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ABSTRACT. We will prove that some positively curved Alexandrov spaces do not
appear as ideal boundaries of complete manifolds of nonnegative curvature.

1. Introduction and basic results.

One of the most fruitful approaches to the study of open manifolds arises from
the understanding of their geometry at infinity. This is, for example, the underlying
idea in the proof of Mostow’s rigidity theorem, and in many of the results dealing
with Hadamard manifolds.

The structure of noncompact manifolds with complete Riemannian metrics of
nonnegative curvature became fairly well understood after the work of Cheeger,
Gromoll and Meyer in the seventies. The Soul theorem provides a good description
of the differentiable structure of such manifolds. Namely, there exists a compact
totally geodesic submanifold S, the soul, embeddded in M, whose normal bundle
is diffeomorphic to the ambient space M ([CG]; for the differentiability part check
[Gr] or [Po]).

However, it was only in the eighties that Gromov introduced an analogue of the
ideal boundary for this class of manifolds ([BGS]). His approach (which is explicitly
detailed in section 3 of this paper) consists in introducing a metric in the space of
rays, where we have identified previously those rays that have not grown apart fast
enough. In a series of exercises included in the same reference, he outlined some of
the main consequences that metric properties of M (oo) have in M and vice versa.

A further development was carried out by Kasue ([K]), who provided explicit
proofs of most of the statements made by Gromov, together with a natural extension
of the definition of ideal boundary to a bigger class of manifolds, namely those with
asymptotically nonnegative curvature. In this paper, though, we won’t deal with
this broader class and will remain within the nonnegative curvature bound. For this
case, Shioya provided a very readable introduction to the concept of ideal boundary
in his paper [Shi].

A new motivation for the study of this object, is its relation to collapsing prob-
lems under a lower curvature bound. Given a convergent sequence (under the
Gromov-Hausdorff topology) of manifolds of a fixed dimension n with sectional
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curvatures bounded below, we’ll say that this sequence collapses if its Gromov-
Hausdorff limit has Hausdorff dimension smaller than n. According to [GP], the
limit in this case is an Alexandrov space of curvature bounded below. Up till now,
no other restrictions on the limit are known. In particular, it is not known whether
or not any Alexandrov space can be obtained in this way.

The collapsing phenomenon occurs naturally when one considers a pointed se-
quence formed by rescaling of a nonnegatively curved open manifold by positive
constants approaching 0. As we’ll see later, the limit in this case is a euclidean
cone over M (o0), and because of the simplicity of elements of the sequence, this
setting appears to be a good starting point to understand collapsing to singular
spaces in general.

It is then natural to ask what kind of properties M (c0) must satisfy. From the
above characterization, it’s easy to conclude that M (c0) is an Aleksandrov space
with curvature bounded below by 1 ([BGP], or section 3). Up to now, no other
restrictions were known. The purpose of this paper will be to prove the following

Main Theorem. There are Aleksandrov spaces of positive curvature that never
appear as ideal boundaries of nonnegatively curved manifolds.

The essential tool in our proof of this result is

Main Lemma. Let M™ be an open complete Riemannian manifold of nonnegative
curvature. If the ideal boundary is a connected Riemannian manifold, then there
exists a locally trivial fibration f : S* — M (o0).

These results may be of some importance for the general problem of collapsing
under lower curvature bound in view of the following observation due to Perelman.
Suppose an Alexandrov space X 1s a Gromov-Hausdorff limit of a sequence of
Riemannian manifolds /" with sectional curvatures bounded below. Then for any
fixed z € X we can find appropriate sequence of scalars A; —— 0, such that

71— 00

1
(=M ) —— (CE X, %),

\/s. 1—00

where X, X denotes the space of directions at z, and CX,X is a euclidean cone
over Y5 X. Note that here the lower curvature bound for »Fis.: converges to 0.

Conjecture. Under the above assumptions ;X should satisfy the same kind of
restrictions as the ones stated in the Main Theorem for ideal boundaries of nonneg-
atively curved manifolds.

If true, this conjecture would imply that there are Alexandrov spaces that can
never appear as limits of manifolds satisfying a lower curvature bound.

The present paper is organized as follows: In section 2 we include some facts
about complete nonnegatively curved manifolds, as well as some elementary con-
sequences of them that will be required to start the proof of the Main Lemma.
Section 3 contains definitions and results about the ideal boundary, together with
some examples; the only new material in this part is another characterization of
M (00). Section 4 contains the proof of the Main Lemma, while section 5 includes
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the proof of the Main Theorem, as well as some splitting results when the ideal
boundary is a sphere.

The authors would like to thank Karsten Grove and Grisha Perelman for their
help during the elaboration of the present work.

2. On level subsets of the Cheeger—Gromoll exhaustion.

In this section we will collect some previously known results about complete
manifolds of nonnegative curvature. From now on, we will reserve M to denote a
nonnegatively curved complete open manifold, and S to denote its soul.

2.1 Totally convex sets.

Definition. A nonempty subset C' of M will be called totally convex if for any
two points p, ¢ € C' and any geodesic ¢ : [0,{] — M from p to ¢, we have ¢[0,]] C C

In their proof of the soul theorem, Cheeger and Gromoll constructed an exhaus-
tion of M by compact totally convex sets. These are sublevel sets of the function
obtained by taking the supremum of Busemann functions corresponding to rays
starting from a fixed point p in M.

To be more explicit, suppose v : [0,00) = M is a ray, (i.e. a geodesic satisfying
d(y(t),v(s)) = |t — s| for all ¢, s € [0,00)) and define

by(x) = lim {t —d(z, (1)} reM

t—=00

It was proved in [CG] that b, is a well defined function whose convexity is guaran-

teed by the nonnegativity of the curvature. Let’s fix now a point p € M lying in

the soul, and denote by R, the set of rays in M with initial point p.
Define b : M — R as

b(x) = sup by(z) re M
quNv

b is a well defined convex function in M, and if C; = {x|b(x) < ¢} then {C}}i>0
satisfy:

(1) Each Ct is a totally convex compact set

(2) Cy has empty interior

(3) dim C; = dim M Yt >0

(1) Ups Ci = M

(5) s < timplies Cs C Gy, and C = {x € Cy|d(x,6C) =t — s}

It was also proved in the same place that each Cs, s > 0, has the structure of an
imbedded n-dimensional submanifold of M with smooth totally geodesic interior
and (possibly nonsmooth) boundary.

2.2 The Sharafutdinov retraction. In a continuation of the work of Cheeger
and Gromoll, Sharafutdinov proved the following result:
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Theorem 2.2 [Sha).

(1) If C is a sublevel set of a conver function defined in M, then there exists a
strong deformation retraction from M to C' which is distance nonincreasing.
(2) There exists a distance nonincreasing strong deformation retraction from

M to S.

Remark. From now on, we’ll denote by sh : M — S a map satisfying the second
part of the theorem

The first part is an analogue of the Busemann-Feller theorem for convex sets
in the euclidean space. Its proof passes by constructing integral curves for the
generalized gradient of a convex (possibly nonsmooth) function. The second part
is proved using the above together with the Cheeger-Gromoll exhaustion. The
interested reader can find more details in [Sha] and [Yi].

2.3 Perelman’s rigidity results. In his proof of the Cheeger-Gromoll conjecture,
Perelman established the following fundamental fact:

Theorem 2.3 [P].

(1) Let M be a complete nonnegatively curved manifold with soul S. Let
a : [0,00] = S be a geodesic, and v € N,.S a normal vector to the soul. Let
U be the vector field along « obtained by parallel transport of u. Then

R(t,s) = expa(ssU (1) t€[0,a],s €[0,00)

is a flat rectangle totally geodesically immersed in M.
(2) sh(expptu)=rp Vi €10, 00)
(3) sh: M — S is a locally trivial fibration with G fibers
From (2), it follows that sh : M — S is unique. We’ll refer to it as the Shara-
futdinov map, or the Sharafutdinov projection.

2.4 Some consequences from the structure of C;.
Metrically. Let p € M, sh(p) € S its Sharafutdinov projection, and let 3 :
[0,]] = M a minimal geodesic joining sh(p) and p with 3'(0) = u. For any geodesic
a: (—o0,00) = S, consider the (infinite in one side) rectangle given by R(t, s).

By [P], we know that &(t) = R(t,!) is a geodesic in M, and since it stays at
bounded distance of S, it is entirely contained in a compact set. The convexity of
each b, and the definition of @ over all R, implies that

b (a(t)) = constant VieR

We get then the following
Lemma 2.4.1. In the above situation, if p € §C}, then a(R) C 6C}

Proof. Just use the definition of 6C; (Ct) as (sub)level set of b(z) = SUP~eR, by(2)
for ¢ = sh(p) O

Let 0 € M be any point on the soul and define

T(t) = sup d(o,y)
Qm%Q‘H
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F1GURE 1. Perelman rigidity theorem
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the circumradius of 6C; at the point o. Its inradius, infyescy, d(o0,y), is clearly
equal to ¢t by the construction of C;. Let b : M — IR be the exhaustion function
constructed in section 2. From lim,_, gmﬂaemv = 1, and the definition of §C} it
follows that

lim E =1

t—oo {
Lemma 2.4.2. Let # € §Cy, and let v € T, M be any unit tangent vector, exterior
to Cy. Let v : [o,]] = M be any shortest geodesic between x and o, such that
¥(0) = z,v(l) = o, where l = d(o,x). Then Zv¥(0) > 7/2 — k(t), where k(t) = 0
ast — oo.

Proof. Suppose Zv¥(0) = w/2 — . Since Cy is totally convex, we have that
exp,(sv) ¢ Cy for any s > 0. Let us put s = [ - sin(a). Then by the hinge
version of the Toponogov’s comparison theorem, we have d(y,0) < d(y,0). Here,
y = exp,(Isin(a)v) and z,y,0 are such points in R? that d(z,0) = d(z,0) =
L,d(z,y) = d(z,y) = | -sin(a) and Zyze = w/2 — «. Then we clearly have
Zzyo = /2, hence d(o,y) =1 - cos(a). So we get d(y,0) < d(6,y) =1 cos(a). But
on the other hand, y € C, therefore d(y, 0) > t, and we have t < d(y, 0) < !-cos(«).
Hence cos(a) > ¢/l > t/T(t) and a < gooOm% = k(t), with s(t) — 0 as
t—o0. O

Remark. From the proof of Lemma 2.4.2, we also get that diam(ol,) < k(t), where
o, ={& € 2, M¢ is a direction of a shortest geodesic between x and o}.

Topologically. It is now possible to determine the topological structure of §Cy.

Proposition 2.4.3. Let M"™ be a complete open manifold of nonnegative sectional
curvature. Let S be a soul of M with dimS = k. Then §C; N sh™1(s) with its
induced topology is homeomorphic to S"~*=1 for any s € S.

Proof. According to [Gr] we know that dg, the distance function to the soul, doesn’t
have any critical points outside S. Moreover if @ € M\S and v € T, M is a
gradient direction of ds then v is tangent to the fiber of the Sharafutdinov retraction
containing z. Indeed by the first variation argument we know that v 1s characterized
by the property

ZvSl, = mazyen, mLwS,

where 5. is the set of unit vectors tangent to minimal geodesics joining z to the
soul S. But by Perelman’s Theorem (2.3) we have that S, = (sh(z)), which lies

in the tangent space to the fiber sh=!(sh(x)). From this it clearly follows that v
is also tangent to this fiber. By the remark after Lemma 2.4.2 diam(S,) —— 0
r—r 00

hence Zv(x)S, —— .

r—0o0
Using a partition of unity we can construct a vectorfield W so that coincides

with the radial vector field for S close to S, ds(W(z)) > 0 for all z € M\S,
Zv(z)W(x) —— 0 and therefore di(W(z)) > 0 —— 1. By ds(W(x)) we

r—r 00 r—r 00
mean the one sided directional derivative of dg in the direction W (). Now denote

St = {x € M|ds(z) = t}. By astandard argument, for any ¢; < ¢ we can construct
a homeomorphism ¥y, ;, : S — S using our vector field W. Clearly for small
t we have that S? is smooth and for any s € S S* N sh™!(s) is homeomorphic to
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a standard S"~*~1. By the construction of ¥ we have that it moves points along
fibers of the Sharafutdinov retraction and hence for any t; < ¢35 we have

St mmLAmV Rehom S22 N mmLAmV

Since for small ¢ this is known to be a sphere we obtain that for all ¢ > 0 and
s € S, ST Nsh™1(s) is homeomorphic to a standard S?~*~!. On the other hand
by Lemma 2.4.2 we also have that for big ¢, Zv(2)EdC} is very close to 7/2 for all
z € §Cy. Thus b (v(2)) —— 1 where b is a Cheeger-Gromoll exhaustion function

r—r 00
and once again, b’ (W (x)) is a directional derivative. The construction of W implies

that b'(W(x)) —— 1. Let ¢ be sufficiently big so that T'(t)/t—1 and &' (W (z))—1

r—0o0
are small. Using the flow of W we can construct a homeomorphism of §C; onto

ST(®) | By the choice of W this homeomorphism moves points inside fibers of the
Sharafudinov map, so we get that for any s € S, C; N sh™!(s) is homeomorphic
to ST N sh™1(s) which we already showed to be topologically a sphere. Thus we
finally conclude that §C; N sh™!(s) is homeomorphic to S?~*~1 0.

Theorem 2.4.4. shlsc, : 6Cy — S is a locally trivial fibration whose fibers are
spheres.

Proof. Follow the former proof in order to construct an homeomeorphism of §C}
to the boundary of a tubular neigbourhood S” of S for small » that respects the
Sharafutdinov map (we can do this since the vectorfield W was tangent to the
Sharatfudinov fibers). Then use that from Perelman’s theorem, sh : 5™ — S is
clearly a locally trivial fibration whose fibers are as desired .

3. 0Old and new characterizations of the ideal boundary.

In this section, we will provide the necessary background regarding the ideal
boundary, as well as a new description of it (lemma 3.6), that will be needed for
the proof of the main theorem.

In what follows, fix a point o and denote by S; (o) the metric sphere of radius t
around o. Though it does not need to be smooth, Kasue proved that at least for
large t, S¢(o) is a Lipschitz hypersurface [K]. Tt is posible then to consider S;(o)
with the intrinsic metric that it inherits as a subset of M; in other words, if we
take a curve

a :[0,a] = St(o0)
define its length, L(«), as
k
L(a) = sup > du(ets), e(tisn))

O=to<t1 < <tr=a i=0

and define the intrinsic metric d; of S (o) as

di(z,y) = inf{L(a)|a joins z to y}
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for z,y € Si(o). If x,y belong to different connected components of S, define
de(x,y) = 0.
Consider now the set of all rays in M, Rjar, and let’s introduce an equivalence
relation « on it as follows:
Ao (.40 _

o« v if and only if lim ————2~ =
t— 00 t

Define a distance d.. in this set of equivalence classes as

(3.1) do(o,7) = lim dy(o N Si(0),y N Si(0))

t— oo t

Theorem 3.1 [K, 2.1]. The limit (3.1) exists and is independent of the base point
0

Definition. (R/ «,d) is called the ideal boundary of M. We will denote it by

Remark. do is usually called the Tits metric of M (o0)

Example 3.2. Let G be a closed subgroup of SO(n) and consider the induced
action of (¢ on R"*! by isometries. G acts diagonally in SO(n) x R"*1 by isometries
and the quotient M is an open riemannian manifold of nonnegative curvature. It
can be proved that M(co) = R"*1(00)/G = S"/G [K]. In this form, we get any
quotient of a sphere by an isometric action as an ideal boundary.

Instead of taking the set of all rays, Ras, we could have restricted ourselves to
rays with the same initial point p, R,. As before, identify rays o, so that

i 0100

and define

t—oco t

Then we have

Proposition 3.3 [K]. The inclusion (Rp/ «,deo) = (Rar/ =, deo) is an isometry
foranype M

A different type of construction is posible by passing to the category of pointed
metric spaces. Consider the pair formed by (M, o) and denote by (AM, o) the
pointed metric space obtained by rescaling the metric of M by a factor of A. This is
a sequence of nonnegatively curved spaces and therefore preconvergent by Gromov’s
precompactness theorem. However, we can get a stronger consequence in this case.

Lemma 3.4. (AM, o) S AN Cs(M(o0)) where by C5(Y) we denote the

G—Hausdorff
euclidean metric cone over Y with vertex o

Proof. This can be found in [Sh]; but because of posible difficulties in finding this
reference, we’ll include it here. We will use pairs (0(c0),a) to denote points in
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Cs(M(o0)). Fixr > 0, and let B, (0, A\M), B, (6, C5(M (0)) be metric balls of radius
r around o, o respectively. According to the definition of pointed Gromov-Hausdorff
convergence, we need to check that for any sequence A, — 0, Br(0,\,M) —
B, (6,C5(M(20))). Equivalently, it is enough to see that for any ¢ > 0, and for
n sufficiently big, there are e-nets X)X in B, (0,\a M), B, (6, C5(M(>0))) and
bilipschitz maps f, : X — X with dil(f,) tending to one.

So start by taking an ¢/100-net X in B, (0, C5(M (c0))) with points (o;(c0), a;).
Let X (™) be the set of points S.AS.\/:LV in By (0, A\p M).

For any two rays ¢ and v in M, and for any numbers a,b > 0, we have

dlo(at), y(bt) = /a2 + b2 — 2ab cos min{du, (o (c0), v(c0), 7}

(3.2) lim

t—oco t
This is proposition 2.2 from [Shi]. Note that the right side is the distance in
C5(M (o0)) between the points (o(00), @) and (y(o0), b) thus implying that by choos-
ing A1 big enough, we can approximate the relative distances of points in X ) by
those of corresponding points in X. This means that the natural map from X
to X has the right dilatation. It remains to see that every point of B, (o, An M)
is at distance no farther than e from X (). There exists a 7' > 0 so that for any
t > T and any z in S;(0), there is a ray o with E < ¢/2 [K]. Rescaling by
a small A,, we can make sure that the diameter of By 7(0, Ap M) is smaller than
¢/2. Choose a point (0;(00), a;) at distance less than €/10 of (¢(c0), Apt). Then

d(x, oi(aid;?) _ d(x,o(t) | d(o(t), oi(air;"))
At . At At
where the last inequality follows from 3.2 and Toponogov’s theorem. This concludes
the argument O.

+ <€

Corollary 3.5. M (o) is an Alexzandrov space of curvature bounded below by 1
Proof. This is just an immediate consequence of proposition 4.2.3 in [BGP] 0O.

A similar approach was taken by Kasue, who considered the sequence of metric
spaces (S¢(0),d¢/t). He found that for any large ¢, there are maps

Dt oo 1 S¢(0) = M(o0)
such that ®; o (v(t)) = [y] for v a ray, with

QWAH“ @v
[

(P (o), B (o))
doo (T oo, Yoo) = lim
t—r00 i

for z, y in S;, Teo, Yoo in M(00), and k(t) — 0 as t — co.!

The last two inequalities just imply

lim(Si (o) de/1) = M ()

which provides us with a fourth description of the ideal boundary.

The following lemma is on the crossroad of this and the previous section. It also
represents the initial motivation for the proof of the main theorem:

oo (@100 (2), Pt 00 (y)) < (14 £(1))

and also

!The above inequalities correspond to Proposition 2.2 from [K] after the corrections indicated

in [D]
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Lemma 3.6. Let (§C, d:) be the boundary of Cy with its intrinsic metric. Then:

(1) (Buyalo) (6Ct,d:) is an Alexandrov space of curvature bounded below by
zero

(2) Timy e (8Cy, dy /1) = (M (50), doo)

Proof. The proof of (1) can be found in [Bu]. We’ll provide only the proof of (2).

Given an arbitrary ¢ > 0, let X = {o;(c0)} be an ¢/100-net in M (o). Call XT(*)
the subset of points {o;(T'(t))} in Sp()(0), where T'(t) was defined in section 2.4.
X®) ig defined in an analogous manner. By Kasue’s results, we know that each of
these subsets is an ¢/10 net in the normalized intrinsic metric of the corresponding
metric spheres about o, which is almost Lipschitz equivalent to X. By the first part
of theorem (2.2), there’s a strong deformation retraction ¢ : M — C} that doesn’t
increase lenghts of curves. For any two points z;, z; in XTM) et @i [0,1) = Sty
be a curve realizing dp;)(x;, x;). Then

(3.3) dpy (@i, 25) = aij) > U o ai j) > dsc, (P(w:), d(x;))
since ¢ o «; ; 1s entirely contained in §C;. Conversely,
(3.4) dsc, (¢(wi), o(25)) > 2(T'(t) — 1) + dre) (i, 2;)

where by dr (), we mean the intrinsic distance for the annulus Az = Br) (o) —
B:(0). After rescaling by t, (3.4) will read as

dsc, (¢(24), d(z;))
t

dpy (24, x5)
t

(3.5) < + o(t)

since as t approaches oo, &HS%S\N and &HS\N converge to the same limit. Com-

bining (3.3) and (3.5) we can conclude that X7®) and ¢(X7®) are both e-nets
almost Lipschitz equivalent [O.

The proof of lemma 3.6 gives that ¢ can be used to construct a Hausdorff ap-
proximation from 6C; to Si(0) leaving invariant ray points. Composing with the
Kasue’s maps ®; o, we get then Hausdorff approximations from 6C; to M (o) send-
ing each () to y(c0) for v a ray. We'll denote these maps again by ®; .. It will
be clear from the context which one we are refering to.

4. Proof of the main lemma.

In this section, we will prove the following version of the Main Lemma, which is
somewhat more general than the one stated in the Introduction.

Lemma 4.1. Let M™ be a complete open manifold of nonnegative sectional cur-
vature. Suppose M (c0) is connected and (m,d(m))-strained at each point, where
m =dimM (c0) and §(m) is sufficiently small. Then there is a locally trivial fibra-
tion f : S* — M(co), where k = n—dimS — 1. Moreover, fibers of f are closed
manifolds.

We’ll follow the following conventions. Throughout the proof, we will denote

by x(t) and k(t,d) various constants such that k() —— 0 and «(¢,d) — 0 as
t—r00
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t = 00,6 = 0. Moreover, here £(t,d§) may depend on some additional parame-
ters, but we require that p(d) = limy_, o k(¢,6) depends only on ¢ (and possibly

dimension of M (o0)) and p(d) —— 0.
§—0
The proof is organized as follows. First we show that infinitesimally dC; looks

more and more like a Riemannian manifold as ¢ — co. It was pointed out in [BGP]
that provided the limit space is sufficiently regular, this condition implies that for
any big t there is a locally trivial fibration of §C; over the limit space . The next and
most crucial step is to check that the restriction of this fibration to the intersection
of §C} with any fiber of Sharafutdinov retraction, is still a fibration.

4.2 Recall that by Lemma 3.6, (§Ct, d:) is an Alexandrov space of curv > 0.
Let us first show that (6Cy, d¢) is (n — 1, £(¢))-strained at each point. Here we use
the following definition from [BGP]:

Definition. Let X be a space of curv > k. A point p € X is called (n,0)-strained
if there exists points (a;,b;) for i=1,... n, such that
Ja;pb; > m— 4, Tajpa; > w2 -4

Taipb; > w/2 -9, Tbipb; > /2 -4
for all i # j, where by G we mean the corresponding comparison angle.

Let o € M be any point on the soul. As it was mentioned in the proof of Lemma
2.4.2, infyesc, d(y,0) = t. and for T'(t) = supyesc, d(y,0) then T'(t)/t — 1 as
t — oo.

Now let H C T M be any supporting hyperplane for §C; at . By Lemma 2.4.2,
we clearly have |Z4(0)H — w/2| < k1(t). Note that also,

Yp0C = 6(2,C) CEpM ~ Am:|ﬁ can).

Take Sy to be the unit sphere in H. Then obviously, Sg ~ (S"~2, can), and again
using Lemma 2.4.2, we easily get that a metric projection from X.6C; to Sg is
a ka(t) -Hausdorff approximation. Thus dgg (3:0Ct, (S"~%,can)) — 0 as t — oo
uniformly in @ € §C;. This easily implies that 6C; is (n — 1, k(¢))-strained at each
point.

We will need the following trivial modification of the result of Yamaguchi, proved

in [Y2]:

Theorem 4.3. Let M —— M™ be a convergent sequence of Alexandrov spaces
t—r00

of curv > k, such that M is (m,§)-strained at each point. Then for any v-Hausdorff
approzimation h; : M; — M, there exists an f; : M; — M, such that f; is cv
uniformly close to h;, and that f; is an e(v,d)-almost Lipschitz submersion, with
e(v,0) =0 asv,d = 0.

Here we use the following definition from [Y2]:

Definition. A map of two Alexandrov spaces f : M — M’ is an c-almost Lipschitz
submersion if for any p,q € M

d(f(p), f(q9)

i sin(f)| < e,
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where
= inf Zgpux.
I@)=f(p)
In our situation, we have (6Cy,di/t) —— M(o0), where d; is the induced
t—r00

inner metric on §C;. Denote by d; = d;/t. By the assumption of the theorem,
M (o0) is (m, d)-strained at each point. As an original Hausdorff approximation

he : (6Cy,dy) — M(oco) we take an approximation, such that for any ray o
t—r00

starting at o, we have h:(co(t)) = [o]. For example, we can take h; to be the Kasue
map ®; ., mentioned in section 3. So the conditions of the Yamaguchi’s theorem
are satisfied, and thus there exists an f; : (6C;, d;) — M (c0), which is an e(v(t), §)-
almost Lipschitz submersion. Here v(t) = dgu(dC:/t, M(o0)). Let sy € S be any
point on the soul. Then we have next

Lemma 4.4. Under the above assumptions,
.\w_mQ“Dm@IHAmov : %Qw N MFIHAMDV — NSAOOV

15 a locally trivial fibration for all large t.

Proof of Lemma 4.4. By assumption, M (c0) is (m, §)-strained at each point, there-
fore there exist an R > 0, such that for any p € M (c0) there is an (m,d) -strainer
(a;,b;)i=1, m at p, with doc(p,bi) > R,des(p,a;) > Rfor i = 1,...,m. Let us
take ¢ big enough that v(¢) <« min(R,d) and that ¢ = £(v(t),d), given by the Ya-
maguchi’s theorem, is sufficientely small. Take any p € dC; N sh™!(sg), and put
p= f(p). Let (a;,b;)i=1,.m bean (m,d) -strainer at p, such that do; (p, b;) > R and
doo(p,a;) > R, for i = 1,...,m. Choose a; € f; ' (ai),b; € f7 1 (bi),i=1,...,m, to
be any points in the fibers.

4.4.1 Since v(t) < R, we have that (a;, NLN.H&:;S is an (m, 2d)-strainer at p. Let
k = dimS, and let vy, ... vy be some orthonormal basis in T5S. Then clearly, for
any sufficiently small r, collection (s; = exp,, (rv;),t; = exp,, (—=rv;))i=1,....m forms
a (k,d) -strainer at sg. Let us choose such an r that also r < §R. Take v : [0,{]] = M
to be any shortest geodesic between sq and p, such that y(0) = s and () = p, where
[ = d(so,p). Let v1,...,7; be the orthonormal basis in T5M, obtained as a result
of the parallel transport of the basis vy, ..., v; along y. Denote a;(7) = exp;(rv;)
and a;(7) = exp, (Tv;).

By Lemma 2.4.1, &;(7) is a geodesic lying in §C%, such that sh(a;(7)) = a;(7).
So clearly, (5; = a;(r),t; = @;(—r)) is a (k, §)-strainer at p.

Now we got two sets of strainers at p, namely : an (m, 2J)-strainer (a;, N\:vs.uﬁ.j
and a (k,d)-strainer (s;,%;);=1, k. Our next goal is to prove that together they
form one (m + k, (6, t))-strainer.

Indeed, it is enough to show that <a;ps; > m/2 — §’. All other inequalities
are treated similarly. Suppose <a;ps; = m/2 — 3. We will use the next Lemma

[BGP,L5.6]:

m

Lemma 4.4.2. Let p,q,r,s be points in a space of curv > k, such that
d(q,s) < dmin{d(p, q),d(r,q)}, and <pgr > 7 — 61. Then

|[<apgs + <arqs — w| < 106 + 24;.
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In particular, if there exist shortest geodesics, then

|[<apgs — <tpgs| < 208 + 461,
and

|args — <rgs| < 208 + 44;.

In our situation, we have
Ja;pb; > T — 23,d(p5;) = r < SR < S min{d;(a;, p), de(bi, p)}.

So by applying Lemma 4.4.2, we get |<qa;ps; — <a;ps;| < 208 + 8 = 284. Hence,
<qa;ps; < m/2—P+285 = 7/2— 1, where 31 = 3—284. Let 5; = a;(de(pa;) sin(By)).
Then by the Toponogov’s comparison theorem, d,(a;, 57) < dy(pa;) cos(B1). But f;
is an ¢-almost Lipschitz submersion, so

&SAWMMM.MMMW?@V —sin(f)| < (4, v(1)),

where v(t) is a parameter of Hausdorff approximation and

g = inf R&.m:.&.
Fe(@)=F(a:)

Combining these inequalities we obtain:

(1) doo (o). fi(55)) < (14 £)di (@i, 55) < (1+ <) cos(1)de (p).

On the other hand, it is easy to see that for each point & € dC; and for any &
-direction of some shortest geodesic from sy to z, there exists a ray o in M starting
at sp, such that Z6(0)¢ < k(t). In particular, we can choose such a o for + = p

msamHiovUmsoﬁmm,\w.Hmiw@H Qﬁmﬁ@m&vmws%iv.Hw®svv\6m“ﬁw.mpof
the result of a parallel translation of (0) along «; is a direction of some other ray
oy, with ¢ ~ . Let ¢ = o(t), ¢; = oj(t). Then obviously, ¢,¢; € 6C¢, and by
the choice of our original Hausdorff approximation, h:(q) = h¢(q}). By Theorem
2.3, the result of a parallel translation of 4(0) along «; is a direction of some
shortest geodesic v; between s and s;. From [[/t — 1| < s1(t) and Z7;(0)5;(0) =
£5(0)6(0) < Ko(t), it follows that d(q¢}s})/t < ks(t), and moreover dy(qfs}) < ka(t).

J
Analogously, di(¢p) < k4(t). Therefore

oo (he (D), he(55)) < doo (he(D), he(9)) + doo (he(q), he () + doo (he(q}), he(5]))
< Ra(t) +v() + 04 ka(t) + v(t) = ks(1).

Since fi : (6Ct, d) = M (00) is cv -close to h:, we get

&8@%33&3mQSQW@L:@V+&8A\i®“\i&.:+&8in,?iw§
< cev(t)+ rs(t) + cv(t) = ke(t),
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57)) < ke(t). Thus fi(p) is very close to fi(5}) (see fig. 2).
doo(p, a;) — Ke(t) > ds (p,a;) — ml&. On the other hand,
1i(55) < ﬁ + ) oOm%vaﬁA ,d;). Combining these two
i) — < (14 ¢)cos(f1)de(p, a;). Hence,

and finally deo (f:(P), f

Therefore do (f: (5 v a;

U%Avémwg\m&AA
A

inequalities, we get d;

w7(t)

1-— Rmﬁ\_v

cos(f1) > :m‘g

=1- R@Q\_“%v.

Consequently, 81 < arccos(1 — k9(t,0)) = k10(£,9), and 8 < k1o(t,d) + 280 = &,
where §' = k(t,d). So we proved that the collection Amiw&vﬁﬁié“ (5i,ti)i=1, &
forms an (m + k, d')-strainer at p. By 4.2, we know that XdCy is x(¢)-Hausdorff
close to a standard sphere, and it 1s clear gmﬁ we can complete this strainer to a
full (n — 1, &(t, §))-strainer ((a;, Fvﬁﬁ..;zf (i, ti)i=1,. .k, (i, &Lﬁﬁ:; ), where k +
m+l=n—1.

Let rg = EE? R, ?im,? D), &L& P))j=1,..1). Consider ,ww. = mmlimuv N B,(5;)
and T; = sh™1(t;) N B,(t;), where n < %oo. Then by Theorem 2.3, we can find
positive pg < %b? such gmﬁ the following holds.

(2) For all z € sh™Y(sq) N B, (p), de(z, S;) = de(p, 5;), for j =1,...,k

(3) The map s — (d(s,s1),...,d(s, sg)) is a Bilipschitz homeomorphism of
B,,(so) onto a domain in R". Here the ball is taken as a metric ball in S. Con-
dition (3) is guaranteed by [BGP,L5.7]. For the same reason, the map ® : z —
(doc(z,a1),...,deo(z, am)) is a homeomorphism of some B, (p) onto an open set
in R™.

Let p = min{pg, p1}. Consider the map F : B,(p) — R"~!, given by F(z) =
(B(fe(2)),de(m, 1), ..., de(2,&),de(2,S1),. .., de(, Sk)).

Next we will prove the following Sublemma:

Sublemma 4.5. F is a homeomorphism of B,(p) onto some open domain U in

R

Proof. First we’ll show that F' is injective on a small neighbourhood of p. Suppose
F(x) = F(y) for some x,y € B,(p). Let z be a midpoint of a shortest geodesic
connecting z and y. We will obtain a contradiction by showing that the collection
((a;, ws.vs.uﬁ.jzf (5i,ti)i=1, &, (ci, &.Yuﬁ:;? (z,y)) forms an (n,x(t,d))-strainer at
z. This is impossible since dim(§Ct) = n — 1.

Step 1. Foreachi = 1,...,1, we have d;(z, ¢;) = d;(y, &;). Clearly <¢;yt; > m—24,
hence by Lemma 4.4, |<¢;yxr — <t¢;yz| < 288. Analogously, |<c;zy — <¢;zy| < 284.
But in the same way, |<¢;yz — <¢;yz| < 286 and |<¢;xz — <¢;wz| < 285. Therefore
|<ciye — <eiyz| < 566, and |<ejry — <Géwz| < 564, But Gcwy = 7/2 — 1wcy
and <ze;y < 4, since ﬁwﬁﬁa y) < %mﬁﬁa ¢;). Hence, |a¢;zy — m/2| < 4, and thus
_AMS&N - ﬁ.\w_ < 56§ + 8 = 575. But <z¢;z < 4, by gm salme reason as mvoé and
since <4¢;2x = ® — Lz¢;x — <¢;xz, we finally get

(4) |<@iza — /2| < 575+ 6 = 583
Using the fact that diam(S;) < dd;(5;,p), by the same argument, we obtain

(5) |<5iz0 — 7/2] < 1008
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Step 2.We also have that ® o f;(z) = ® o f;(y). Since ®is 1 — 1 on B,, (p), we
have that fi(x) = fi(y). We also know that f; is an e-almost Lipschitz submersion,
which implies

ﬁNoo a; ’ .
E —sin(8)| < (4, v(1)),
di(a;, )
where
g = inf qa;qe.
fe(@)=Fi(q)

Note that § < «a;yx, since fi(x) = fi:(y). Also observe that

ool Jel@), (@) 3| ()R = ().
di(a;, ) -
Thus sin(@) > 1 —«(t) —e(d,v(t)), and hence § > /2 —k(t,6). This in turn implies
that <a;yx > n/2 — k(t,d). Analogously, <a;zy > ﬁ.\w — (t,9). Asin Step 1.,
we have that |<a;yz — <a;zy| < 284, and therefore AS@& > n/2 — k(t,d), and
analogously <a;zy > 7/2 — AQ ). But evidently, <a;yr + <a;zy < 7, and so
|<@;yz — 7 /2] < AQ“& and |<a;yr — 7/2| < k(t,d). Now arguing as in Step 1., we
obtain
|<a;yz — /2] < &(t,6),

|<a;yx — /2| < &(t,9)

Step 3. Combining (4), (5 ) and (7), we get that the collection Qm?w&v&uﬁ.:é“
(55, :)i=1,. &, (i, \LN y)) forms an (n,k(t,d))-strainer at z. But this is
impossible since 6C; is A: - C-%Bmsmﬂosm_ [BGP]. So we have that F' is injective
in B,(p).

Now recall that according to [CG], §C; is topologically a manifold. By the
Invariance of Domain Theorem, this implies that F is a homeomorphism of B,(p)

onto some open domain I/ in R*~!. O

4.6 Next we will check that = € sh™'(so) N B,(p) iff F(z) € U and
di(x,S;) = di(p,5;),j = 1,...,k. One implication is true by (2). Now suppose
de(x,S;) = di(p,5;),j = 1,...,k.  Then by Theorem 2.3, sh(z) satisfies
d(sh(x),s;) = d(so,s;),7 =1,..., k. Whence, by (3), we should have sh(z) = sq.

This means that F maps sh™! A 0) N B,(p) homeomorphically onto the intersec-
tion of U and the hyperplane {umyit; = d¢(p, 5;)}j=1,. k. Consequently, ® o f; :
sh™(sg) N B,(p) —> R™ is a locally trivial fibration. Moreover, our argument
shows that its fibers are locally Euclidean. Finally, ® is a homeomorphism of
B, onto an open set in R™ and we get fi|sh-1(s0)n8, ) 1 sh™ " (s0) N B,y(p) —
M (o0) is also a locally trivial fibration. Hence, by the Siebenmann’s theorem

[S,Cor.6.14,Th.5.4],

(6)
(7)
), (6
(@

.\w_mQ“Dm@IHAmov : %Qw N MFIHAMDV — NSAOOV

is a locally trivial fibration. Moreover, by above, its fibers are locally Euclidean;
hence they are topological manifolds without boundaries. O
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Remark. Using the same argument as in the the proof of Sublemma /.5, plus
Siebenmann’s theorem, we can prove the following observation, stated without a
proof in [BGP]: Let f : M™ — N™ be an ¢ -almost Lipschilz submersion of Alexan-
drov spaces where M is (m,§)-strained at each point, and N is (n,d)-strained at
each point, with €, being sufficiently small. Then f is a locally trivial fibration.

Now to finish the proof of Lemma 4.1 we only need to note that by Proposition
2.4.3, 6C; N sh™(s) with the induced topology is homeomorphic to S™*! | for any
sesS. 0O

5. Some applications of the main lemma.

The Main Lemma has some immediate consequences that we collect in this sec-
tion.

Corollary 5.1. Let M™ be a complete open manifold with sec > 0. If M(0)
is m-dimensional and (m,d)-strained at each point, it has some finite covering N
satisfying one of the following conditions:

(a) N is homotopically equivalent to S™,

(b) N is homotopically equivalent to CP™? or

(c) N has rational homology ring of HP™/ 4,

The proof relies on the following theorem due to Browder [B]:

Theorem. Let p : 5" — B be a fiber map, with base B and fiber F connected
polyhedra, F', B # point. Then we have the following possibilities:

(a) F is homotopically equivalent to S*, and B is homotopically equivalent to
Ccp™;

(b) F is homotopically equivalent to S7, and B is homotopically equivalent to
S8 or

(c) F is homotopically equivalent to S®, and B has rational homology ring of
HP™,

Proof of Corollary 5.1. By Lemma 4.1, there exists a locally trivial fibration f :
Sn=k=1 — M(c0), whose fibers are closed manifolds. An easy lifting argument
shows that there exists a finite covering IT : N — M(oo) and a fibration [
Sn—k=1 5 N, with connected fibers such that II o \w = f. Now since the fibers of
\w are connected, we can apply Browder’s theorem, which immediately gives us the
conclusion of the Corollary. O

Proof of the Main Theorem. As an example of a positively curved Alexandrov space
which can not be an ideal boundary, we can take any known positively curved
Riemannian manifold, which does not satisfy any of conditions (a), (b) or (¢) from
5.1. For instance, the Allof~Wallach examples (see[AW]), the Cayley plane and
some flags manifolds with any smooth metric of positive curvature fit into this
category. 0O
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Remark. We actually can rule out as ideal boundaries not only some manifolds,
but also some singular spaces. Indeed, if X is any space known not to be a boundary,
then the Splitting Theorem shows that a spherical suspension over X can not be an
ideal boundary either [K].

Corollary 5.2. Let M™ be a complete simply connected open manifold with sec >
0. Suppose M(o0) is m-dimensional and (m,d) -strained at each point. Suppose,
in addition, that M (oo) is homeomorphic to S™, and m # 2,4,8. Then M has an
wsometric splitting as S x R*™"™, where S s a soul of M and R"™™ has a metric
of nonnegative curvature, with R*~™(o0) 2 M (00).

Proof. By Lemma 4.1, there is a fibration f: S?~*~1 — M (o0), where k = dimS.
But M (o0) is homeomorphic to S™, and m # 2,4,8. So by the standard theorem
of homotopy theory, this implies n — &k — 1 = m, and the map f is actually a
homeomorphism. Therefore the normal holonomy group H (s) of S in M is discrete,
since dimM (o00) <n —k — 1 —dimH(s). But 71 (S) = 0 implies H(s) = 0, and by
[St], M has an isometric splitting. O

Remark. Note that condition m # 2,4,8 in the previous Corollary is relevant,
as the following examples indicate. If we put in Example 3.2 G = S' acting on
R* = C? by complex multiplication, we get the boundary (G\(G x R%)(c0) ~ CP* &
S2. If we put G = Sp(1) acting on R® = W by quaternionic multiplication, then
(G\(G x R®))(c0) ~ HP' ~ S*. Similarly, for G = F, acting on RS, we have
(G\(G x R%))(00) ~ SB.

We can also provide some examples of spaces that may occur as ideal boundaries,
when the soul is different from a point, but may not be ideal boundaries when the
soul is a point. Tt is easy to construct an example with a lens space L(p) as an ideal
boundary. Say if we put in Example 3.2 G = Z, acting on R* = C? by complex
multiplication, we get the boundary (G\(G x R%))(o0) = L(p).

On the other hand, we have the following:

Corollary 5.3. Let M™ (n > 2) be a complete open manifold with sec > 0, such
that the soul is a point, and M(o0) is a Riemannian manifold. Then (M (o0)) =
0.

Proof. Lemma 4.1 shows that in this case, fi : 6C; — M (o0) is a fibration, and
dC} is homeomorphic to a sphere. But for big ¢ the fibers of f; are very small and
therefore path connected. Indeed, if a fiber I is not path connected, then we can
find a very short path between two points, lying in different components of the
fiber. Then the map f; sends this path to a very short and therefore homotopic
to a point loop. On the other hand, this path represents a nontrivial element in
m1(6Cy, I'), which contradicts the well known fact that any fibration map should
induce an isomorphism of 71 (6Cy, F') and 71 (M (00)). So the fibers are path con-
nected, and using long exact homotopy sequence of a fibration, we immediately get

that m (M (o)) =0. O
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