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Abstract

We obtain new topological information about the local structure of collapsing under
a lower sectional curvature bound. As an application we prove a new sphere theorem
and obtain a partial result towards the conjecture that not every Alexandrov space can
be obtained as a limit of a sequence of Riemannian manifolds with sectional curvature
bounded from below.

1 Introduction

The study of Alexandrov spaces with curvature bounded from below has been largely mo-
tivated by the fact that they naturally appear as the boundary points of the class of Rie-
mannian manifolds with sectional curvature bounded from below.

If X is a limit of a sequence of Riemannian manifolds Mn
i satisfying sec ≥ k , then it is

not hard to see [BGP92] that the Hausdorff dimension of X can not be greater than n .

If it is equal to n we say that the sequence Mn
i converges without collapse and if it is less

than n we say that this sequence collapses.

The first case is understood fairly well at least topologically due to the stability theorem by
Perelman [Per91], which says that for sufficiently large indices, Hausdorff approximations
Mi → X are close to homeomorphisms if X is compact.

Unlike the situation in the noncollapsing case, relatively little is known about the structure
of the limit and its relationship to the elements of the sequence when collapse does occur.
The main structural result here is Yamaguchi’s Fibration Theorem [Yam91] which asserts
that if the limit is a Riemannian manifold, then the Hausdorff approximations into the
limit from the elements of the sequence can be chosen to be smooth fibrations. However,
not much is known about the structure of collapse when the limit space is singular. The
Fibration theorem holds over the set of regular limit points [BGP92] and more generally,
Perelman showed [Per97] that it holds in a weak homotopy sense if the limit space has no
extremal subsets (i.e. the singularities in the limit are relatively mild). Also, the topological
structure of collapsing is completely understood if n ≤ 3 [SY00] and n = 4[Yam00].
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In the present paper we obtain at least some partial understanding of the local topology of
collapsing when the limit is an arbitrary Alexandrov space. We prove:

Theorem 1.1. Let k ∈ R and suppose Mn
m is a sequence of Riemannian manifolds with

sec ≥ k , Gromov-Hausdorff converging to an Alexandrov space X .

Then for any x0 ∈ X , there exists an r0 = r0(x0) > 0 such that for any sequence of points
xm ∈ Mm converging to x0 , for any sufficiently large m, the closed ball B̄(xm, r0) is a
manifold with boundary simply homotopy equivalent to a finite CW complex of dimension
≤ n− dim X .

Let M̄n
k be the closure in the pointed Gromov-Hausdorff topology of the class of n-

dimensional Riemannian manifolds with sec ≥ k .

The following natural question remains unanswered:

Question 1.2. Is it true that for any finite-dimensional Alexandrov space X , there exist
k and n such that X ∈ M̄n

k ?

The collapsing phenomenon occurs naturally when one considers a pointed sequence formed
by rescaling of a nonnegatively curved open manifold by positive constants approaching 0.
The limit in this case is a Euclidean cone over the ideal boundary of M , which we will
denote by M(∞).

From this description it is easy to conclude that M(∞) is an Alexandrov space with cur-
vature bounded below by 1 [BGP92]. It was shown in [GK95] that if the ideal boundary is
a Riemannian manifold, then its topology is severely restricted:

Theorem 1.3. [GK95] Let Mn be a complete open manifold with sec(M) ≥ 0. If M(∞)
is an m-dimensional Riemannian manifold, then it has a finite covering N → M(∞)
satisfying one of the following conditions:

(i) N is homotopy equivalent to Sm , or

(ii) N is homotopy equivalent to CPm/2 , or

(iii) N has rational cohomology ring of HPm/4

Prior to that it was shown in [PWZ95] that if the spherical suspension over a Riemannian
manifold N belongs to M̄n

1/4 , then N must satisfy one of the conditions (i)− (iii) above.

Based on this and Theorem 1.3, it was conjectured in [GK95] that the answer to Question 1.2
is negative and, more specifically, that if M is a positively curved manifold that does not
satisfy the conclusion of Theorem 1.3, then the spherical suspension SM does not belong
to M̄n

k for any k, n .

We use Theorem 1.1 to obtain a partial result towards verifying this conjecture.

Given an Alexandrov space X , we will say that the minimal collapsing codimension of X
is equal to s if s is the smallest integer such that X ∈ M̄dim X+s

k for some k ∈ R . If no
such s exists we will say that the minimal collapsing codimension of X is equal to ∞ .
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Example 1.4. The minimal collapsing codimension of the spherical suspension over CPn

is equal to 1 if n > 1. Indeed, by Perelman’s stability theorem, it has to be positive. On the
other hand, as was observed by Yamaguchi [Yam91], by rescaling the fibers of the standard
S1 action on S(S2n+1) = S2n+2 , one can find a sequence of metrics with sec ≥ 0 on S2n+2

collapsing to SCPn .

It is well-known (cf. [Ber61]) that the 24-dimensional Caley flag Σ24 = F4/Spin(8) admits
a homogeneous metric of sec ≥ 1.

We prove

Theorem 1.5. Let X be an Alexandrov space such there exists a point x0 ∈ X such that
the space of directions to X at x0 is a Riemannian manifold.

(a) If Σx0X is diffeomorphic to Σ24 , then the minimal collapsing codimension of X is
≥ 15;

(b) If Σx0X is diffeomorphic to the Caley plane CaP 2 , then the minimal collapsing codi-
mension of X is ≥ 8;

(c) If Σx0X is diffeomorphic to HPn , then the minimal collapsing codimension of X is
≥ 3.

Remark 1.6. If we equip Σ24 with the Berger metric of sec ≥ 1 then the natural suspension
metric of curv ≥ 1 on X = SΣ satisfies assumption (a) of Theorem 1.5. Similarly, the
spherical suspensions SCaP 2, SHPn over the symmetric spaces CaP 2 and HPn of sec ≥ 1
satisfy the assumptions of (b) and (c) respectively.

Observe that unlike the Caley plane and the Caley flag F4/Spin(8), the quaternionic pro-
jective space does satisfy the conclusion of Theorem 1.3. Moreover, the same construction
as in Example 1.4 shows that there exists a sequence of metrics with sec ≥ 0 on S4n+4

Gromov-Hausdorff converging to SHPn .

Hence, the bound provided by Theorem 1.5 in this case is sharp and the minimal collapsing
codimension of SHPn is equal to 3. Furthermore, the following sphere theorem shows that
in some sense the above example of collapsing to SHPn is the only one possible if the
codimension of collapse is equal to 3:

Theorem 1.7. Let k ∈ R and n > 1 be an integer. There exists an ε = ε(k, n) > 0
such that if M4n+4 is a complete Riemannian manifold satisfying sec(M4n+4) ≥ k and
dG−H(M, SHPn) ≤ ε, then M4n+4 is homeomorphic to S4n+4 .

Let us briefly describe the strategy of the proofs.

To prove Theorem 1.1, we use a special kind of averaging procedure for distance functions
due to Perelman [Per93] (cf. [PP93], [Kap99]) to construct a strictly convex function
f near x0 ∈ X with a minimum at x0 and then lift it to the elements of the sequence.
Standard critical point theory for distance functions implies that the sublevel sets of the
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lifts are homeomorphic to closed balls B̄(xm, r0) if r0 = r0(x0) is sufficiently small and
dG−H(Mm, X) � r0 .

Our crucial observation is that the function f can be chosen in such a way that the lifts fm

are partially convex in the sense of Wu. We will give a careful definition of partial convexity
in Section 3, but informally speaking, we will show that the sum of any s + 1 eigenvalues
of the “hessian” of fm at any point is positive.

Using the approximation result of Wu [Wu87], we can assume that fm is smooth and hence
its hessian at any point has at most s nonpositive eigenvalues. By further approximating
fm by a Morse function, we conclude that the sublevel sets of fm are homeomorphic to
sublevel sets of a Morse function with indices of critical points at most s which immediately
yields the statement of Theorem 1.1.

To prove Theorem 1.5, we observe that, by a standard rescaling argument, we can assume
that X is isometric to the Euclidean cone over Σ with x0 equal to the vertex. Since X is
smooth away from x0 , we can use Yamaguchi’s fibration theorem to conclude that metric
spheres at xm fiber over Σ with closed manifolds as the fibers. Theorem 1.1 imposes certain
obvious restriction on the cohomology of the metric spheres centered at xm . We then use
a Serre spectral sequence argument to show that a total space of a bundle over Σx0X can
not satisfy these restrictions if the dimension of the fibers is too small.

For the proof of Theorem 1.7, we observe that by a standard critical point theory argument,
Mm is homeomorphic to a union of two metric balls of fixed radius satisfying the conclusion
of Theorem 1.1, glued along a homeomorphism of the boundaries. Arguing as in the proof
of Theorem 1.5, we see that the boundaries of these balls fiber over HPn . We then show
that in order to satisfy the homological restriction implied by Theorem 1.1, the metric
spheres in question must be homeomorphic to S4n+3 . Again using Theorem 1.1, we then
conclude that the corresponding metric balls are contractible. By Poincare conjecture, this
immediately implies that Mm is homeomorphic to a sphere.

Acknowledgements.
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2 Notations and conventions

Throughout this paper all homology and cohomology groups have Z coefficients unless
otherwise indicated.

For an Alexandrov space X we will denote by CX the Euclidean cone over X and by SX
the spherical suspension over X . We will denote the spherical join of X and Y by X ∗ Y .
For a point x in an Alexandrov space X we will denote the space of directions of X at
x by ΣxX . The reader is referred to [BGP92] or [BBI01] for the definition of a space of
directions and other basic notions of Alexandrov geometry.

Let p, q ∈ X be two points in a finite dimensional Alexandrov space X . We will use the
following notation:
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p(q)′ = {ξ ∈ ΣqX| there exists a shortest geodesic γ from q to p such that γ′(0) = ξ} .
Observe that p(q)′ is always closed. With this notation the first variation formula takes the
following form

d(·, p)′(ξ) = − cos ∠ξp(q)′

for any ξ ∈ ΣqX .

Let f be a Lipschitz function on a Riemannian manifold M . Let V be a C∞ vector field
on M and let U be any subset of M . We will say that V is gradient-like for f on U if the
directional derivative f ′(V ) exists everywhere in U and moreover there exists a constant
c > 0 such that f ′(V (x)) ≥ c for any x ∈ U .

3 Partially concave functions

The notion of partially convex functions was introduced by H. Wu in [Wu87]. In this paper
we will work with the dual notion of partially concave functions. For convenience of the
reader we will reproduce the relevant definitions.

Let f : M → R be a continuous function on a Riemannian manifold M . Let γ : (−a, a) →
M be a geodesic such that γ(0) = x ∈ M and γ′(0) = X ∈ TxM .

Define
Cf(x;X) = lim sup

r→0

1
r2
{f(γ(r)) + f(γ(−r))− 2f(γ(0))} (3.1)

We say that a set of s vectors {X1, . . . , Xs} in an inner product space V is ε-orthonormal
if |〈Xi, Xj〉 − δi,j | < ε for all i, j .

Let Mn be a Riemannian manifold and let s ≤ n be a positive integer.

Definition 3.1. We say that a function f : M → R belongs to the class T (s) if f is locally
Lipschitz and for each x0 ∈ M there exists a neighborhood W of x0 and constants ε, η > 0
such that

s∑
i=1

Cf(x, Xi) ≤ −η

for any x ∈ W and X1, . . . , Xs - an ε-orthonormal set in TxM .

Note that T (1) is equal to the set of all strictly concave functions on M and as it was
shown in [Wu87], T (n) is the set of all locally Lipschitz strictly superharmonic functions
on M .

Remark 3.2. It is immediate to check that a positive linear combination and the minimum
of a finite number of functions from T (s) again belongs to T (s).

We will make use of the following approximation result proved in [Wu87]:

Theorem 3.3. Let f ∈ T (s) where 1 ≤ s ≤ dim M and let ε : M → R be a positive
continuous function.

Then there exists a C∞ function F ∈ T (s) such that |F − f | < ε.
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4 Morse theory for partially convex functions

The proof of the following well-known lemma is an elementary exercise in basic algebraic
topology.

Lemma 4.1. Let Wn+1 be a compact oriented manifold which is a thickening of a s-
dimensional CW complex. Then

H i(∂W, A) = Hi(∂W, A) = 0

for any ring of coefficients A and any i satisfying s < i < n− s.

Sketch of the proof. Suppose A = Z . Since Wn+1 is homotopy equivalent to an s-dimensional
complex, H i(W ) = Hi(W ) = 0 for any i > s . By Poincare duality, this implies that
H i(W,∂W ) = Hi(W,∂W ) = 0 for i < n + 1− s . Now the claim of the lemma immediately
follows from the long exact homology and cohomology sequences of the pair (W,∂W ). The
case of general A follows from the case A = Z by the universal coefficients formula.

The fundamental theorem of Morse theory implies that if f ∈ T (s + 1) is a Morse function
on Mn with compact superlevel sets, then for any regular value c of f , the superlevel set
{f ≥ c} can be obtained from ∅ by attaching a finite number of handles of index at most
s (or equivalently, {f ≥ c} can be obtained from {f = c} by attaching a finite number of
handles of index at least n− s ).

The next lemma shows that it is also true for arbitrary functions from T (s + 1) once the
notion of a regular value is properly understood.

Lemma 4.2. Let h : Mn+1 → R be a function from T (s + 1) with compact superlevel
sets on an orientable manifold M . Let [c1, c2] ⊂ Im(h). Suppose that the following two
conditions are satisfied

(i) h has directional derivatives everywhere in h−1([c1, c2]) and moreover there exists an
L > 0 such that the derivative h′x is L-Lipschitz on TxM for any x ∈ h−1([c1, c2])

(ii) there exists a gradient-like smooth vector field X for h on h−1([c1, c2]).

Then there exists a Morse function ĥ uniformly close to h on h−1([c1,∞)) such that

1. any c ∈ [c1, c2] is a regular value of ĥ

2. ĥ ∈ T (s + 1) on {h ≥ c1}

3. {h ≥ c} is homeomorphic to {ĥ ≥ c} for any c ∈ [c1, c2].

Remark 4.3. Lemma 4.1 immediately implies that under the assumptions of Lemma 4.2,

H i({ĥ = c}, A) = Hi({ĥ = c}, A) = 0

for any ring of coefficients A and any i satisfying s < i < n− s .
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Proof of Lemma 4.2. The proof is essentially an application of the Smoothing Theorem
of Wu mentioned in Section 3. Unfortunately, the result we want follows from the proof
rather than the statement of that theorem. Therefore we will briefly outline the construction
involved in its proof.

Let κ : R → [0, 1] be a C∞ function with support in [−1, 1] such that κ = const near 0
and ∫

Rn

κ(|v|)dv = 1

Define hρ : M → R by the formula

hρ(x) =
1
ρn

∫
TxM

f(expxv)κ(ρv)dµv

where dµv stands for the Lebesgue measure on TxM .

Then according to the proof of [Wu87, Lemma 2], hρ is smooth and belongs to T (s + 1)
on h−1([c1,+∞)) if ρ is sufficiently small. Fix a c ∈ (c1, c2) We are going to show that if
ρ is sufficiently small then the superlevel sets of hρ and h are homeomorphic.

First of all let us show that c is a regular value of hρ .

According to [GS77, Proposition 2.1], the differential of hρ can be computed as follows:

Let u ∈ TxM .

Construct a vector field U on Bρ(x) as follows.

Let γ be the unique geodesic with γ′(0) = u and define for each y ∈ Bρ(x) a smooth curve
γy by the formula

γy(t) = expγ(t)(Pγ(t)(exp−1
γ(0)(y)))

Observe that U is well defined and smooth if ρ < injradM .

Then dhρ(u) is given by the following formula

dhρ(u) =
1
ρn

∫
TxM

h′exp(v)(U)κ(ρv)dµv (4.2)

Let u = X(x). By construction of U , we see that U is close to X on Bρ(x) if ρ is
sufficiently small, which by the Lipschitz condition (i) on h′ implies that dhρ(X(x)) is
uniformly close in h−1([c1,+∞)) to

1
ρn

∫
TxM

h′exp(v))(X(exp(v))κ(ρv)dµv

Now condition (ii) on h implies that X is a gradient-like vector field for hρ on h−1([c1, c2])
for all sufficiently small ρ .

Since X is gradient-like for both h and hρ , a standard argument using the flow of X
implies that {h ≥ c} and {hρ ≥ c} are homeomorphic for all sufficiently small ρ . Since
Morse functions are dense among C∞ functions in the C∞ topology, we can assume that
hρ is Morse which concludes the proof of Lemma 4.2.
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5 Concavity of distance functions on Alexandrov spaces

In [Per93] Perelman introduced the following definition

Definition 5.1. A function f : U → R defined on a domain U in an Alexandrov space X is
called λ-concave if for any unit speed shortest geodesic γ ⊂ U the function t 7→ f(γ(t))+λt2

is concave.

Observe that a Lipschitz function on X is λ-concave iff Cf(x; v) ≤ −λ for any x ∈ X, v ∈
ΣxX .

It is trivial to check that a positive linear combination or the infimum of a family of λ -
concave functions is λ-concave. Also, a pointwise limit of a sequence of λ -concave functions
is again λ-concave.

Toponogov triangle comparison implies that distance functions in a space of curvature ≥ k
are more concave than distance functions in the model space of constant curvature k and
therefore it is easy to see that the following property holds [Per93]:

Let p, q ∈ X be two points in an Alexandrov space X of curv ≥ k . Let d = d(p, q) and
ε < d/2. Then f(·) = d(·, q) is λ-concave in B(p, ε) where λ depends only on d and the
lower curvature bound k .

Remark 5.2. The class of examples of λ-concave functions given by the distance functions
can be enlarged using the following simple but important observation from [Per93]: If f is
λ-concave with λ < 0 and φ : R → R+ is a concave C2 function satisfying 0 ≤ φ′ ≤ 1
then φ(f) is again λ-concave. Indeed, it is clearly enough to consider f : R → R . If f is
C2 then λ-concavity of f is equivalent to the inequality f ′′ ≤ −λ . Computing the second
derivative of φ(f) we observe:

φ(f)′′ = φ′′(f)(f ′)2 + φ′(f)f ′′ ≤ φ′(f)f ′′ ≤ φ′(f)(−λ) ≤ −λ

The general case immediately follows from this one since any λ-concave function on R can
be approximated by C∞ λ-concave functions.

6 Local topology of collapsed spaces

In this section we prove Theorem 1.1 stated in the introduction. In fact we are going to
prove the following more general statement.

Theorem 6.1. Suppose Mn
m is a sequence of Riemannian manifolds with sec ≥ k , Gromov-

Hausdorff converging to an Alexandrov space X . Let x0 ∈ X . Then there exists an
r0 = r0(x0) > 0 such that for any sequence of points xm ∈ Mm converging to x0 , for
any sufficiently large m, the closed ball B̄(xm, r0) is homeomorphic to a smooth compact
manifold with boundary Wn

m which can be obtained from ∅ by attaching a finite number of
handles of index at most n− dim X .
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Proof. First of all we will reduce the situation to the case when X = Tx0X . Let εm =
dG−H(X, Mm). An easy rescaling argument [Kap99, Lemma 3.1] shows that

(
1

√
εm

Mm, xm) → (Tx0X, o)

Fix a sufficiently small R such that 1
RB(x0, R) is Hausdorff close to B(o, 1) in Tx0X .

A standard comparison argument (cf. Lemma 6.2 below) shows that for any fixed r , the
function d(·, xm) has no critical points in B̄(xm, R/2)\B(xm,

√
εmr) if m is sufficiently

large.

Suppose we can prove that there exists an r0 > 0 such that r0 -balls around xm in 1
εm

Mm

satisfy the conclusion of Theorem 6.1. Notice that B 1√
εm

Mm
(xm, r0) = BMm(xm,

√
εmr0)

which by above is homeomorphic to B(xm, R) and hence, the conclusion of Theorem 6.1
holds for B(xm, R) as well.

Let us therefore from now on assume that X = Tx0X and (Mm, xm) → (Tx0X, o) to begin
with.

Let µm = dG−H(X, Mm) and hm : X → Mm be a µm -Hausdorff approximation. Let
xm = hm(x0). Our goal is to prove that there exists an r > 0 such that B̄(xm, r) is a
thickening of a CW -complex of dimension ≤ s = n− dim X for any sufficiently large m .

The proof of the following lemma is an elementary exercise in Toponogov angle comparison.

Lemma 6.2. Let 0 < a < b be fixed constants. Then for any sufficiently large m there exists
a C∞ unit vector field Vm on the annulus B̄(xm, b)\B(xm, a) satisfying d(·, xm)′(Vm) ≥
1−O(µm).

To produce f and fm we use the same construction as in [Kap99, Theorem 1.3].

Let {qα}N
α=1 be a maximal π/16-separated net in Σ = Σx0X . A standard argument shows

that the balls B(qα, π/8) cover Σ.

Fix a small δ > 0. Throughout the rest of the proof we will denote by ci or c various
positive constants depending on n, Σ but not on δ .

For each α , choose a collection {qαβ}Nα
β=1 to be a maximal δ -separated net in B(qα, π/16)

where the ball is taken inside Σ. Let d = dim X .

A standard volume comparison argument shows that Nα satisfies

c1/δd−1 ≥ Nα ≥ c2/δd−1 (6.3)

for any α .

Let φδ : R → R be the continuous function uniquely determined by the following properties:

(1) φδ(0) = 0

(2) φ′δ(t) = 1 for t ≤ 1− δ3

(3) φ′δ(t) = 1/2 for t ≥ 1 + δ3

(4) φ′′δ (t) = −1/(4δ3) for 1− δ3 < t < 1 + δ3
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For every α define fα
δ by the following formula:

fα
δ (x) =

1
Nα

Nα∑
β=1

φδ(d(x, qαβ))

Put
fδ = min

α
fα

δ

Then according to Lemma 3.6 from [Per93], (cf. [PP93, Lemma 4.3]), the function fα
δ (and

hence fδ ) is strictly concave in B(o, δ3/2) for all sufficiently small δ .

Observe that fδ(o) = φδ(1) since d(o, qαβ) = 1 for any α and β . Moreover, we claim that
o is a point of a strict local maximum of fδ . Indeed, let x ∈ X be a point sufficiently close
to o . Without too much abuse of notations we can write x = tξ for some ξ ∈ Σ.

Since ∪αB(qα, π/8) = Σ, there exists α0 such that ∠ξqα0 ≤ π/8. Therefore, ∠ξqα0β ≤
3π/16 for any β and hence, by the Toponogov angle comparison, d(tξ, qα0β) ≤ 1 −
2 cos(3π/16)t for any β and any t ≤ c0 .

By monotonicity of φδ , this implies that there exist a universal η > 0 such that

fα0
δ (tξ) ≤ fδ(o)− tη

if t ≤ c0 . Since fδ(tξ) ≤ fα0
δ (tξ) we finally obtain that

fδ(tξ) ≤ fδ(o)− tη

for all ξ ∈ Σ and t ≤ c0 .

Since η is fixed we can from now on assume that δ � η .

By continuity of fδ , there exists ν = ν(δ) � δ3 such that

inf
x∈S(o,νδ3)

fδ(x) > sup
x∈S(o,δ3/4)

fδ(x) (6.4)

This implies that there exists a positive constant a , such that the level set {fδ = a} is
entirely contained in the open annulus {x ∈ X|νδ3 < d(x, o) < δ3/4} i.e

{fδ = a} ⊂ B(o, δ3/4)\B̄(o, νδ3) (6.5)

Let us lift fδ to the elements of the sequence (Mm, xm) in a natural way. That is, put
qα
m = hm(qα), qαβ

m = hm(qαβ) and put

fαm
δ (y) =

1
Nα

Nα∑
β=1

φδ(d(y, qαβ
m ))

fm
δ = min

α
fαm

δ
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Let us examine this function more carefully. First of all, notice that (6.5) implies that fm
δ

has compact superlevel sets and

{fm
δ = a} ⊂ B(xm, δ3/4)\B̄(xm, νδ3) (6.6)

for all sufficiently large m .

By the definition, fm
δ is Lipschitz and moreover the first variation formula implies that it

has directional derivatives everywhere in B(xm, 1/2).

By lemma 6.2, the distance function d(·, xm) has no critical points in the annulus
B̄(xm, δ3/4)\B(xm, νδ3) if m is sufficiently large. The following lemma shows that the
same remains true for fm

δ .

Let Vm be the almost radial smooth vector field on B̄(xm, δ3/4)\B(xm, νδ3) whose existence
is guaranteed by Lemma 6.2.

Lemma 6.3. For all sufficiently large m, (fm
δ )′(−Vm(y)) > c and (fm

δ )′(Vm(y)) < −c for
any y ∈ B̄(xm, δ3/4)\B(xm, νδ3).

Proof. We can assume that m is big enough so that µm � δ3 . Let ym ∈ B̄(xm, δ3/4). By
the chain rule we see that for any v ∈ ΣymMm and any α ,

(fαm
δ )′(v) =

1
N

Nα∑
β=1

φ′δ(d(y, qαβ
m ))d(y, qαβ

m )′(v) (6.7)

Since hm is a µm - Hausdorff approximation, there is y ∈ X such that d(ym, hm(y)) < µm .
As before we will write y as y = tξ . Let ξm = hm(ξ).

Let α0 be such that
fm

δ (ym) = fα0m
δ (ym) (6.8)

It is easy to check that qα0 must satisfy

∠ξqα0 ≤ π/4 (6.9)

and therefore
∠ξqα0β ≤ 5π/16 (6.10)

for any β .

Since µm � δ , we see that | ˜̂xmymqα0β
m − ˜̂oyqα0β| ≤ O(µm). On the other hand ˜̂oyqα0β =

∠oyqα0β = π−∠yoqα0β−∠oqα0βy ≥ π−5π/16+η−O(δ) = 9π/16−O(δ) by (6.10). Since
δ � η we can conclude that ˜̂oyqα ≥ 17π/32 and therefore ˜̂xmymqα0β

m ≥ 33π/64 if m is
sufficiently large. By the Toponogov angle comparison, this means that ∠vu ≥ 33π/64 for
any v ∈ xm(ym)′, u ∈ qα0β

m (ym)′

By the first variation formula together with (6.7), this implies that (fα0m
δ )′(v) > c for any

v ∈ xm(ym)′ and since this is true for any α0 satisfying (6.8), the same estimate holds for
(fm

δ )′(v).

By Lemma 6.2, v = −Vm(ym)+O(µm) which implies that (fm
δ )′(−Vm(y)) > c as promised.

A similar argument shows that (fm
δ )′(Vm) < −c which concludes the proof of Lemma 6.3.
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Recall that by (6.5),
{fδ = a} ⊂ B(o, δ3/4)\B̄(o, νδ3)

Therefore
{fm

δ = a} ⊂ B(xm, δ3/4)\B̄(xm, νδ3)

if m is sufficiently large. Since Vm is gradient-like for both fm
δ and d(·, xm), a standard

flow argument now implies that

{fm
δ ≥ a} is homeomorphic to B̄(xm, δ3/4) (6.11)

for all sufficiently large m .

Let s = n− d be the codimension of the collapse. The next lemma is the key ingredient in
the proof of Theorem 1.1.

Lemma 6.4. The function fm
δ belongs to T (s + 1) in B̄(xm, δ3/2) for any sufficiently

large m.

Proof. By Remark 3.2, it is enough to show that fαm
δ ∈ T (s+1) for any α and all sufficiently

large m . Let us fix any α ∈ {1, . . . , N} .

As was explained in section 5, the distance functions d(·, qαβ
m ) are −λ-concave in B̄(xm, δ3/2)

for some universal positive constant λ depending only on the lower curvature bound k .

Let y ∈ B̄(xm, δ3/2).

To prove that fαm
δ ∈ T (s), it is enough to show that for any µm -orthonormal frame

v1, . . . , vs ∈ TyMm , the following estimate holds

s+1∑
i=1

Cfαm
δ (x, vi) ≤ −λ (6.12)

Suppose that estimate (6.12) is false and that for some µm -orthonormal frame v1, . . . , vs+1 ∈
TyMm we have

s+1∑
i=1

Cfαm
δ (x, vi) > −λ (6.13)

By Remark 5.2, fαm
δ is −λ-concave in B̄(xm, δ/2) for any choice of δ . Therefore Cfm

δ (x, vi) ≤
λ for any i = 1, . . . , s . Combined with (6.13) this implies that Cfαm

δ (x, vi) ≥ −(s + 1)λ
for every i = 1, . . . , s + 1.

Applying Toponogov comparison to the triangle ∆yqαβ1q
m qαβ2

m we see that ^qαβ1
m (y)′qαβ2

m (y)′ ≥
cδ for any β1 6= β2 .

Let A = {1, . . . , Nα} . For each i = 1, . . . , s + 1, let A′i = {β ∈ A|| cos ^ξvi| ≤ cδ/4 for any
ξ ∈ qαβ

m (y)′} .

Let A′ = ∩s+1
i=1A′i .

Since v1, . . . , vs+1 are µm -orthonormal, this implies that there exists a (d− 2)-dimensional
totally geodesic sphere S ⊂ ΣyMm such that the set {qαβ

m (y)′|β ∈ A′} lies in the (cδ/4 +
µm)- neighborhood of S .
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For large m we can assume that (cδ/4 + µm) ≤ cδ/3 and since ^qαβ1
m (y)′qαβ2

m (y)′ ≥ cδ for
any β1 6= β2 , a standard volume comparison argument implies that |A′| ≤ c3/δd−2 .

Since N ≤ c/δd−1 by (6.3), this implies that

|A′|
N

≤ cδ (6.14)

We will give separate estimates for
∑s+1

i=1 Cφd(d(·, qαβ
m ))(x; vi) for β ∈ A′ and for β /∈ A′ .

Claim 1: If β ∈ A′ then
s+1∑
i=1

Cφδ(d(·, qαβ
m ))(y; vi) ≤ (s + 1)λ (6.15)

This follows directly from −λ-concavity of φd(d(·, qαβ
m )).

Claim 2: If β /∈ A′ then
s+1∑
i=1

Cφδ(d(·, qαβ
m ))(y; vi) ≤ − c

δ
(6.16)

The proof of Claim 2 is essentially the same as the proof of [Kap99, Lemma 4.2] and thus
we will skip some of the technical details.

Let us assume for simplicity that y is not a cut point for any of d(·, qαβ
m ) so that all the

functions involved are actually smooth near y .

Let v ∈ TyMm be a unit vector and γv(t) be a geodesic through y such that γ′v(0) = v .
Let fαβ

m (t) = d(γv(t), q
αβ
m ).

Then
Cφδ(d(·, qαβ

m ))(y; v) = φ′′d(f
αβ
m (0))((fαβ

m )′(0))2 + φ′δ(f
αβ
m (0))((fαβ

m )′′(0))

Observe that 1/2 ≤ φ′′δ ≤ 1, φ′′δ = −1/2δ3 by the construction of φδ . We also know that
(fαβ

m )′′ ≤ λ by the −λ-concavity of the distance functions and therefore

Cφδ(d(·, qαβ
m ))(y; v) ≤ c3 − 1/2δ3((fαβ

m )′(0))2 (6.17)

If β /∈ A′ then by the definition of A′ , there exists an i such that | cos ^qαβ
m (y)′vi| ≥ cδ/4

and therefore, by the first variation formula, |fα′
m (0)| ≥ cδ/4 which by (6.17) implies that

Cφδ(d(·, qαβ
m ))(y; vi) ≤ c3 − c4δ

3/δ2 ≤ −c5/δ (6.18)

Because of −λ-concavity of the distance functions, for j 6= i we still have that

Cφδ(d(·, qαβ
m ))(y; vj) ≤ λ (6.19)

and therefore

s+1∑
i=1

Cφd(d(·, qαβ
m ))(y; vi) ≤ sλ− c5/δ ≤ −c6/δ (6.20)
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which concludes the proof of Claim 2 under the extra assumption that y is not a cut
point for any of d(·, qαβ

m ). The proof of Claim 2 in general is a rather tedious and mostly
unilluminating exercise in using the discrete approximation for the formula

φ(h)′′ = φ′′(h)(h′)2 + φ′(h)h′′

and thus is left to the reader (Also see the proof of [Kap99, Lemma 4.2] where this compu-
tation is carried out in detail).

Using Claims 1, 2 and estimate (6.14) we obtain

s+1∑
i=1

Cfαm
δ (x, vi) ≤

|A′|
N

((s + 1)λ)− (1− |A′|
N

)
c6

δ
≤ c7δ − c8/δ ≤ −c9/δ (6.21)

Finally, since c9 is independent of δ , we can assume that δ was chosen to be sufficiently
small so that −c9/δ < −λ .

This concludes the proof of Lemma 6.4.

The first variation formula shows that fm
δ satisfies condition (i) of Lemma 4.2. By Lemma 6.4,

it also satisfies condition (ii) of Lemma 4.2. Therefore we can apply Lemma 4.2 to fm
δ and

conclude that {fm
δ ≥ a} satisfies conditions (1)-(3) of Theorem 6.1. Finally, since by (6.11),

{fm
δ ≥ a} is homeomorphic to B̄(xm, δ3/4) for all large m , we see that the same is true for

B̄(xm, δ3/4) as well.

This concludes the proof of Theorem 6.1.

Remark 6.5. Since the proof of Theorem 6.1 is local on X , the theorem remains true for
pointed Gromov-Hausdorff convergence.

Remark 6.6. When the limit space X in the settings of Theorem 6.1 is a Riemannian
manifold, then Yamaguchi’s fibration theorem implies that B̄(xm, r0) fibers over B̄(x0, r0)
with the fiber Fm being a closed topological manifold. When r0 is sufficiently small,
B̄(x0, r0) is contractible and hence, B̄(xm, r0) is homotopy equivalent to a closed manifold
of expected dimension n− dim X . In other words, if X is smooth then the CW complex
provided by Theorem 6.1 can be chosen to be a closed manifold.

The author suspects that this remains true for an arbitrary limit space except that the
dimension of that manifold can be strictly smaller than n− dim X .

Remark 6.7. Observe that for any fixed positive r < r0 provided by Theorem 6.1, functions
d(·, xm) have no critical points in the annuli B̄(xm, r0)\B(xm, r) and therefore the statement
of the theorem also holds for B̄(xm, r) once m is sufficiently large.

Corollary 6.8. Under the assumptions of Theorem 6.1, let Ŝ(xm, r0) be the orientation
cover of S(xm, r0). Then for all sufficiently large m, H i(Ŝ(xm, r0), A) = 0 for n−dim X <
i < dim X − 1 and any ring of coefficients A. Moreover, if dim X ≥ 3, then the same is
true for any finite oriented cover of S(xm, r0).
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Proof. Let ˆ̄B(xm, r0) be the orientation cover of B̄(xm, r0). Then ∂ ˆ̄B(xm, r0) = Ŝ(xm, r0).

By Theorem 6.1 B̄(xm, r0) (and hence ˆ̄B(xm, r0)) has the homotopy type of a CW complex
of dim ≤ n− dim X . Therefore, by Lemma 4.1, H i(Ŝ(xm, r0), A) = 0 for n− dim X < i <
dim X − 1 and any A .

Let us suppose that dim X ≥ 3. By Theorem 6.1, B̄(xm, r0) has the homotopy type of
S(xm, r0) with a finite number of cells of dimension ≥ dim X ≥ 3 attached to it. There-
fore, the inclusion S(xm, r0) ↪→ B̄(xm, r0) induces an isomorphism on π1 . Hence, for any
subgroup Γ ⊂ π1(S(xm, r0)), the corresponding cover SΓ(xm, r0) bounds the correspond-
ing cover B̄Γ(xm, r0). Since B̄Γ(xm, r0) still has the homotopy type of a CW complex of
dim ≤ n− dim X , Lemma 4.1 immediately yields the conclusion of the Corollary.

Remark 6.9. The same argument as in the proof of Corollary 6.8 shows that
H i(S(xm, r0), Z2) = 0 for n− dim X < i < dim X − 1.

7 Collapsing to spaces with isolated singularities

The purpose of this section is to prove Theorem 1.5 stated in the introduction. Our main
technical statement is the following

Theorem 7.1. Suppose Mn
m

G−H−→
m→∞

X where Mn
m is a sequence of n-dimensional Rie-

mannian manifolds with sec ≥ k for some n, k . Suppose there exists x0 ∈ X such that
Σ = Σx0X is a closed Riemannian manifold. Then there exists r0 = r0(x0) such that for
any Mm 3 xm → x0 we have:

For any sufficiently large m, there exists a topological fiber bundle Fm ↪→ S(xm, r0) → Σx0X
such that

(1) Fm and S(xm, r0) are closed topological manifolds ;

(2) Fm is connected;

(3) π1(F ) is virtually nilpotent;

(4) H i(Ŝ(xm, r0), A) = 0 for dim Fm < i < n− 1− dim Fm and any ring of coefficients A
where Ŝ(xm, r0) is the orientation cover of S(xm, r0) ; Moreover, if dim Σ ≥ 2 then
the same is true for any oriented finite cover of S(xm, r0).

Proof. Let (Mn
m, xm) be a sequence of manifolds with sectional curvatures bounded below

by k converging to (X, x0).

By the same rescaling argument as in the proof of Theorem 1.1, we can assume that

sec(Mm) ≥ −1, X = CΣ and (Mm, xm) G−H−→
m→∞

(CΣ, o) (7.22)

By Theorem 6.1, there exists an r0 > 0 such that for any sufficiently large m , the ball
B̄(xm, r0) is a thickening of an s-dimensional CW complex.
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Let Vm be the almost radial vector field on B̄(xm, 2r0)\B(xm, r0/2) constructed in Lemma 6.2.

Observe that X is a smooth Riemannian manifold of sec ≥ 0 away from the vertex o . There-
fore, by Yamaguchi’s fibration theorem, for any sufficiently large m there exists an almost
Riemannian submersion with connected fibers πm : Um → B(o, 4r0)\B̄(o, r0/4) where Um

is an open subset of Mm satisfying

B(xm, 2r0)\B(xm, r0/2) b Um b B(xm, 8r0)\B(xm, r0/8)

Let V be the gradient field of d(·, o) on X\{o} .

By [Yam91, Lemma 2.8] and Lemma 6.2,

|dπm(Vm(y))− V (πm(y))|
|V (πm(y))|

≤ O(µm)

for all y ∈ Um . Therefore Vm is almost perpendicular to the level sets π−1
m (S(o, r)) for

r0/2 ≤ r ≤ 2r0 . Hence, using the same flow argument as before we obtain that π−1
m (S(o, r0))

is homeomorphic to S(xm, r0). Thus S(xm, r0) fibers over S(o, r0) which is obviously
homeomorphic to Σ. Let πm : S(xm, r0) → Σ be the above fibration. To check conditions
(2) and (3) observe that by [FY92], the fiber F of πm is connected and has virtually
nilpotent fundamental group.

Condition (4) is an immediate consequence of Corollary 6.8.

This concludes the proof of Theorem 7.1.

Remark 7.2. The same argument as in the proof of Theorem 7.1 shows that
H i(S(xm, r0), Z2) = 0 for any i satisfying dim Fm < i < n− dim Fm − 1.

For a given positively curved manifold Σ, one can often check that the total space of a
bundle P → Σ can never satisfy conditions (1)-(4) of Theorem 7.1 if the dimension of the
fiber is too small.

When applied to Σ = F4/Spin(8), CaP 2 and HPn this yields the conclusion of Theo-
rem 1.5:

Proof of Theorem 1.5 (a). Suppose X ∈ M̄n
k and x0 ∈ X is such that Σx0X is diffeomor-

phic to Σ24 = F4/Spin(8).

Let s < 15 be a positive integer.

Claim: For any bundle F ↪→ P 24+s → Σ24 such that F is a closed topological manifold,
there exists an i ∈ {dimF + 1, . . . , 23} such that H i(P, Z2) 6= 0.

Without loss of generality we can assume that F is connected.

Let us look at the Z2 - Serre spectral sequence of the fibration F ↪→ P 24+s → Σ. It is
elementary to check that the nontrivial Z2 Betti numbers of Σ are as follows: b0 = b24 = 1,
b8 = b16 = 2.

If s < 7 then the spectral sequence collapses on the E2 term for degree reasons and
therefore, H8(N, Z2) 6= 0 .
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Now let s = 7. Since E0,7
7 = H7(F, Z2) ∼= Z2 , and E8,0

2
∼= Z2

2 we see that dimZ2 E8,0
∞ =

dimZ2 E8,0
8 ≥ 2− 1 = 1. Hence we once again conclude that H8(P, Z2) 6= 0.

Next look at the case 8 ≤ s ≤ 13. For degree reasons we have that dr = 0 for 1 < r < 7.
Consider d7|E0,s

7
: E0,s

7
∼= H0(Σ, Z2)⊗Hs(F, Z2) → E8,s−7

7
∼= H8(Σ, Z2)⊗Hs−7(F, Z2).

Since b8(Σ) = 2 and bs(F ) = 1, this map is either identically zero (if bs−7 = 0) or not onto
(if bs−7 > 0).

In the former case we conclude by the multiplicativity of the spectral sequence, that
dr|E8,s

r
= 0 for any r > 1. Hence E8,s

∞ ∼= Z2
2 and therefore Hs+8(P, Z2) 6= 0.

If d7|E0,s
7

: E0,s
7 → E8,s−7

7 is not onto then E8,s−7
8

∼= E8,s−7
7 /d7(E

0,s
7 ) 6= 0. For degree

reasons we have that E8,s−7
8

∼= E8,s−7
∞ and therefore, Hs+1(P, Z2) 6= 0.

Let us finally consider the case s = 14. Then as in the previous case d7|E0,s
7

: E0,s
7 → E8,s−7

7

is either zero or not onto. If it is zero then the same argument as before shows that
Hs+8(P, Z2) 6= 0.

If d7|E0,14
7

: E0,14
7 → E8,7

7 is not onto then E8,7
7

∼= H8(Σ, Z2) ⊗H7(F, Z2) 6= 0. Therefore,

b7(F ) 6= 0. By Poincare duality, the cupproduct on H7(F, Z2) is nondegenerate; therefore
b7(F ) is even and hence dimZ2(E

8,7
7 ) ≥ 4.

Since dimZ2(E
0,14
7 ) = 1 and dimZ2(E

16,0
7 ) = 2 we see that dimZ2(E

8,7
8 ) ≥ 4 − 2 − 1 = 1.

For degree reasons E8,7
8 = E8,7

∞ and therefore H15(P, Z2) 6= 0. Thus our claim is proved
and therefore, by Theorem 7.1, the collapsing codimension n− 25 must be least 15.

This concludes the proof of Theorem 1.5 (a).

Proof of Theorem 1.5(b). Suppose X ∈ M̄17+s
k .

By Theorem 7.1, there exists a bundle F ↪→ P → CaP 2 such that F and P are connected
oriented manifolds, π1(F ) is virtually nilpotent, dim F = s and H i(P̂ , A) = 0 for any A ,
s < i < dim P − s and any finite cover P̂ → P .

If s < 7 then the spectral sequence of this fibration collapses on the E2 term for degree
reasons and therefore, H8(P ) 6= 0. Thus s ≥ 7.

Now suppose s = 7.

Suppose π1(F ) 6= 0.

Since CaP 2 is 2-connected, the inclusion F → P is an isomorphism on π1 . Therefore,
after passing to a finite cover of P , we can assume that π1(F ) is nilpotent.

Hence, there exists an integer p > 1 such that H1(F, Zp) 6= 0. By Poincare duality, there
exist α ∈ H1(F, Zp), β ∈ H6(F, Zp) such that α∪β 6= 0. Let us look at the Zp cohomology
spectral sequence of F ↪→ P → CaP 2 . For degree reasons, dj = 0 for 1 < j < 7. By
multiplicutivity of the spectral sequence, d7(α ∪ β) = 0 and hence d7|E0,7

7
= 0. Therefore

H8(P, Zp) 6= 0.

Now suppose that π1(F ) = 0.

We consider two possibilities:
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Case 1. There exists an i satisfying 1 < i < 6 such that H i(P ) 6= 0. Choose the minimal
i satisfying this condition. Then there exists a p such that H i(P, Zp) 6= 0. The same
Poincare duality argument as above now implies that H8(P, Zp) 6= 0.

Case 2. H i(F ) = 0 for any 0 < i < 7. Since F is simply connected, by Poincare
conjecture, this implies that F is homeomorphic to S7 . Let us look at the Z-cohomology
spectral sequence of F ↪→ P → CaP 2 . If d7|E0,7

7
: E0,7

7
∼= Z → E8,0

7
∼= Z is not an

isomorphism then H8(P ) 6= 0. If d7|E0,7
7

: E0,7
7 → E8,0

7 is an isomorphism then H i(P ) = 0

for any 0 < i < 23. Therefore P is homeomorphic to S23 by the Poincare conjecture.

However, according to [Bro63], there is no bundle with the total space S23 and the fiber
homeomorphic to S7 . Thus this case is also impossible and the codimension of collapse s
can not be equal to 7. Therefore s ≥ 8 as claimed.

Proof of Theorem 1.5(c). It is easy to see that if F ↪→ P → HPn is a bundle with dim F ≤
2, then the Serre spectral sequence of this fibration collapses on the E2 term and therefore
H4(P ) 6= 0. By Theorem 7.1, this implies that the minimal collapsing codimension of X is
at least 3.

On the other hand, the same observation of Yamaguchi which we used to compute the
minimal collapsing codimension of SCPn , shows that there exists a sequence of metrics
with sec ≥ 0 on S(S4n+3) = S4n+4 converging to SHPn . Therefore, the minimal collapsing
codimension of SHPn is equal to 3.

Proof of Theorem 1.7. Suppose M4n+4
m

G−H−→
m→∞

X = SHPn where n ≥ 2.

Let x0 and y0 be the north and the south poles of X . Let rx0 , ry0 be the radii provided
by Theorem 6.1. Let Mm 3 xm → x0 , Mm 3 ym → y0 . Since d(·, x0) and d(·, y0) have
no critical points in X\(B(x0, rx0) ∪B(y0, ry0)), a standard critical point argument shows
that d(·, xm) and d(·, ym) have no critical points in Mm\(B(xm, rx0) ∪ B(ym, rx0)), and
moreover,

Mm\(B(xm, rx0) ∪B(ym, rx0)) is homeomorphic to S(xm, rx0)× [0, 1] (7.23)

By the same argument as in the proof of part (4) of Theorem 7.1, we see that inclusions
S(xm, rx0) ↪→ B̄(xm, rx0), S(ym, ry0) ↪→ B̄(ym, ry0) are isomorphisms on π1 and therefore
the inclusion S(xm, rx0) ↪→ Mm is also an isomorphism on π1 if m is sufficiently large.

We will first show that the universal cover of Mm is homeomorphic to a sphere.

By Theorem 7.1, S(xm, rx0) fibers over HPn with the fiber Fm being a closed 3-manifold
with virtually nilpotent fundamental group. Since HPn is 2-connected, the inclusion Fm ↪→
S(xm, rx0) is an isomorphism on π1 and by above, the same is true for Fm ↪→ Mm .

Let Γ ≤ π1 be a nilpotent subgroup of π1(Fm) of finite index such that the corresponding
cover FΓ of Fm is orientable.

Let MΓ
m, B̄Γ(xm, rx0), S

Γ(xm, rx0), B̄
Γ(ym, ry0) be the corresponding covers of Mm , B̄(xm, rx0),

S(xm, rx0) and B̄(ym, ry0) respectively.

By above,
MΓ

m is homeomorphic to B̄Γ(xm, rx0) ∪fΓ B̄Γ(ym, ry0) (7.24)
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where fΓ is the natural identification of SΓ(xm, rx0) and SΓ(ym, ry0) induced by (7.23).
Suppose that Γ 6= 1.
Since Γ is nilpotent, H1(F, Zp) 6= 0 for some p > 1 . By Poincare duality, there exist
a ∈ H1(F, Zp), b ∈ H2(F, Zp) such that a ∪ b 6= 0. By looking at the Zp cohomology
spectral sequence of FΓ

m → SΓ(xm, rx0) → HPn we see that it collapses on the E2 term and
thus H4(SΓ(xm, rx0), Zp) 6= 0. This is impossible by Theorem 7.1 and hence Γ = 1.
Therefore all the spaces MΓ

m, FΓ
mB̄Γ(xm, rx0), S

Γ(xm, rx0), B̄
Γ(ym, ry0) are simply connected.

In particular, FΓ
m is a homotopy 3-sphere.

By looking at the Z cohomology spectral sequence of FΓ
m → SΓ(xm, rx0) → HPn we see that

if the Euler class of this fibration is not a generator of H4(HPn), then H4(SΓ(xm, rx0)) 6= 0.
Since we know that this is impossible, the Euler class is a generator of H4(HPn) and
therefore, SΓ(xm, rx0) is an integral homology sphere. By above, SΓ(xm, rx0) is simply
connected and hence it is homeomorphic to S4n+3 by the Poincare conjecture.
This means that B̄Γ(xm, rx0) is contractible. Indeed, we already know that it is simply
connected and by Theorem 1.1, it has the homotopy type of a 3-dimensional complex.
Thus H i(B̄Γ(xm, rx0)) = Hi(B̄Γ(xm, rx0)) = 0 for any i > 3.
Look at the long exact cohomology sequence of the pair (B̄Γ(xm, rx0), S

Γ(xm, rx0)):

→ H i(B̄Γ(xm, rx0), S
Γ(xm, rx0)) → H i(B̄Γ(xm, rx0)) → H i(SΓ(xm, rx0)) →

When i = 2 or 3 we see that H i(SΓ(xm, rx0)) = H i(S4n+3) = 0. Also, by Poincare
duality, H i(B̄Γ(xm, rx0), S

Γ(xm, rx0)) = H4n+3−i(B̄Γ(xm, rx0)) = 0. By the long exact
sequence above, this immediately yields that H2(B̄Γ(xm, rx0) = H3(B̄Γ(xm, rx0) = 0. Thus
B̄Γ(xm, rx0) is simply connected and H i(B̄Γ(xm, rx0) = 0 for any i > 0. By Hurewitz
Theorem, this implies that B̄Γ(xm, rx0) is contractible. We also know that its boundary
is homeomorphic to a sphere . The same is true for B̄Γ(ym, ry0) which by (7.24) implies
that MΓ

m is a simply connected homology sphere. By Poincare conjecture, MΓ
m must be

homeomorphic to S4n+4 .
It is well-known [Bre72] that the only nontrivial group that can act freely on an even
dimensional sphere is Z2 . Thus π1(Mm) is either trivial or is isomorphic to Z2 . We claim
that the latter case is impossible. Indeed, if π1(Mm) ∼= Z2 , then π1(Fm) ∼= π1(Mm) is also
isomorphic to Z2 .
Looking at the Z2 cohomology spectral sequence of the bundle Fm → S(xm, rx0) → HPn ,
the same argument as before shows that H4(S(xm, rx0), Z2) 6= 0 which is impossible by
Theorem 7.1. Thus, π1(Mm) = 1 and hence, Mm = MΓ

m is homeomorphic to S4n+4 as
claimed.

Remark 7.3. It would be interesting to see whether the conclusion of Theorem 1.7 can
be improved to show that a manifold M4n+4 with n > 1, sec(M) ≥ k sufficiently close to
SHPn must be diffeomorphic to S4n+4 .
It would also be interesting to see if Theorem 1.7 remains true if the assumption sec(M) ≥ k
is replaced by the weaker one Ricc(M) ≥ (n − 1)k . The author believes that this is most
likely false.
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Remark 7.4. Same proof as in Theorem 1.7 shows that if M2n+2
m

G−H−→
m→∞

SCPn where

sec(Mm) ≥ k and n > 1 then M2n+2
m is homeomorphic to S2n+2 for all large m .

8 Concluding remarks

Using Theorem 7.1 one can obtain nontrivial bounds for the minimal collapsing codimen-
sions of spherical suspensions or cones over other positively curved manifolds such as Es-
chenburg and Bazaikin manifolds.

Unfortunately, due to the lack of examples of positively curved manifolds, Theorem 7.1
does not produce examples of Alexandrov spaces with arbitrary large minimal collapsing
codimensions. However, the author suspects that it might be possible to show that for
any positively curved Σ different from a sphere, the minimal collapsing codimension of
Σ ∗ Σ ∗ . . . ∗ Σ︸ ︷︷ ︸

l

grows at least linearly in l .

Using the same ideas as in the proof of Theorem 1.5, it might also be possible to show that
Theorem 1.5 remains true for X×M where M is any Riemannian manifold (i.e that if say,
X has a point x with ΣxX diffeomorphic to F4/Spin(8), then *X ×M /∈ M̄dim(X×M)+s

k

for any k ∈ R and s < 15 ).
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