say v ∈ Σp for p ∈ ∂X is a normal vector
at p if ∠(v, w) = π

2 for any w ∈ ∂Σp. Here dxΦi denotes the differential of the
semi-concave function Φ at some point x ∈ Xi. We also refer to the remarks after
Definition 2.20.

Our main theorem is

Theorem 1.1 (Glued spaces). For i = 0, 1 let Xi be n-dimensional Alexandrov
spaces with curvature bounded below and let mXi = ΦiHnXi be measures where Φi :
Xi → [0,∞) are semi-concave functions. Suppose there exists an isometry I :
∂X0 → ∂X1 such that Φ0 = Φ1 ◦ I.

If the metric measure spaces (Xi, dXi ,mi) satisfy the curvature-dimension con-
dition CD∗(K,N) for K ∈ R, N ∈ [1,∞) and if

dpΦ0(v0) + dpΦ1(v1) ≤ 0 ∀p ∈ ∂Xi and any normal vectors vi ∈ ΣpXi, i = 0, 1,

then the glued metric measure space (X0 ∪I X1, (ι0)# mX0
+(ι1)# mX1

)) satisfies
the reduced curvature-dimension condition CD∗(K,N).

Remark 1.2. If the measures are finite, one can replace in the conclusion of The-
orem 1.1 the condition CD∗(K,N) with the full curvature-dimension condition
CD(K,N). In this case the two conditions are equivalent [CM16].

Corollary 1.3. For i = 0, 1 let Xi be Alexandrov spaces with curvature bounded
below, and let I : ∂X0 → ∂X1 be an isometry. Assume the metric measure spaces
(Xi, dXi ,HnXi) satisfy the condition CD∗(K,N) for K ∈ R, N ∈ [1,∞).

Then the metric measure space (X0 ∪I X1,HnX0∪IX1
) satisfies the condition

CD∗(K,N).

Remark 1.4. An Alexandrov space with curvature bounded from below is infinites-
imally Hilbertian. Therefore it satisfies the condition CD(K,N) (or CD∗(K,N)) if
only if it satisfies the Riemannian curvature-dimension condition RCD(K,N) (or
RCD∗(K,N)) (Corollary 2.10).

Remark 1.5. If Xi are convex domains in smooth Riemannian manifolds with lower
Ricci curvature bounds, then the statement of Corollary 1.3 is regarded as folklore.
A complete proof has been given in [PS18], based on a detailed approximation
property derived in [Sch12].

For general noncollapsed RCD spaces there are two natural notions of boundary:
one that was introduced by DePhillippis and Gigli in [DPG18] and another by
Mondino and the first named author in [KM19]. Conjecturally both notions coincide
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and the boundary (defined either way) is a closed subset in the ambient space. We
make the following conjecture

Conjecture 1.6. For i = 0, 1 let Xi be noncollapsed RCD(K,n) spaces with
nonempty boundary ∂Xi. Suppose there exists an isometry I : ∂X0 → ∂X1.
Then the glued metric measure space (X0 ∪I X1,HnX0∪IX1

) satisfies the condition
RCD(K,n).

As a biproduct of our proof Theorem 1.1 we also obtain the following result that
also seems to be new.

Theorem 1.7. For i = 0, 1 let Xi be n-dimensional Alexandrov spaces with curva-
ture bounded below as in the previous theorem, let X0∪IX1 be the glued Alexandrov
spaces and let Φi : Xi → R, i = 0, 1, be semi-concave with Φ0|∂X0 = Φ1|∂X1 such
that for any p ∈ ∂Xi it holds that

dΦ0|p(v0) + dΦ1|p(v1) ≤ 0 ∀ normal vectors vi ∈ ΣpXi, i = 0, 1.

Then Φ0 + Φ1 : X0 ∪I X1 → R is semiconcave.

We say that a function Φ : X → R on an Alexandrov space X is double semi-
concave if Φ ◦ P : X̂ → R is semi-concave in the usual sense where X̂ denotes the
Alexandrov double space of X and P : X̂ → X is the canoncial map. We give an
alternative characterisation of this condition in Lemma 4.1 and Corollary 4.4.

As another consequence of our main theorem we also obtain the following.

Corollary 1.8 (Doubled spaces). Let X be an n-dimensional Alexandrov space
with curvature bounded below, and let mX = ΦHnX be a measure for a double semi-
concave function Φ : X → [0,∞). Assume the metric measure space (X, dX ,mX)
satisfies the condition CD∗(K,N) for K ∈ R and N ≥ 1. Then, the double space

(X̂, dX̂ ,mX̂) satisfies the condition CD∗(K,N).

Let us briefly comment on the statement and the proof of Theorem 1.1 and
Corollary 1.3. By Petrunin’s glued space theorem one knows that the glued space of
two Alexandrov spaces with curvature bounded from below is again an Alexandrov
space with the same lower curvature bound. However the intrinsic best lower Ricci
bound might be different from the Alexandrov curvature bound. So Petrunin’s
theorem does not imply any of the statements above.

But we can use the improved regularity of the glued space for our purposes. It im-
plies some lower Ricci bound that yields a priori information for transport densities
and densities along needles in the Cavalletti-Mondino 1D localisation procedure.
At this point a crucial difficulty appears. It is not known whether geodesics cross
the boundary set where the spaces are glued together, only finitely many times.
This difficulty does not occur for the double space construction. By symmetry in
this case it is known that geodesics in the double space only cross once.

For general glued spaces we overcome this problem by the following strategy.
First, given a 1D localisation we show that the collection of geodesic that cross the
boundary infinitely many times has measure 0 w.r.t. to the corresponding quotient
measure. Then, we apply a theorem of Cavalletti and Milman on characterization
of synthetic Ricci curvature bounds via 1D localisation.

Remark 1.9. As pointed out by Rizzi [Riz18], in the previous theorem one cannot re-
place the curvature-dimension conditon CD(K,N) for any K ∈ R and N ∈ (1,∞)
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with the measure contraction property MCP (K,N) [Stu06, Oht07]. The MCP
is a weaker condition that still characterizes lower Ricci curvature bounds for N -
dimensional smooth manifolds and is also consistent with lower Alexandrov curva-
ture bounds. For the precise definition we refer to [Stu06, Oht07]. The counterex-
ample in [Riz18] is given by the Grushin half-plane which satisfies MCP (0, N) if
and only if N ≥ 4 while its double satisfies MCP (0, N) if and only if N ≥ 5.

Another example that is even Alexandrov is provided in the last section of this
article (Example 5.1).

Remark 1.10. Let us mention that one can show that Petrunin’s gluing theorem
holds for gluing n-dimensional Alexandrov spaces along isometric extremal subsets
of codimension 1 which do not need to be equal to the whole components of their
boundaries (see for instance [Mit16]). For example gluing two triangles having a
side of equal length with all adjacent angles to it ≤ π/2 is again an Alexandrov
space (a convex quadrilateral). Our results then generalize to this situation as well.

1.1. Application to heat flow with Dirichlet boundary condition. The con-
cept of doubling has recently found significant application in the study of the heat
flow with Dirichlet boundary conditions. In particular, it allows the use of opti-
mal transportation techniques. As widely known, these techniques are not directly
applicable since the Dirichlet heat flow will not preserve masses.

As observed in [PS18], this obstacle can be overcome by looking at the heat
flow in the doubled space instead. The latter is accessible to optimal transport
techniques and to the powerful theory of metric measure spaces with synthetic
Ricci bounds. Moreover, it can always be expressed as a linear combination of the
Dirichlet heat flow and the Neumann heat flow on the original space – and vice
versa, both the Dirichlet and the Neumann heat flow on the original space can be
expressed in terms of the heat flow on the doubled space.

More precisely now, let X be an n-dimensional Alexandrov space with curvature
bounded below, and let mX = ΦHnX be a measure for a double semi-concave func-
tion Φ : X → [0,∞). Let (Pt)t≥0 denote the heat semigroup with Neumann bound-
ary conditions on X and let (P 0

t )t≥0 denote the heat semigroup on X0 := X \ ∂X
with Dirichlet boundary conditions with respective generators ∆ and ∆0.

Theorem 1.11. Assume the metric measure space (X, dX ,mX) satisfies the con-
dition CD(K,∞) for K ∈ R. Then the following gradient estimate of Bakry-Emery
type

(1)
∣∣∇P 0

t f
∣∣ ≤ e−Kt Pt∣∣∇f ∣∣ a.e. on X0

and the following Bochner inequality hold true

(2)
1

2
∆
∣∣∇f ∣∣2 − 〈∇f,∇∆0f

〉
≥ K

∣∣∇f ∣∣2
weakly on X0 for all sufficiently smooth f on X. (Note that in the latter estimate,
two different Laplacians appear and in the former, two different heat semigroups.)

More precisely, (1) holds for all f ∈ W 1,2
0 (X0), the form domain for the Dirichlet

Laplacian. And (2) is rigorously formulated as

1

2

∫
X0

∆ϕ
∣∣∇f ∣∣2 dm−

∫∫
X0

ϕ
〈
∇f,∇∆0f

〉
dm ≥ K

∫
X0

ϕ
∣∣∇f ∣∣2 dm

for all f ∈ D(∆0) with ∆0f ∈ W 1,2
0 (X0) and all nonnegative ϕ ∈ D(∆0) with

ϕ,∆0ϕ ∈ L∞.
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Proof. Both estimates follow from Corollary 1.8 and [PS18], Thm. 1.26. For
the readers’ convenience, let us briefly recall the main argument. The estimates
for the Dirichlet heat semigroup and Dirichlet Laplacian are direct consequences of
analogous estimates for the heat semigroup (P̂t)t≥0 and Laplacian ∆̂ on the doubled
space

X̂ := X ∪X ′
/
∂X=∂X′

obtained by gluing X and a copy of it, say X ′, along their common boundary
∂X ∼ ∂X ′. Then Dirichlet and Neumann heat semigroups on X can be expressed
in terms of the heat semigroup on X̂ as

P 0
t f = P̂t(f − f ′), Ptf = P̂t(f + f ′)

for any given bounded, measurable f : X → R where f is extended to X̂ by
putting f := 0 on X̂ \ X and where f ′ : X̂ → R is defined as f ′(x′) := f(x) if

x′ ∈ X ′ denotes the mirror point of x ∈ X. Then the gradient estimate for P̂t on
X̂ obviously implies that

|∇P 0
t f | = |∇P̂t(f − f ′)| ≤ e−Kt P̂t|∇(f − f ′)| = e−Kt Pt|∇f |

for every f ∈W 1,2
0 (X0).

Actually, (1) is stated in [PS18] only for functions f ∈ W 1,2
0 (X0) which in ad-

dition satisfy f, |∇f | ∈ L1. But any f ∈ W 1,2
0 (X0) can be approximated in W 1,2-

norm by compactly supported Lipschitz functions fn (which in particular satisfy
fn, |∇fn| ∈ L1). Hence, Pt|∇f | is the L2-limit of Pt|∇fn| and the claim follows by
passing to a suitable subsequence which leads to a.e.-convergence. �

We outline the remaining content of the article. In section 2 we recall preliminaries
and basics on optimal transport, Ricci curvature for metric measure spaces, Alexan-
drov spaces, gluing of Alexandrov spaces and 1D localisation technique. We also
state a new result by Cavalletti and Milman on characterizing the Ricci curvature
bounds via 1D localisation.

In section 3 we will give two application of the 1D localisation technique. The
first application shows that almost all geodesics avoid set of Hn-measure 0 in the
boundary in the glued space. The second application shows that given a 1D local-
isation w.r.t. an arbritrary 1-Lipschitz function, geodesics that are tangential to
the boundary have measure 0 w.r.t. the corresponding quotient measure.

In section 4 we use the results of the previous section to prove Theorem 1.7.
In section 5 we prove the glued space theorem applying the results we obtained

in section 3 and section 4.

Acknowledgments. The authors want to thank Anton Petrunin for helpful conver-
sations on gluing spaces and other topics.

2. Preliminaries

2.1. Curvature-dimension condition. Let (X, d) be a complete and separable
metric space equipped with a locally finite Borel measure m. We call a triple
(X, d,m) a metric measure space.

A geodesic is a length minimizing curve γ : [a, b] → X. We denote the set of
constant speed geodesics γ : [a, b]→ X with G[a,b](X) equipped with the topology
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of uniform convergence and set G[0,1](X) =: G(X). For t ∈ [a, b] the evaluation map
et : G[a,b](X)→ X is defined as γ 7→ γ(t) and et is continuous.

A set of geodesics F ⊂ G(X) is said to be non-branching if ∀ε ∈ (0, 1) the map
e[0,ε]|F is one to one.

The set of (Borel) probability measure is denoted with P(X), the subset of
probability measures with finite second moment is P2(X), the set of probability
measures in P2(X) that are m-absolutely continuous is denoted with P2(X,m)
and the subset of measures in P2(X,m) with bounded support is denoted with
P2
b (X,m).
The space P2(X) is equipped with the L2-Wasserstein distance W2. A dynamical

optimal coupling is a probability measure Π ∈ P(G(X)) such that t ∈ [0, 1] 7→
(et)#Π is a W2-geodesic in P2(X). The set of dynamical optimal couplings Π ∈
P(G(X)) between µ0, µ1 ∈ P2(X) is denoted with OptGeo(µ0, µ1).

A metric measure space (X, d,m) is called essentially nonbranching if for any pair
µ0, µ1 ∈ P2(X,m) any Π ∈ OptGeo(µ0, µ1) is concentrated on a set of nonbranching
geodesics.

Definition 2.1. For κ ∈ R we define cosκ : [0,∞)→ R as the solution of

v′′ + κv = 0 v(0) = 1 & v′(0) = 0.

sinκ is defined as solution of the same ODE with initial value v(0) = 0 & v′(0) = 1.
That is

cosκ(x) =


cosh(

√
|κ|x) if κ < 0

1 if κ = 0

cos(
√
κx) if κ > 0

sinκ(x) =


sinh(
√
|κ|x)√
|κ|

if κ < 0

x if κ = 0
sin(
√
κx)√
κ

if κ > 0

Let πκ be the diameter of a simply connected space form S2k of constant curvature
κ, i.e.

πκ =

{
∞ if κ ≤ 0
π√
κ

if κ > 0

For K ∈ R, N ∈ (0,∞) and θ ≥ 0 we define the distortion coefficient as

t ∈ [0, 1] 7→ σ
(t)
K,N (θ) =

{
sinK/N (tθ)

sinK/N (θ) if θ ∈ [0, πK/N ),

∞ otherwise.

Note that σ
(t)
K,N (0) = t. Moreover, for K ∈ R, N ∈ [1,∞) and θ ≥ 0 the modified

distortion coefficient is defined as

t ∈ [0, 1] 7→ τ
(t)
K,N (θ) =

θ · ∞ if K > 0 and N = 1,

t
1
N

[
σ
(t)
K,N−1(θ)

]1− 1
N

otherwise

where our convention is 0 · ∞ = 0. It holds that

τ
(t)
K,N (θ) ≥ σ(t)

K,N (θ).(3)

Definition 2.2 ([Stu06, LV09, BS10]). A metric measure space (X, d,m) satisfies
the curvature-dimension condition CD(K,N) for K ∈ R, N ∈ [1,∞) if for every
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pair µ0, µ1 ∈ P2
b (X,m) there exists an L2-Wasserstein geodesic (µt)t∈[0,1] and an

optimal coupling π between µ0 and µ1 such that

SN (µt|m) ≤ −
∫ [

τ
(1−t)
K,N (θ)ρ0(x)−

1
N + τ

(t)
K,N (θ)ρ1(y)−

1
N

]
dπ(x, y)(4)

where µi = ρidm, i = 0, 1, and θ = d(x, y).
We say (X, d,m) satisfies the reduced curvature-dimension condition CD∗(K,N)

for K ∈ R and N ∈ (0,∞) if we replace the coefficients τ
(t)
K,N (θ) with σ

(t)
K,N (θ).

Remark 2.3. By the inequality (3) the condition CD(K,N) always implies the
condition CD∗(K,N) and the latter is equivalent to a local version of CD(K,N).
Under the assumptions that (X, d,m) is essentially nonbranching and m is finite
Cavalletti and Milman [CM16] prove that CD(K,N) and CD∗(K,N) are equivalent
(compare with Theorem 2.27 below).

Definition 2.4. A metric measure space (X, d,m) satisfies the Riemannian curvature-
dimension condition RCD(K,N) (or RCD∗(K,N)) if it satisfies the condition
CD(K,N) (or CD∗(K,N)) and is infinitesimally Hilbertian, that is the corre-
sponding Cheeger energy is quadratic.

Remark 2.5. SinceRCD(K,N) andRCD∗(K,N) spaces are essentially non-branching,
the two conditions are equivalent provided m is finite (compare with Remark 2.15
in [KK17].

2.2. Alexandrov spaces. In the following we introduce metric spaces with Alexan-
drov curvature bounded from below. For an introduction to this subject we refer
to [BBI01].

Definition 2.6. We define mdκ : [0,∞)→ [0,∞) as the solution of

v′′ + κv = 1 v(0) = 0 & v′(0) = 0.

More explicitly

mdκ(x) =

{
1
κ (1− cosκ x) if κ 6= 0,
1
2x

2 if κ = 0.

Definition 2.7. Let (X, d) be a complete geodesic metric space. We say (X, d)
has curvature bounded below by κ ∈ R in the sense of Alexandrov if for any unit
speed geodesic γ : [0, l]→ X such that

(5) d(y, γ(0)) + l + d(γ(l), y) < 2πk,

it holds that

[mdκ(dy ◦ γ)]
′′

+ mdκ(dy ◦ γ) ≤ 1.(6)

If (X, d) has curvature bounded from below for some k ∈ R in the sense of Alexan-
drov, we say that (X, d) is an Alexandrov space.

Remark 2.8. Alexandrov spaces are non-branching.

Theorem 2.9 (Petrunin, [Pet11]). Let (X, d) be an n-dimensional Alexandrov
space with curvature bounded from below by k. Then, (X, d,HnX) satisfies the con-
dition CD(k(n− 1), n).
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Corollary 2.10. Let (X, d) be an n-dimensional Alexandrov space with curvature
bounded from below by κ. Then, the metric measure space (X, d,HnX) satisfies the
condition RCD(κ(n− 1), n).

Proof. The statement is known. Here, we give a straightforward argument for
completeness. It is enough to show that Cheeger energy is quadratic.

It is known that a doubling condition and a 1-1 Poincaré inequality hold for
Alexandrov spaces. Hence, we can follow the same argument as in [KK17, Section
6]. It is known [BGP92] that for Hn-a.e. points x ∈ X the tangent cone TpX is
isometric to Rn, and for a Lipschitz function the differential exists and is linear
Hn-a.e. [Che99, Theorem 8.1]. This implies the Cheeger energy is quadratic by the
same argument as in [KK17, Section 6]. �

Let (X, d) be an n-dimensional Alexandrov space. We denote with TpX the
unique blow up tangent cone at p ∈ X. The tangent cone TpX coincides with
the metric cone C(Σp) where Σp is the space of directions at p equipped with the
angle metric. The definition of the angle metric is as follows. The angle ∠(γ1, γ2)
between two geodesics γi, i = 1, 2, with γ1(0) = γ2(0) = p and parametrized by
arclength is defined by the formula

cos∠(γ1, γ2) = lim
s,t→0

s2 + t2 − d(γ1(s), γ2(t))

2st
.

Then, the space of directions ΣpX is given as the metric completion of SpX via ∠
where SpX is the space of geodesics starting in p. We refer to [BBI01] for details.
One can show that (ΣpX,∠) is an (n − 1)-dimensional Alexandrov space with
curvature bounded below by 1. We say p ∈ X is a regular point if ΣpX = Sn−1.
We denote the set of regular points with Xreg. As was mentioned above Hn-almost
every point p ∈ X is regular. A theorem of Petrunin [Pet98] is the next statment.
If γ : [a, b] → X is a geodesic such that there exists t0 ∈ [a, b] with γ(t0) = Xreg

then γ(t0) ∈ Xreg for all t ∈ [a, b].
One can define the boundary ∂X ⊂ X of X via induction over the dimension.

One says that p ∈ X is a boundary point if ∂ΣpX 6= ∅. ∂X denotes the set of all
boundary points, and we call ∂X the boundary of X.

Let p ∈ X be a boundary point, that is ∂ΣpX 6= ∅. We say v ∈ ΣpX is a normal
vector in p if ∠(v, w) = π

2 for any w ∈ ∂ΣpX.

Theorem 2.11 (Perelman [Per93], [PP93, Lemma 4.3] ). For any point in an n-
dimensional Alexandrove space there exists an arbitrary small, closed, geodesically
convex neighborhood.

2.3. Gluing. Let (X0, dX0) and (X1, dX1) be complete, n-dimensional Alexandrov
spaces with non-empty boundaries ∂X0 and ∂X1 equipped with their intrinsic dis-
tances d∂X0

and d∂X1
respectively. Let I : ∂X0 → ∂X1 be an isometry.

The topological glued space of X0 and X1 along their boundaries w.r.t. I is
defined as the quotient space X0∪̇X1/R of the disjoint union X0∪̇X1 where

x ∼R y if and only if I(x) = y if x ∈ ∂X0, y ∈ ∂X1, and x = y otherwise.

The equivalence relaiton R induces a pseudo distance on X0∪̇X1 = X as follows.
First, we introduce an extended metric d on X0∪̇X1 via d(x, y) = dXi(x, y) if
x, y ∈ Xi for some i ∈ {0, 1} and d(x, y) = ∞ otherwise. Then, for x, y ∈ X0∪̇X1
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we define

d̂(x, y) = inf

k−1∑
i=0

d(pi, qi)

where the infimum runs over all collection of tuples {(pi, qi)}i=0,...,k−1 ⊂ X × X
for some k ∈ N such that qi ∼R pi+1, for all i = 0, . . . , k − 1 and x = p0, y = qk.

One can show that x ∼R y if and only if d̂(x, y) = 0 if X0 and X1 are Alexandrov
spaces. The glued space between (X0, dX0) and (X1, dX1) w.r.t. I : ∂X0 → ∂X1 is
the metric space defined as

X0 ∪I X1 := (X0 ∪X1/R, d̂).

In the following we denote the glued space as (Z, dZ), and boundary ∂X0 with its
intrinsic metric with (Y, dY ). In the case when X0 = X1 = X and I = id∂X , we

call X ∪I X =: X̂ the double space of X.

Remark 2.12. For every point p ∈ Xi\Y , i = 0, 1, there exists ε > 0 such that
Bε(p) ⊂ Xi and dZ |Bε(p)×Bε(p) = dXi |Bε(p)×Bε(p).

Theorem 2.13 (Petrunin, [Pet97]). Let (X0, dX0
) and (X1, dX0

) be n-dimensional
Alexandrov spaces with nonempty boundary and curvature bounded from below by
k. Let I : ∂X0 → ∂X1 be an isometry w.r.t. the induces intrinsic metrics. Then,
X0 ∪I X1 is an Alexandrov space with curvature bounded from below by k.

Remark 2.14. The special case of a double space was proven first by Perelman [Per].

Remark 2.15. By symmetry of the construction one can see that geodesics in the
double space X̂ of an Alexandrov space X connecting points in X̂\∂X intersect
with the boundary at most once, and the restriction of the double metric to X\∂X
coincides with dX . This observation was crucial in Perelman’s proof of the double
theorem. However, in the general case of glued spaces it’s not clear if geodesics
connecting points in Z\Y intersect Y at most finitely many times. This creates
an extra difficulty in the proof of Petrunin’s theorem and also in the proof of
Theorem 1.1.

Let us recall some additional facts about the glued space Z [Pet97]. Since
the boundary Y ⊂ X0 is an extremal subset in X0, the following holds. Con-
sider the blow up tangent cone limε→0(X0,

1
εdX0

, p) = TpX0 for p ∈ Y . Then,

limε→0(Y, 1εdY , p) = TpY w.r.t. the intrinsic metric dY on Y is equal to C(∂ΣpX0) =
∂C(ΣpX0).

It follows that ∂ΣpX0 is isometric to ∂ΣpX1 via an isometry I ′ that arises as
blow up limit of I.

Then it also follows from Petrunin’s proof of the glued space theorem that TpZ =
TpX0 ∪I′ TpX1 and ΣpZ = ΣpX0 ∪I′ ΣpX1.

If p ∈ Y is a regular point in the glued space Z, that is ΣpZ = Sn−1, it follows by
maximality of the volume of Sn−1 in the class of Alexandrov spaces with curvature
bounded below by 1 that ΣpX0 = Sn−1+ and ΣpX0 = Sn−1− where Sn−1+/− denote the

lower and upper half sphere respectively, and ΣpY = ∂ΣpX0 = Sn−2. In particular,

the north pole N in Sn−1+ is the unique normal vector a p ∈ Y ⊂ X0, and the south

pole S ∈ Sn−1− is the unique normal vector a p ∈ Y ⊂ X1.
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2.4. Semi-concave functions. We recall a few basic facts about concave functions
following [Pla02].

A function u : [a, b] → R is called concave if the segment between any pair
of points lies below the graph. If u is concave, u is lower semi continuous and

continuous on (a, b). The secant slope u(s)−u(t)
s−t is a decreasing function in s and t.

It follows that the right and left derivative

d+

dr
u(r) = lim

h↓0

u(r + h)− u(r)

h
&

d−

dr
u(r) = lim

h↓0

u(r − h)− u(r)

−h

exist in R ∪ {∞} and R ∪ {−∞} respectively for all r ∈ [a, b] with values in R
if r ∈ (a, b). Moreover d+

dr u(r) ≤ d−

dr u(r) and d+/−

dr u(r) are decreasing in r. If
d+

dr u(a) <∞ (d
−

dr u(b) > −∞), u is continuous in a (in b).
Let u : [a, b]→ (0,∞) satisfy

u ◦ γ(t) ≥ σ(1−t)
κ (|γ̇|)u ◦ γ(0) + σ(t)

κ (|γ̇|)u ◦ γ(1)(7)

for any constant speed geodesic γ : [0, 1] → [a, b]. It follows that u is lower semi
continuous and continuous on (a, b).

Definition 2.16. Let f : [a, b]→ R be continuous on (a, b), and let F : [a, b]→ R
such that F ′′ = f on (a, b). For a function u : [a, b]→ R we write u′′ ≤ f on (a, b)
if u− F is concave on (a, b).

We say a function u : (0, θ)→ R is λ-concave if u′′ ≤ λ. We say u is semiconcave
if for any r ∈ (0, θ) we can find ε > 0 and λ ∈ R such that u is λ-concave on
(r − ε, r + ε).

If u satisfies (7) for every constant speed geodesic γ : [0, 1]→ [a, b], then one can
check that

u′′ + ku ≤ 0 on (a, b)

in the sense of the previous definition. We note that (7) implies that u is continuous

on (a, b), and U(t) =
∫ b
a
g(s, t)u(s)ds satisfies U ′′ = −u on (a, b) where g(s, t) is the

Green function of the interval [a, b].
On the other hand we have the next lemma.

Lemma 2.17. Let u : [a, b]→ R be lower semi-continuous and continuous on (a, b)
such that u′′ + ku ≤ 0 on (a, b) in the sense of the definition above.

Then u satisfies (7) for every constant speed geodesic γ : [0, 1]→ [a, b].

Proof. We sketch the proof. If u′′ + ku ≤ 0 then u− kU is concave. In particular,
it follows for φ ∈ C2

c ((a, b)), φ ≥ 0, that

0 ≥
∫

(u+ kU)φ′′dt =

∫
uφ′′ + k

∫
uφdt

by the distributional characterisation of convexity (see [Sim11]). Hence, u satisfies
u′′ + ku ≤ 0 in distributional sense, and therefore (7) follows by [EKS15, Lemma
2.8]. �

Lemma 2.18. If u satisfies (7) for every constant speed geodesic γ : [0, 1]→ [a, b]
of length less than θ < b− a, then u satisfies (7).
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If u : [a, b] → R satifies (7), it is is semi-concave, therefore locally Lipschitz on
(a, b) and hence differentiable L1-almost everywhere. Moreover, the right and left

derivative also exist in this case and satisfy d+

dr u(r) ≤ d−

dr u(r) with equality if and

only if u is differentiable in r. d+/−

dr u is continuous from the right/left. Since u is

locally semi concave, the second derivative u′′ exists L1-almost everywhere.
The following Lemma can be found in [Pla02] (Lemma 113).

Lemma 2.19. Consider u : (a, b) → R continuous such that u′′ ≤ −ku on (a, c)
and on (c, b) for some c ∈ (a, b). Then u′′ ≤ −ku on (a, b) if and only if

d−

dr
u(c) ≥ d+

dr
u(c).

Definition 2.20. Let (X, d) be an n-dimensional Alexandrov space and Ω ⊂ X. A
function f : Ω→ R is λ-concave if f is locally Lipschitz and f ◦ γ : [0,L(γ)]→ R
is λ-concave for every constant speed geodesic γ : [0,L(γ)] → Ω. A function
f : X → R is semi-concave if for every p ∈ X there exists a neighborhood U 3 p
such that f |U is λ-concave for some real λ.

We say a function f : X → R is double semi-concave if the function f◦P : X̂ → R
is semi-concave where the P : X̂ → X is the projection map form the double space
X̂ to X. If ∂X = ∅, concavity and double concavity coincide.

In [Pet07] Petrunin defines concavity as double concavity.

Let X be an Alexandrov space and let f : X → R be locally Lipschitz. Then,
the limit

lim
r↓0

f ◦ γ(r)− f ◦ γ(0)

r
=
d+

dr
(f ◦ γ)(0) =: dfp(γ̇) =: df(γ̇) ∈ R

exists for every geodesic γ : [0, θ] → X parametrized by arc length with γ(0) = p,
and for every p ∈ X. We call df : TpX → R the differential of f .

The differential dfp on TpX can be equivalently defined as limit of the sequence
1
ε (f − f(p)) : ( 1

εX, p) → R. This limit is understood in the sense of Gromov’s
Arzela-Ascoli theorem (see for instance [Sor04]. It also makes sense for functions
that are just locally Lipschitz but the differential is not unique in this case. Note
that since Alexandrov spaces are nonbranching, under GH convergence of Alexan-
drov spaces every geodesic in the limit is a limit of geodesics in the sequence.
Therefore it follows that dfp : TpX → R is Lipschitz for Lipschitz functions, and
also concave if f is semiconcave. This in turn implies that v = dfp : Σp → R
satisfies v′′ + v ≤ 0 along geodesics in Σp.

2.5. 1D localisation of generalized Ricci curvature bounds. In this section
we will recall the localisation technique introduced by Cavalletti and Mondino. The
presentation follows Section 3 and 4 in [CM17]. We assume familarity with basic
concepts in optimal transport.

Let (X, d,m) be a locally compact metric measure space that is essentially non-
branching. We assume that supp m = X.

Let u : X → R be a 1-Lipschitz function. Then

Γu := {(x, y) ∈ X ×X : u(x)− u(y) = d(x, y)}

is a d-cyclically monotone set, and one defines Γ−1u = {(x, y) ∈ X×X : (y, x) ∈ Γu}.
If γ ∈ G[a,b](X) for some [a, b] ⊂ R such that (γ(a), γ(b)) ∈ Γu then (γ(t), γ(t)) ∈ Γu
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for a < t ≤ s < b. It is therefore natural to consider the setG of unit speed transport
geodesics γ : [a, b]→ R such that (γ(t), γ(s)) ∈ Γu for a ≤ t ≤ s ≤ b.

The union Γ ∪ Γ−1 defines a relation Ru on X ×X, and Ru induces a transport
set with endpoints

Tu := P1(Ru\{(x, y) : x = y}) ⊂ X
where P1(x, y) = x. For x ∈ Tu one defines Γu(x) := {y ∈ X : (x, y) ∈ Γu}, and
similar Γ−1u (x) as well as Ru(x) = Γu(x) ∪ Γ−1u (x). Since u is 1-Lipschitz, Γu,Γ

−1
u

and Ru are closed as well as Γu(x),Γ−1u (x) and Ru(x).
The transport set without branching T bu associated to u is then defined as

T bu = {x ∈ Tu : ∀y, z ∈ Ru(x)⇒ (y, z) ∈ Ru}

Tu and Tu\T bu are σ-compact, and T bu and Ru ∩ T bu ×T bu are Borel sets. In [Cav14]
Cavalletti shows that Ru restricted to T bu × T bu is an equivalence relation. Hence,
from Ru one obtains a partition of T bu into a disjoint family of equivalence classes
{Xγ}γ∈Q. Moreover, T bu is also σ-compact.

Every Xγ is isometric to some interval Iγ ⊂ R via an isometry γ : Iγ → Xγ .
γ : Iγ → X extends to a geodesic that is arclength parametrized and that we also

denote γ defined on the closure Iγ of Iγ . We set Iγ = [aγ , bγ ].
The set of equivalence classesQ has a measurable structure such that Q : T bu → Q

is a measurable map. We set q := Q# m |T bu .

Recall that a measurable section of the equivalence relation R on T bu is a mea-
surable map s : T bu → T bu such that Ru(s(x)) = Ru(x) and (x, y) ∈ Ru implies
s(x) = s(y). In [Cav14, Proposition 5.2] Cavalletti shows there exists a measurable
section s of R on T bu . Therefore, one can identify the measurable space Q with
{x ∈ T bu : x = s(x)} equipped with the induced measurable structure and we can
see q as a Borel measure on X. By inner regularity there exists a σ-compact set
Q′ ⊂ X such that q(Q\Q′) = 0 and in the following we will replace Q with Q′ with-
out further notice. We parametrize γ ∈ Q such that γ(0) = s(x). In particular,
0 ∈ (aγ , bγ).

Now, we assume that (X, d,m) is an essentially non-branching CD∗(K,N) space
for K ∈ R and N ≥ 1. The following lemma is Theorem 3.4 in [CM17].

Lemma 2.21. Let (X, d,m) be an essentially non-branching CD∗(K,N) space for
K ∈ R and N ∈ (1,∞) with supp m = X and m(X) < ∞. Then, for any 1-
Lipschitz function u : X → R, it holds m(Tu\T bu ) = 0.

For q-a.e. γ ∈ Q it was proved in [CM16] (Theorem 7.10) that

Ru(x) = Xγ ⊃ Xγ ⊃ (Ru(x))◦ ∀x ∈ Q−1(γ).

where (Ru(x))◦ denotes the relative interiour of the closed set Ru(x).

Theorem 2.22. Let (X, d,m) be a compact geodesic metric measure space with
supp m = X and m finite. Let u : X → R be a 1-Lipschitz function, let (Xγ)γ∈Q be
the induced partition of T bu via Ru, and let Q : T bu → Q be the induced quotient map
as above. Then, there exists a unique strongly consistent disintegration {mγ}γ∈Q
of m |T bu w.r.t. Q.

Define the ray map

g : V ⊂ Q× R→ X via graph(g) = {(γ, t, x) ∈ Q× R×X : γ(t) = x}
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By definition V = g−1(T bu ). The map g is Borel measurable, g(γ, ·) = γ : (aγ , bγ)→
X is a geodesic, g : V → T bu is bijective and its inverse is given by g−1(x) =
(Q(x),±d(x,Q(x))).

Theorem 2.23. Let (X, d,m) be an essentially non-branching CD∗(K,N) space
with supp m = X, m(X) <∞, K ∈ R and N ∈ (1,∞).

Then, for any 1-Lipschitz function u : X → R there exists a disintegration
{mγ}γ∈Q of m that is strongly consistent with Rbu.

Moreover, for q-a.e. γ ∈ Q, mγ is a Radon measure with mγ = hαH1|Xα and
(Xγ , dXγ ,mγ) verifies the condition CD(K,N).

More precisely, for q-a.e. γ ∈ Q it holds that

hγ(ct)
1

N−1 ≥ σ(1−t)
K/N−1(|ċ|)hγ(γ0)

1
N−1 + σ

(t)
K/N−1(|ċ|)hγ(γ1)

1
N−1(8)

for every geodesic c : [0, 1]→ (aγ , bγ).

Remark 2.24. The property (8) yields that hγ is locally Lipschitz continuous on
(aγ , bγ) [CM17, Section 4], and that hγ : R→ (0,∞) satifies

d2

dr2
h

1
N−1
γ +

K

N − 1
h

1
N−1
γ ≤ 0 on (aγ , bγ) in distributional sense.

2.6. Characterization of curvature bounds via 1D localisation.

Definition 2.25. Let (X, dX ,mX) be an essentially non-braching metric measure
space with m(X) = 1, let K ∈ R and N ≥ 1, and let u : X → R be a 1-Lipschitz
function. We say that (X, dX ,mX) satisfies the condition CD1

u(K,N) if there exist
subsets Xγ ⊂ X, γ ∈ Q, such that

(i) There exists a disintegration of mTu on (Xγ)γ∈Q:

m |Tu =

∫
Xγ

mγ dq(γ) with mγ(Xγ) = 1 for q-a.e. γ ∈ Q.

(ii) For q-a.e. γ ∈ Q the set Xγ is the image Im(γ) of a geodesic γ : Iγ → X
for an interval Iγ ⊂ R.

(iii) The metric measure space (Xγ , dXγ ,mγ) satisfies the condition CD(K,N).

The metric measure space (X, dX ,mX) satisfies the condition CD1
Lip(K,N) if it

satisfies the condition CD1
u(K,N) for any 1-Lipschitz function u : X → R.

Remark 2.26. From the previous subsection it is immediatly clear that the condition
CD(K,N) implies the condition CD1

Lip(K,N).

The following theorem will play an important role in the proof of our gluing
result.

Theorem 2.27 (Cavalletti-Milman). If an essentially non-branching metric mea-
sure space (X, dX ,mX) satisfies the condition CD1

Lip(K,N) for K ∈ R and N ∈
[1,∞) then it satisfies the condition CD∗(K,N).

If m is a finite measure it even satisfies CD(K,N).

Remark 2.28. Taking into account a disintegration result for σ-finite measures in
[CM18, Section 3.1] it should be possible to prove the previous theorem also for
σ-finite measures. Consequently in our main theorem we would then be able to
replace the condition CD∗ with the condition CD in general.
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3. Applying 1D localisation

3.1. First application. Let X0 and X1 be n-dimensional Alexandrov spaces, let
I : ∂X0 → ∂X1 be an isometry as in Theorem 2.13. Let Z be the glued space,
set ∂X0 = ∂X1 =: Y and recall that (Z, dZ ,Hn) satisfies CD(k(n− 1), n) for some
k ∈ R. We consider continuous functions Φ0 and Φ1 on X0 and X1 respectively
such that Φ0|∂X0

= Φ1|∂X1
, and we define ΦZ : X0 ∪I X1 → R by

ΦZ(x) =

{
Φ0(x) if x ∈ X0,

Φ1(x) otherwise.

Lemma 3.1. Let X be an n-dimensional Alexandrov space with Y = ∂X 6= ∅.
Let Φ : X → R, i = 0, 1 be semi-concave. Then Φ|Y : Y → R is differentiable
Hn−1-a.e. meaning that Y contains a subset A such that Hn−1(Y \A) = 0 and for
every a ∈ A it holds that TaY ∼= Rn−1 and dΦ: TaY → R is linear.

Proof. One says a point p ∈ Y = ∂X is boundary regular if TpY = Rn−1. Since
Y is the boundary of an n-dimensional Alexandrov space X, it is Hn−1-rectifiable.
Even stronger, the set of boundary regular points R(Y ) in Y has full Hn−1Y -measure
and for any ε > 0 one can cover R(Y ) by (1 + ε)-biLipschitz coordinate maps
F εi : Ui → Vi ⊂ Rn−1 where each Vi is open. The maps F εi are given by standard
strainer coordinates centered at boundary regular points. By the metric version of
Rademacher’s theorem due to Cheeger [Che99] it follows that Φ|Y is differentiable
Hn−1-a.e. .

Let us give another, self-contained argument that does not rely on Cheeger’s
theorem.

Without loss of generality we can assume that Φ is L-Lipscjhitz for some finite
L > 0. For 0 < ε < 1 we consider the maps F εi . Let us drop the superscript ε

for a moment. In particular, each coordinate component F ji , j = 1, . . . , n − 1, of

Fi is a semiconcave function on Ui and admits a differential dF ji |p in the sense of

Alexandrov spaces at every point p ∈ Ui. Since Fi and F−1i are (1 + ε)-biLipschitz,

one has that (1+ε)|v| ≤ |dF ji |p(v)| ≤ (1+ε)|v| for every p ∈ Ui and every v ∈ TpX.

The function Φ◦F−1i : Vi → R is 2L-Lipschitz and therefore differentiable Ln−1-
a.e. by the standard Rademacher theorem. So we can choose a set of full measure
W ε
i = Wi in Ui such that ∀p ∈ Fi(Wi) ⊂ Vi the point p ∈ Wi is regular and the

function Φ ◦ F−1i is differentiable at Fi(p).
The chain rule for Alexandrov space differentials yields

dΦ|p = d(Φ ◦ F−1i )|Fi(p) ◦DFi|p ∀p ∈Wi(9)

where DFi|p = (dF 1
i |p, . . . , dF

n−1
i |p).

We obtain by (9) that for all p ∈Wi and for any ε > 0 the Alexandrov differential
dΦ|p : Rn−1 7→ R of Φ at p is the composition of a 2L-Lipschitz linear map Aε =

d(Φ ◦ F−1i )|Fi(p) : Rn−1 7→ R and 1-homogeneous map Bε = DFi|p : Rn−1 7→ Rn−1
that is ε-close to an isometry on a the unit ball around the origin (we have identified
TpY with Rn−1 in the above).

Let us consider εn = 1
n and let p ∈

⋂
n∈N

⋃
W

1
n
i . After eventually choosing a

subsequence A
1
n → A for a linear map A and B

1
n → B for an isometry B. Hence

dΦp = A ◦ B is linear. Since
⋂
n∈N

⋃
W

1
n
i has full Hn−1-measure this yields the

claim.
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�

Proposition 3.2. Let Z be the glued space, let Y = ∂Xi ⊂ Z. Let N ⊂ Y such
that Hn−1(N) = 0. Let (Xγ)γ∈Q be the 1D localisation of m = HnZ w.r.t. the
1-Lipschitz function u = d(x1, ·) for x1 ∈ Bη(x1) ⊂ X1 and η > 0. Let (Q, q) and
Q : T bu → Q be the corresponding quotient space and the quotient map. Then

Hn(X0 ∩Q−1({γ ∈ Q : ∃t ∈ [0, L(γ)) s.t. γ(t) ∈ N})) = 0.

Proof. The property that Hn−1(N) = 0 is equivalent to the following statement.
For any ε > 0 and any δ ∈ (0, η/4) there exist (ri)i∈N with ri ∈ (0, δ) and xi ∈ Z,
i ∈ N, such that

N ⊂
⋃
i∈N

Bri(xi) and
∑
i∈N

(ri)
n−1 ≤ ε.(10)

We set Q′i = {γ ∈ G(X) : ∃t ∈ [0, 1] s.t. γ(t) ∈ Br(xi)} and Qi = Q′i\
⋃i−1
j=1Qj .

W.l.o.g. we assume that q(Qi) > 0 for any i ∈ N. We will prove that

Hn
(
X0 ∩

⋃
i∈N

Q−1(Qi)

)
≤ Cε

for some constant C = C(k, n). This implies the claim of the proposition.

Let us fix i ∈ N. There exists Q†i with q(Qi) = q(Q†i ) such that mγ admits a

density hγ w.r.t. H1 and (Xγ ,mγ) is CD(k(n− 1), n) for all γ ∈ Q†i . In particular,
if J ⊂ Iγ and Jt = tbγ + (1− t)J , then the Brunn-Minkowski inequality implies

mγ(Jt) ≥ C(k, n)tn mγ(J).

We pick J = γ−1(X0). Let D = diamZ and choose s ∈ N such that D
s−1 ≤ ri ≤

D
s .

We decompose J into intervals (J l,s)l=1,...,s such that |J l,s| ≤ D
s . Moreover, there

exists tl ∈ (0, 1) such that J l,stl ⊂ γ−1(B2ri(xi)). Since ri ≤ δ < η/4 and since
Bη(x1) ⊂ X1, we have Bη/2(x1) ∩B2ri(xi) = ∅. Therefore tl ≥ η

2D . Hence

1

ri
mγ(B2ri(xi)) ≥

s

D
mγ(J l,stl ) ≥

s∑
l=1

C(k, n)tnl mγ(J l,s) ≥ C(k, n,D)ηn mγ(J).

Integration w.r.t. q on Qi yields

Ĉ(k, n)rn−1i ≥ 1

ri
Hn(B2ri(xi)) ≥ C(k, n,D, η)Hn(X0 ∩Q−1(Qi)).

After summing up w.r.t. i ∈ N together with (10) and since {Qi}i∈N are disjoint,
we obtain the claim and we proved the proposition. �

3.2. Second application. Let u : X → R be a 1-Lipschitz function, let (mγ)γ∈Q
be the induced disintegration of Hn. We pick a subset Q̂ of full q measure in Q
such that Ru(x) = Xγ for all x ∈ Xγ . By abuse of notation we write Q̂ = Q and

Tu = Q−1(Q̂).
We say that a unit speed geodesic γ : [a, b] → X is tangent to Y if there exists

t0 ∈ [a, b] such that γ(t0) ∈ Y and γ̇(t0) ∈ TpY . We define

Q† :=
{
γ ∈ Q : #γ−1(Y ) <∞

}
.

Lemma 3.3. If γ ∈ Q\Q†, then γ is tangent to Y .
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Proof. If γ ∈ Q\Q†, then #γ−1(Y ) =∞. Hence, after taking a subseqence one can
find a strictly monotone sequence ti ∈ [aγ , bγ ] such that γ(ti) ∈ Y , ti → t0 ∈ [aγ , bγ ]
and γ(ti)→ γ(t0) ∈ Y . In a blow up of Y around γ(t0) the sequence γ(ti) converges
to the the velocity vector of γ at t0. Hence, we conclude that γ̇(t0) ∈ Tγ(t0)Y and
γ is tangent to Y . �

For U ⊂ X open we write

Hn(Tu ∩ U) =

∫
Q

mγ(U)dq(γ) =

∫
g−1(U)

hγ(r)dr ⊗ dq(γ)

where g : V ⊂ R×Q→ T bu is the ray map defined in Subsection 2.5. We also note
that (r, γ) ∈ V 7→ hγ(r) is measurable.

Remark 3.4. Let B ⊂ R × Q be measurable. Then g(B × Q) =: B ⊂ X is a
measurable subset since g is a Borel isomorphism. Then B ∩ Xγ is measurable
w.r.t. the induced measurable structure and by Fubini’s theorem the map

γ ∈ Q 7→ L(γ|γ−1(B))

is measurable. We can apply this for the case when B = (−∞, 0) × Q. It follows
that γ ∈ Q 7→ aγ = L(γ|γ−1(g((−∞,0)×Q)) ∈ R is measurable. Similar for bγ .

Remark 3.5. Consider the map Φt : R × Q → R × Q, Φt(r, q) = (tr, q) for t > 0.
Then, it is clear that Φt(V) = Vt is a measurable subset of V for t ∈ (0, 1]. Moreover
g(Vt) = T bu,t is a measurable subset of T bu such that Xγ ∩ T bu,t = tXγ ⊂ (aγ , bγ). If

t ∈ (0, 1), then Hn(T bu \T bu,t) > 0.

Again by Fubinis theorem U ∩Xγ ∩T bu,t = U ∩ tXγ is measurable in Xγ for q-a.e.
γ ∈ Q and the map

LU,t : γ ∈ Q 7→ L(γ|(taγ ,tbγ)∩γ−1(U)) =

∫
1U∩tXγdL1

is measurable. We note that the set (taγ , tbγ) ∩ γ−1(U) might not be an interval.

Let Y ⊂ X and consider Uε = Bε(Y ) for ε > 0. For s ∈ N and t ∈ (0, 1] we
define

Cε,s,t =
{
γ ∈ Q : L(γ|γ−1(Uε)∩(taγ ,tbγ)) > εs

}
.

Further, we set

Cs,t =
⋃
ε>0

⋂
ε′≤ε

Cε′,s,t = {γ ∈ Q : lim inf
ε→0

L(γ|γ−1(Uε)∩(taγ ,tbγ))/ε ≥ s}

and

Ct =
⋂
s∈N

Cs,t = {γ ∈ Q : lim
ε→0

L(γ|γ−1(Uε)∩(taγ ,tbγ))/ε =∞}.

Lemma 3.6. Let 0 < t ≤ 1 and let γ ∈ Q. If γ|[taγ ,tbγ ] is tangent to Y , then
γ ∈ Ct.

Proof. For the proof we ignore t ∈ (0, 1] and consider γ|[aγ ,bγ ].
Let γ ∈ Q be tangent to Y . Assume γ /∈ C. Then there exists a sequence (εi)i∈N

such that limi→∞ L(γ|γ−1(Bεi (Y ))∩(aγ ,bγ))/εi = C ∈ [0,∞). By assumption there

exists t0 ∈ [aγ , bγ ] such that γ(t0) ∈ Y . Hence t0 ∈ γ−1(Bεi(Y )) ∩ [aγ , bγ ]. There
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exists a maximal interval Iεi contained in γ−1(Bεi(Y ))∩ [aγ , bγ ] such that t0 ∈ Iεi .
After taking another subsequence we still have

∞ > lim
i→∞

L(γ|γ−1(Bεi (Y ))∩(aγ ,bγ))

εi
≥ lim
i→∞

L(γ|Iεi∩(aγ ,bγ))
εi

=: C ′ ≥ 0

and L(γ|Iεi∩(aγ ,bγ)) =: Li → 0. We set γi = γ|Iεi∩(aγ ,bγ). Since Iεi is maximal such
that Im(γi) ⊂ Bεi(Y ), we have supy∈Y,t∈Iεi d(y, γ(t)) ≥ εi. In the rescaled space

(Z, 1
Li
dZ) the geodesic γi is a geodesic of length 1 and

sup
y∈Y,t∈Iεi

1

Li
d(y, γi(t0)) ≥ C ′/2

for i ∈ N suffienciently large. By the proof of Petrunin’s glued space theorem we
know that (Y, 1

Li
d|Y ) converges in GH sense to Tγ(t0)Y . Therefore, for εi → 0 a

sequence of points γi(ti) converges to v ∈ Tγ(t0)Z such that supw∈Tγ(t0)Y
∠(w, v) ≥

C ′/2. This is a contradiction since the tangent vector γ̇(t0) ∈ Tγ(t0)Y and tangent
vector of geodesics in Alexandrov spaces are well-defined and unique.

Hence, for any sequence εi → 0 it follow that Li
εi
→∞ and therefore γ ∈ Ct. �

Corollary 3.7. Let γ ∈ Q. If γ|(aγ ,bγ) is tangent to Y , then γ ∈ C =
⋃
t∈(0,1)Ct.

Lemma 3.8. Let q be associated to u. Then q(Q ∩
⋃
t∈(0,1) Ct) = 0.

Proof. It is clearly enough to show that for any t ∈ (0, 1) it holds that q(Q∩Ct) = 0.
Therefore in the following we work with a fixed t.

We recall that aγ < 0 < bγ , γ ∈ Q 7→ aγ , bγ are measurable and Q =
⋃
l∈N{l ≥

|bγ |, |aγ | ≥ 1
l }. It is obviously enough to prove the lemma for Ql = {l ≥ |aγ |, |bγ | ≥

1
l } for arbitrary l ∈ N. Therefore we fix l ∈ N and replace Q with Ql. By abuse of
notation we will drop the superscript l for the rest of the proof. By rescaling the
whole space with 4l we can assume that 4 ≤ |aγ |, |bγ | ≤ 4l2 for each γ ∈ Q.

Let Cε,s,t be defined as before for ε ∈ (0, ε0) and s ∈ N.
We pick γ ∈ Cε,s,t and consider γ−1(Bε(Y ))∩(taγ , tbγ) =: Iγ,ε. We set L(γ|Iγ,ε) =:

Lε.
We observe that

4l2 ≥ (1− t)|aγ | ≥ (1− t)4, 4l2 ≥ (1− t)|bγ | ≥ (1− t)4.

We pick r ∈ Iγ,ε and τ ∈ (aγ , taγ)∪(tbγ , bγ). Theorem 2.23 implies that ([aγ , bγ ], hγdr)
satisfies the condition CD(k(n − 1), n). Then, the following estimate holds (c.f.
[CM17, Inequality (4.1)])

hγ(r) ≥
sinn−1k ((r − aγ) ∧ (bγ − r))
sink−1k ((τ − aγ) ∧ (bγ − τ))

hγ(τ)

≥
sinn−1k ((1− t)4)

sinn−1k 4l2
hγ(τ) = C(k, n, t, l)hγ(τ).

for a universal constant C(k, n, t, l). We take the mean value w.r.t. L1 on both
sides and obtain

1

Lε

∫
Iγ,ε

hγdL1 ≥ C(k, n, t, l)
1

4l2

∫
(aγ ,taγ)∪(tbγ ,bγ)

hγdL1.
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Hence, after integrating w.r.t. q on Cε,s,t and taking into account 1
εs ≥

1
Lε by

definition of Cε,s,t, it follows

1

εs
Hn(Bε(Y )) ≥ 1

sε

∫
Cε,s,t

mγ(Bε(Y ))dq(γ)

≥ 1

Lε

∫
Cε,s,t

∫
Iγ,ε

hγdL1dq(γ)

≥ Ĉ
∫
Cε,s,t

∫
(aγ ,taγ)∪(tbγ ,bγ)

hγdL1dq(γ)

≥ Ĉ
∫
Cε,s,t

mγ(T bu \T bu,t)dq(γ)

where Ĉ = 1
2lC(k, n, t, l). It is known that Hn(Bε(Y )) ≤ εM for some constant

M > 0 provided ε > 0 is sufficiently small. This follows from semiconcavity of
the boundary distance function in Alexandrov spaces, Lipschitz continuity of the
induced gradient flow and the coarea formula. Hence

M

s
≥ C(K,N, k, t)

∫
Cε,s,t

mγ(T bu \T bu,t)dq(γ).

If we take limit for ε→ 0, we obtain

M

s
≥ C(K,N, k, t)

∫
Cs,t

mγ(T bu \T bu,t)dq(γ).

Finally, for s→∞ it follows

0 =

∫
Ct

mγ(T bu \T bu,t)dq(γ).

But by construction of T bu,t we know that mγ(T bu \T bu,t) is positive for every γ ∈ Q
if t ∈ (0, 1). Therefore, it follows q(Ct) = 0. �

Combining the above lemma with Corollary 3.7 gives

Corollary 3.9. Let q be associated to u. Then q(γ ∈ Q : γ|(aγ ,bγ) is tangent to
Y ) = 0.

Let us remark here that we do not claim that the set of geodesics in Q which
are tangent to Y at one of the endpoints has measure zero. We suspect this is true
but this is not needed for the applications.

As a first consequence of Proposition 3.2 and Corollary 3.9 we obtain the follow-
ing corollary.

Corollary 3.10. Let x1 ∈ X1\Y . Then, for HnZ-a.e. point x0 ∈ X0 the geodesic
that connects x0 and x1 intersects with Y only finitely many times and in any
intersection point ΦZ |Y is differentiable.

4. Semiconcave functions on glued spaces

Lemma 4.1. Let (X, d) be an n-dimensional Alexandrov space and let Φ : X → R
be a double semi-concave function.

Then Φ is semi-concave in the usual sense and for any p ∈ ∂X it holds that
dΦ(v) ≤ 0 for any normal vector v ∈ Σp.
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Proof. A function Φ : X → R is semi-concave if Φ ◦ P is semi-concave on the
double space X̂ that is an Alexandrov space without boundary. In particular, for
any geodesic γ in X̂ such that Im(γ) ⊂ X the composition Φ ◦ γ is semi-concave.

Moreover, let p ∈ X be a boundary point such that there exists v ∈ ΣpX

normal to the boundary. Considering p in X̂ we know that ΣpX̂ = Σ̂pX. Hence

v,−v ∈ ΣpX̂ and ∠(v,−v) = π. Therefore, v and −v generate a geodesic line in

TpX̂ = C(ΣpX̂). Since Φ is double semi-concave, its differential dΦp : TpX̂ → R is
concave, and by Lemma 2.19 it follows that dΦ(−v) ≥ dΦ(v). On the other hand
we have dΦ(−v) = −dΦ(v). This implies the claim. �

We continue to work with the setup from the previous section. Let Φi : Xi →
R, i = 0, 1, be semi-concave such that they agree on the boundaries ∂X0 and
∂X1 respectively identified via an isometry I. Let Z be the glued space and let
ΦZ : Z → R be the naturally constructed glueing of Φ0,Φ1.

Lemma 4.2. Let γ : [0, L(γ)] → Z be a constant speed geodesic with γ(0) ∈
X0\∂X0 and γ(L(γ)) ∈ X1\∂X1. Suppose γ intersects Y in a single point p = γ(t0).
Suppose further that the following conditions hold:

(i) p is a regular point in Z;

(ii) dΦ0|p(v0) + dΦ1|p(v1) ≤ 0 ∀ normal vectors vi ∈ ΣpXi, i = 0, 1;

(iii) The restriction Φ|Y is differentiable at p.

Then ΦZ ◦ γ : [0, L(γ)]→ R is semi-concave. In particular

−dΦ0(γ̇−) =
d−

dt
Φ0 ◦ γ(t0) ≥ d+

dt
Φ1 ◦ γ(t0) = dΦ1(γ̇+).(11)

where t ∈ [0, L(γ)] 7→ γ−(t) = γ(L(γ)− t) and γ+ = γ.

Proof. By Lemma 2.19 we only need to check (11). In the following we write γ+/−

instead of γ̇+/−. By assumption we have that γ([0, t0]) ⊂ X0 and γ([t0, L(γ)]) ⊂ X1.
By assumption γ(t0) =: p is a regular point in Z, that is TpZ = Rn and ΣpZ = Sn−1.
Moreover ΣpZ is the glued of ΣpX0 and ΣpX1 along their isometric boundary and

∂ΣpX0 = Sn−1+ and ∂ΣpX1 = Sn−1− (see the remarks at the end of Subsection 2.3).
In this case the north pole N and the south pole S are the unique normal vectors
in ΣpX0 and ΣpX1, respectively.

If γ−(t0) = N ∈ ΣpX0, then by symmetry γ+(t0) = S and by assumption it
follows

−dΦ0(γ−) ≥ 0 ≥ dΦ1(γ+).

If γ−(t0) 6= N , then it also follows γ+(t0) 6= S. There exists a geodesic loop in
ΣpZ that contains γ−(t0) and γ+(t0), and intersects with ∂ΣpX0 = ΣpY = Sn−2
twice in w− and w+ such that ∠(w−, w+) = π.

Since ∠(w+, w−) = π, there exists a geodesic line in TpX of the form s ∈ R 7→
(−sw−) ? (sw+) passing through 0 where ? denotes the concatenation of curves.
Since we assume ΦZ |Y is differentiable in p, dΦZ : TpXi → R is linear and therefore
dΦZ(w−) + dΦZ(w+) = 0.

Let σ0, (σ1)−1 : [0, π] → ΣpX0,ΣpX1 be the geodesics in ΣpX0 and ΣpX1

respectively connecting w− and w+ such that their concatenation is the geodesic
loop S in Σp through w+, w−, γ+ and γ−.
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Since dΦi : TpXi → R is concave, TpXi is the metric cone over ΣpXi and
dΦi(rv) = rdΦi(v), it follows that dΦi ◦ σi = ui : [0, π]→ R satisfies

(ui)′′ + ui ≤ 0, i = 0, 1.

Moreover v(s) = dΦ0 ◦ σ0(s) + dΦ1 ◦ σ1(s) satisfies

v′′ + v ≤ 0, v(0) = v(π) = dΦ0(w−) + dΦ1(w+) = 0.

Let r, s be the polar coordinates on R2
+ = {(x, y) : y ≥ 0} with x = r cos s, y =

r sin s. Then the function f(x, y) = rv(s) is concave. Since f(−1, 0) = f(1, 0) = 0
and f(0, 1) ≤ 0 concavity of f implies that f ≤ 0. Therefore v ≤ 0 and hence
dΦ0(γ−) + dΦ1(γ+) ≤ 0.

�

Theorem 4.3. Let Φi : Xi → R, i = 0, 1, be semi-concave such that for any
p ∈ ∂Xi it holds that

dΦ0|p(v0) + dΦ1|p(v1) ≤ 0 ∀ normal vectors vi ∈ ΣpXi, i = 0, 1.

Then ΦZ : Z → R is semiconcave.

Proof. It is obvious that we only need to check semi-concavity of ΦZ near Y . By
changing Z to a small convex neighborhood of a point p ∈ Y we can assume that
Φi are λ-concave on Xi for some real λ.

Let γ : [0, L] → Z be a unit speed geodesic. We wish to prove that ΦZ(γ(t)) is
λ-concave. Fix an arbitrary 0 < δ < L/10 and let x0 = x1 = γ(δ), x1 = γ(L − δ).
Let yi → x0, zi → x1 be such that yi, zi /∈ Y for any i. Let γi be a shortest unit
speed geodesic from yi to zi. By Corollary 3.10 we can adjust zi slightly so that that
each γi intersects Y at most finitely many times, all intersection points are regular
and ΦZ |Y is differentiable at those intersection points. Therefore by Lemma 4.2
we have that ΦZ |γi is λ-concave for every i. By passing to a subsequence we can
assume that γi converge to a shortest geodesic from x0 to x1 and since Alexandrov
spaces are nonbranching this geodesic must be equal to γ|[δ,L−δ]. Therefore by
continuity of ΦZ we get that ΦZ is λ-concave on γ|[δ,L−δ]. Since this holds for
arbitrary 0 < δ < L/10 we conclude that ΦZ is λ-concave on all on γ. �

Corollary 4.4. A function Φ : X → R is double semi-concave if and only if it
is semi-concave in the usual sense and for any p ∈ ∂X it holds that dΦ(v) ≤
0 for any normal vector v ∈ Σp.

Let mi = ΦiHnXi be measures on X0 and X1, respectively, for semi-concave
function Φ0 and Φ1, and assume Φ0|∂X0≡∂X1

= Φ1|∂X0≡∂X1
.

Then, the metric measure glued space between the weighted Alexandrov spaces
(Xi, dXi ,mi), i = 0, 1, is given by

(X0 ∪I X1,mZ) where mZ = (ι0)# m0 +(ι1)# m1 .

The maps ιi : Xi → Z, i = 0, 1, are the canonical inclusion maps. Note that
X0∪IX1 is an n-dimensional Alexandrov space by Petrunin’s glued space theorem.
By Remark 2.12 it follows that(

HnX0∪IX1

)
|Xi = HnXi , i = 0, 1

we can write mZ = ΦZHnX0∪IX1
.
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5. Proof of Theorem 1.1

In this section we present the proof of the glued space theorem (Theorem 1.1).
Proof of Theorem 1.1

1. Let Xi, i = 0, 1, be Alexandrov spaces with curvature bounded from below
by k0 and k1, respectively.

By Theorem 2.13 it follows that X0 ∪φ X1 =: Z has curvature bounded from
below by min{k0, k1} =: k.

By Theorem 2.9 the metric measure space (Z, dZ ,HnZ) satisfies the condition
CD(k(n− 1), n).

Hence, any 1-Lipschitz function u : (Z, dZ)→ R induces a disintegration {mγ}γ∈Q
that is strongly consistent with Rbu, and for q-a.e. γ ∈ Q the metric measure space
(Xγ ,mγ) satisfies the condition CD(k(n − 1), n) and hence CD(k(n − 1), N) by
monotinicity in N . It follows that mγ = hγH1|Xγ and hγ : [aγ , bγ ]→ R satisfies

d2

dr2
h

1
N−1
γ + kh

1
N−1
γ ≤ 0 on (aγ , bγ) for q-a.e.γ ∈ Q.

By Lemma 2.19 it follows

d−

dr
h

1
N−1
γ ≥ d+

dr
h

1
N−1
γ everywhere on (aγ , bγ).

2. Fix 0 < t < 1. Define the set Ct as in Section 3.2.
Recall that regular points have full measure in Z. Hence, there exists Q̂ ⊂ Q

with full q-measure such that γ(r) is a regular point for any r ∈ [0, L(γ)] and for

every γ ∈ Q̂. Let Qt = Q̂\Ct. By Lemma 3.3 and Lemma 3.6 we know that any
γ ∈ Qt it holds that γ|(taγ ,tbγ) intersects Y in finitely many points. Further by
Lemma 3.8 we know that Qt has full measure in Q.

Let p ∈ X0\∂X0 be arbitrary. By construction of the glued metric we can
pick ε > 0 that is sufficiently small such that dZ |Bε(p)×Bε(p) = dX0

|Bε(p)×Bε(p).
Moreover, since (X0, dX0) is an Alexandrov space there exists an open domain
Up ⊂ Bε that is geodesically convex. There is a countable set of points {pi : i ∈ N}
such that

⋃
i∈N Upi = X0\Y . We pick i ∈ N and consider the corresponding Upi .

In the following we drop the subscript pi and work with U = Upi . Convexity

of U implies that (U, dX0
|U×U ,mX0

|U ) satisfies the condition CD(K,N), u|U is

1-Lischitz and the set Tu ∩ U = T̃u is the transport set of u restricted to U .
We obtain a decomposition of U via Xγ ∩ U = X̃γ . The subset Q(U) = Q̃ ⊂ Q

of geodesics in Q that intersect with U is measurable. We can pushforward the
measure m |U w.r.t. the quotient map Q : U → Q̃ and we obtain a measure q̃ on

Q̃. By the 1D-localisation procedure applied to the metric measure space U , there
exists a disintegration (m̃γ̃)γ∈Q̃ where the geodesic γ̃ is defined as intersection of

Xγ with U . We also set Im(γ̃) =: Xγ̃ . Moreover, for q̃-a.e. γ̃ the metric measure

space (Xγ̃ , m̃γ̃) is CD(K,N). That is, there exists a density h̃γ̃ of m̃γ̃ w.r.t. H1

such that

d2

dr2
h̃

1
N−1

γ̃ +
K

N − 1
h̃

1
N−1

γ̃ ≤ 0 on (aγ̃ , bγ̃) ⊂ (aγ , bγ) for q̃-a.e. .(12)

More precisely, there exists a set N ⊂ Q̃ with q̃(N) = 0 such that (12) holds for

every γ̃ ∈ Q̃\N .
3. We show that q̃ is absolutely continuous w.r.t. q on Q.
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Recall q̃ = (Q)# m |U . Let A ⊂ Q be a set such that q(A) = 0. Hence 0 =
m(Q−1(A)) ≥ m(Q−1(A) ∩ U). Hence q̃(A) = 0.

Therefore, there exists a measurable function G : Q → [0,∞) such that q = Gq̃
and

∫
Q\Q−1(U)

Gdq̃ = 0. In particular, it follows that q(N ) = 0.

A unique and strongly consistent disintegration of mZ |T bu = ΦHnZ |T bu is given by∫
Q

Φ mγ dq

where Φ mγ = (γ)#[Φ◦γhγH1]. Then, it follows by uniqueness of the disintegration

and since q = Gq that G(γ)h̃γ̃ = (Φ ◦ γ)hγ on (aγ̃ , bγ̃) for q̃-a.e. γ̃.
4. We repeat the steps 2. and 3. for any Upi , i ∈ N. We can find a set N ⊂ Q

with q(N ) = 0 such that q̃pi(N ) = 0 for every i ∈ N and such that (12) holds for
any γ ∈ Q−1(Upi)\N for any i ∈ N.

We repeat all the previous steps again for X1 instead of X0 and find a corre-
ponding set N ⊂ Q of q-measure 0.

We get that for every γ ∈ Q\N the inequality (12) holds for hγ for any interval
I ⊂ (aγ , bγ) as long γ|I is fully contained in Upi for some i ∈ N.

From Lemma 2.19 and Lemma 4.2 it follows that inequality (12) holds for Φ◦γhγ
on (taγ , tbγ) for any γ ∈ Qt\N . Since this holds for arbitrary 0 < t < 1, we get that
for q-almost all γ in Q it holds that ([aγ , bγ ],mγ) satisfies CD(K,N). Since this
holds for an arbitrary 1-Lipschitz function u we obtain that Z satisfies CD1

lip(K,N).

If mZ is a finite measure Theorem 2.27 yields the condition CD(K,N) for
(Z, dZ ,mZ).

If mZ is a σ-finite measure we argue as follows. For U that is a geodesically
convex and closed neighborhood with finite measure of some point x ∈ Z, it holds
that the metric measure space (U, dZ |U×U ,mZ |U ) satisfies CD1

lip(K,N). Hence,

by Theorem 2.27 it satisfies CD(K,N) and also CD∗(K,N). Finally by the glob-
alisation theorem of CD∗ [BS10] the space (Z, dZ ,mZ) satisfies CD∗(K,N). �

Example 5.1. Here we give another simple example that shows why Theorem 1.1
fails for the measure contraction property MCP .

We consider a metric space Z that is the cylinder [0, 34ε]× SN−1δ for 0 < δ � ε
8

with one end closed by a disk. This space has nonnegative Alexandrov curvature
and equipped with the N -dimensional Hausdorff measure is CD(0, N) by Petrunin’s
theorem. It has diameter less than ε > 0.

In [Stu06] (Remark 5.6) it was observed that there exists a constant cN+1 ∈ (0, 1]
such that ∀θ > 0 with Nθ2 ≤ cN+1 it holds

tN ≥ τ (t)N,N+1(θ)N+1 ∀t ∈ (0, 1).(13)

Hence, provided Nε2 ≤ cN+1, Y will satisfy the MCP (N,N + 1).
We show that if we pick ε sufficiently large, the double space does not sat-

ify this property. The function θ 7→ τ
(t)
N,N+1(θ)N+1 is monotone increasing and

τ
(t)
N,N+1(θ)N+1 →∞ for all t ∈ (0, 1) if θ ↑ π. Therefore, the set

Θ = {θ > 0 : tN ≥ τ (t)N,N+1(θ)N+1 ∀t ∈ (0, 1)}

is nonempty and bounded by π and for θ ∈ Θ and θ′ ≤ θ it holds θ′ ∈ Θ. We pick
Θ 3 ε ≥ 8

9 sup Θ in the construction above. Then, by definition of Θ the space Y

will satisfy MCP (N,N + 1). The double space of Y is the cylinder [0, 32ε]× SN−1δ
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with both ends closed by a disk. Since 3
2ε ≥

4
3 sup Θ, it follows tN < τ

(t)
N,N+1( 5

4ε)
N+1

for some t ∈ (0, 1).

On the other hand, since [0, 32 ]× SN−1δ is flat, one can find an optimal transport

µt such that µ1 = δx1
, µ0 = HN (A)HN |A, d(x1, A) ≥ 5

4ε and µt = tNHN (A)HN |A.

If the MCP (N,N + 1) holds, then µt ≥ τ (t)N,N+1( 5
4ε)

N+1HN (A)HN |A.

Together with the previous inequality we see that the MCP (N,N + 1) cannot
be satisfied.
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