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Abstract

We construct a natural pure Sullivan model of an arbitrary biquotient which generalizes
the Cartan model of a homogeneous space. We also obtain a formula for the rational
Poincare polinomial of equal rank biquotients.

1 Introduction

Let G be a compact Lie group and H ≤ G × G be a closed subgroup. Then H acts on
G on the left by the formula (h1, h2)g = h1gh−1

2 . The orbit space of this action is called a
biquotient of G by H and denoted by G//H . If the action of H on G is free, then G//H
is a manifold. This is the only case we consider in this paper. In the special case when H
has the form K1 × K2 where K1 ⊂ G × 1 ⊂ G × G and K1 ⊂ 1 × G ⊂ G × G we will
sometimes write K1\G/K2 instead of G//(K1 ×K2).

Biquotients are of interest in Riemannian geometry because they provide one of the main
sources of examples of manifolds of nonnegative (and in particular positive) sectional cur-
vature.

From the point of view of rational homotopy theory biquotients provide a large natural
class of examples of rationally elliptic spaces which is strictly bigger than the usually con-
sidered class of homogeneous spaces. Recall that a simply-connected CW complex is called
rationally elliptic if dim H∗(X, Q) < ∞ and dim(π∗(X) ⊗ Q) < ∞ . (From here on all
cohomology groups are taken with rational coefficients).

The purpose of this note is to point out some well-know facts about rational homotopy
of homogeneous spaces which easily generalize to biquotients but have so far remained
unnoticed.

First we observe that biquotients admit pure Sullivan models similar to Cartan models
of homogeneous spaces. (Recall that a free DGA (ΛV, d) is called pure if V is finite-
dimensional and d|V ev = 0 and d(V odd) ⊂ V ev .)

Before we give an explicit formula for computing the Sullivan model of an arbitrary biquo-
tient G//H we need to introduce some notations. It is well-known that G is rationally
homotopy equivalent to S2m1−1 × · · · × S2mk−1 where k = rank G and H∗(BG, Q) ∼=
Q[x1, ..., xk] . Consequently,

H∗(BG ×BG) ∼= H∗(BG)⊗H∗(BG) ∼= Q[x1, ..., xk, y1, ..., yk]

with |xi| = |yi| = 2mi .
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Let f : BH → BG × BG be the map of the classifying spaces induced by the inclusion
H ↪→ G×G .

Proposition 1. In the above notations, a Sullivan model of G//H can be given by the
following pure DGA:

(H∗(BH)⊗ Λ(q1, ...qk), d)

where , |qi| = 2mi − 1 and d is given by d|H∗(BH) = 0 and d(qi) = f∗(xi − yi).

It is well-known that for a homogeneous space G/H of equal rank groups its Poincare
polynomial and its Euler characteristic can be computed by the formulas

PG//H(t) =
PBH

(t)
PBG

(t)
χ(G//H) =

|W (G)|
|W (H)|

It was shown by Singhoff [Sin93], that the formula for the Euler characteristic remains true
for equal rank biquotients.

We observe that, in fact, the Poincare polynomial formula (which easily implies the Euler
characteristic formula) remains true as well.

Proposition 2. Let G//H be a biquotient of compact connected Lie groups where rank G =
rank H . Then the rational Poincare polynomial of G//H can be computed by the formula

PG//H(t) =
PBH

(t)
PBG

(t)

2 Proofs of Propositions 2 and 1

We use the textbook [FHT01] as a comprehensive reference (also see [TO97, Chapter1]
for a more gentle introduction to rational homotopy theory). We are going to prove the
following somewhat stronger version of Propositions 2:

Proposition 3. Let G, H be connected compact Lie groups such that rank G = rank H
and let ρ be a free smooth action of H on G. Then the rational Poincare polynomial of
G/ρ(H) can be computed by the formula

PG/ρ(H)(t) =
PBH

(t)
PBG

(t)

Proof. Let p : G/ρ(H) → BH be the classifying map of the principle H bundle H → G →
G/ρ(H). A standard argument (cf. [Esc92a]) shows that G → G/ρ(H) → BH is a Serre
fibration (which need not be principal!). Recall that G 'Q S2m1−1×· · ·×S2mk−1 . Similarly,
H 'Q S2n1−1× · · · ×S2nl−1 . Let (Λ(q1, ..., qk), d ≡ 0) where |qi| = 2mi− 1 be the minimal
model of G and (Q[x1, ..., xl], d ≡ 0) where |xj | = 2nj be the minimal model of BH . Note
that k = l since rank G = rank H . Then according to [FHT01, Proposition 15.5], G/ρ(H)
admits a Sullivan model of the form

(Λ(q1, ..., qk)⊗Q[x1, ..., xl], d̄) (2.1)
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for some appropriately defined d̄ . Since this model is elliptic and k = l , by [FHT01,
Corollary to the Proposition 32.10], the Poincare polynomial and the Euler characteristic
of G/ρ(H) can be computed as follows

PG//H(t) =
Πk

i=1(1− t2mj )
Πk

i=1(1− t2nj )
=

1

Πk
i=1(1−t2nj )

1

Πk
i=1(1−t2mj )

=
PBH

(t)
PBG

(t)
(2.2)

χ(G//H) =
Πk

i=1mi

Πk
i=1ni

(2.3)

It is well-known ( see for example [Oni63, Proposition11.4]) that Πk
i=1mi = |W (G)| and

Πk
i=1ni = |W (H)| and therefore (2.3) implies

χ(G//H) =
|W (G)|
|W (H)|

(2.4)

Example 4. Consider the Eschenburg manifold M6 = S1\U(3)/T 2 . Here the left S1

is given by diag (λ1, λ1, λ̄1) and the right T 2 is given by diag (λ1, λ2, 1) where |λi| =
1. (According to [Esc92b] M6 admits a metric of positive sectional curvature). U(3) is
rationally equivalent to S1 × S3 × S5 . Therefore by Proposition 2,

PM6(t) =
PBT 3(t)
PBU(3)(t)

=
(1− t2)(1− t4)(1− t6)

(1− t2)3
= (1 + t2)(1 + t2 + t4) = 1 + 2t2 + 2t4 + t6

Observe that one of the consequences of Proposition 2 is that the Poincare polynomial of
G//H depends only on G and H but not on the inclusion H ↪→ G and thus M6 has the
same rational betti numbers as the homogeneous complex flag U(3)/T 3 .

The proof of Proposition 3 does not require the explicit knowledge of the differential d̄ in
the model of G/ρ(H) given by (2.1). Proposition 1 which will be proved next provides an
explicit formula for d̄ in case of a biquotient and shows that the model in this case is pure.

Proof of Proposition 1. As was observed by Eschenburg [Esc92a], any biquotient G//H is
diffeomorphic to a biquotient of G × G by G × H written as ∆G\G × G/H , where ∆G
stands for the diagonal embedding of G into G×G . Let p : G//H → BH be the classifying
map of the principle H bundle H → G → G//H . Recall that G → G//H → BH is a
Serre fibration. Moreover, this fibration fits into the following fibered square (see [Esc92a]
and [Sin93])

G//H //

��

BG

��
BH

// BG×G

(2.5)

where both vertical arrows are fibrations with fiber G and both horizontal arrows are
fibrations with fiber (G×G)/H . In particular, the fibration G//H → BH is the pullback
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of the fibration G → BG
φ→ BG×G which following Eschenburg, we will refer to as the

reference fibration.

We begin by constructing the canonical model of the reference fibration. Since this fibration
is induced by the diagonal map ∆: G → G×G , it follows that φ is the diagonal embedding
∆BG

: BG → BG × BG . Consider the map φ∗ : H∗(BG × BG) → H∗(BG). Recall that
G 'Q S2m1−1× · · · × S2mk−1 and the minimal model of BG is isomorphic to H∗(BG, Q) ∼=
Q[x1, ..., xk] with zero differentials and with |xi| = 2mi . Similarly, the minimal model of
BG×BG is isomorphic to its cohomology ring B = Q[x1, ..., xk, y1, ..., yk] with |xi| = |yi| =
2mi . Thus φ∗ can be viewed as a DGA-homomorphism of minimal models of BG and
BG×G .

Let us construct a Sullivan model of φ∗ . Since φ = ∆BG
we compute φ∗(xi) = φ∗(yi) = xi

for all i = 1, . . . , k . Consider the relative Sullivan algebra (B ⊗Λ(q1, ...qk), d) where dxi =
dyi = 0 and dqi = xi−yi . Then it is immediate to check that this algebra is a Sullivan model
(in fact, a minimal one!) of φ∗ with the quasi-isomorphism B⊗Λ(q1, ...qk) → H∗(BG) given
by xi → xi , yi → xi , qi → 0.

By the naturality of models of maps [FHT01, page 204, Proposition 15.8], from the fibered
square (2.5), we obtain that a Sullivan model of the map G//H → BH can be given by the
pushout of (B ⊗ Λ(q1, ...qk), d) via the homomorphism f∗ : B → H∗(BH); i.e. it can be
written as

(H∗(BH), 0)⊗(B,d) (B ⊗ Λ(q1, ...qk), d) = (H∗(BH)⊗ Λ(q1, ...qk), d̄)

where d̄ is given by d̄|H∗(BH) = 0 and d̄(qi) = f∗(xi − yi). In particular, M(G//H) =
(H∗(BH)⊗ Λ(q1, ...qk), d̄) is a model for G//H . Notice that H∗(BH) is a free polynomial
algebra on a finite number of even-dimensional generators, and thus the model M(G//H)
is pure.

Remark 5. It is easy to see that the minimal model of a pure Sullivan model is again pure.
Therefore, Proposition 1 implies that minimal models of biquotients are pure.

The pure model M(G//H) constructed in the proof of Proposition 1 provides an effective
way of computing rational cohomology of biquotients. We refer to M(G//H) as the Cartan
model of G//H . This method of computing H∗(G//H) is essentially equivalent to the
method developed by Eschenburg [Esc92b] (when applied to Q coefficients) who computed
the Serre spectral sequence of the fibration G → G//H → BH . In fact, it is easy to
recover this spectral sequence from the Cartan model by looking at the standard filtration
of M(G//H) by the wordlength in the number of odd degree generators. Also note that in
case when G//H is an ordinary homogeneous space (i.e. when H ⊂ G × G has the form
H × 1 ⊂ G×G) this model is easily seen to reduce to the standard Cartan model of G/H .

Proposition 1 also implies that all general facts about pure spaces (such as the description
of formal pure spaces) are applicable to biquotients (also see [BK] for some other possible
applications).

Let H∗
i (G//H) be the lower filtration of H∗(G//H) coming from the above mentioned

filtration of M(G//H). Note that by construction,
H∗

0 (G//H) ∼= H∗(BH)/I ∼= H∗(BH)⊗H∗(BG×BG) H∗(BG) where I is the ideal in H∗(BH)
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generated by {f∗(xi − yi), i = 1, ..., n} . By [GHV76, Chapter 2], H∗
i (G//H) = 0 for

i > k = −χπ(G//H) = # of odd degree generators of M(G//H) − # of even degree
generators of M(G//H) = rank (G)− rank (H) (cf. [Sin93, Proposition 6.4].
When rank (G) = rank (H) we see that H∗(G//H) = H∗

0 (G//H) ∼= H∗(BH)/I (cf.
[Sin93, Theorem 6.5]).

Example 6. Cartan model of S1\Sp(3)/SU(3). Here the left S1 is given by diag ((e2πit, 1, 1).
Let T 3 = diag (e2πit1 , e2πit2 , e2πit3) be the standard maximal torus of Sp(2). Then
H∗(B(Sp(3)) ⊆ H∗(BT 2) = Q[t1, t2, t3] (with |ti| = 2) consists of all symmetric polynomi-
als in t2i , i.e, H∗(B(Sp(2)) = Q[x1, x2, x3] where x1 = Σt2i , x2 = Σi6=jt

2
i t

2
j , x3 = t21t

2
2t

2
3 . We

will view the Lie algebra t2 of the maximal torus of SU(3) as the hyperplane t1+t2+t3 = 0
in Lie(T 3). Then H∗(BSU(3)) is the free polynomial algebra Q[σ2|t2 , σ3|t2 ] = Q[σ̃2, σ̃2]
where σ1, σ2, σ3 are the canonical symmetric polynomials in t1, t2, t3 and σ̃i = σi|t2 .
Observe that f : BS1 × BSU(3) → BSp(3) × BSp(3) can be written as f = f1 × f2

where f1 : BS1 → BSp(3) and f2 : BSU(3) → BSp(3). We will denote by x1, x2, x3 the
generators (described above) of the cohomology of the first BSp(3) factor and by y1, y2, y3

the corresponding generators of the cohomology of the second BSp(3) factor. It is easy
to see that f∗1 (x1) = t2, f∗1 (x1) = 0, f∗1 (x1) = 0 (here H∗(BS1) = Q[t] with |t| = 2). To
compute f∗2 observe that y1 = σ2

1 − 2σ2, y2 = σ2
2 − 2σ1σ3, y3 = σ2

3 . Therefore

f∗2 (y1) = y1|t2 = −2σ̃2, f
∗
2 (y2) = y2|t2 = σ̃2

2, f∗2 (y3) = y3|t2 = σ̃3
2

By Proposition 1, the Cartan model of S1\Sp(3)/SU(3) is given by
(Q[t, σ̃2, σ̃3] ⊗ Λ(q3, q7, q11), d) where |t| = 2, |σ̃i| = 2i, |qi| = i and dt = dσ̃i = 0, dq3 =
t2 + 2σ̃2, dq7 = −σ̃2

2, dq11 = −σ̃3
2 . This model is not minimal. Application of Sullivan’s

algorithm reduces it to the following minimal model of S1\Sp(3)/SU(3):

(Q[t, σ̃3]⊗ Λ(q7, q11), d), where dt = dσ̃i = 0, dq7 = −t4/4, dq11 = −σ̃3
2

and the degrees of the generators are the same as before. Note that this model is easily iden-
tified as the minimal model of CP3×S6 and thus S1\Sp(3)/SU(3) is rationally equivalent
to CP3 × S6 . A similar computation shows that the minimal model of
Sp(3)/U(3) is given by

(Q[t, σ̃3]⊗ Λ(q7, q11), d), where dt = dσ̃i = 0, dq7 = t4 − 2tσ̃3, dq11 = σ̃3
2

It is easy to see that these two minimal models are not isomorphic and thus Sp(3)/U(3)
and S1\Sp(3)/SU(3) have different rational homotopy types. Moreover, it also implies
that H∗(Sp(3)/U(3)) and H∗(S1\Sp(3)/SU(3)) are not isomorphic as algebras since both
spaces are formal ( it is well-known that any elliptic space of positive Euler characteristic is
formal [Hal77]) even though they are isomorphic as graded vector spaces by Proposition 2.
A similar computation (cf. [FT94] and [GHV76, Chapter 11] for details) shows that the
Cartan model of S1\Sp(n)/SU(n) is given by

(Q[t, σ2, ..σn]⊗ Λ(q3, ..., q4n−1), d) where |t| = 2, |σi| = 2i, |qi| = i and (2.6)

dt = dσi = 0, dq3 = 2σ2 − t2, dq4i−1 = 2σ2i + Σ
r+s=2i

(−1)sσrσs for i > 1
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3 Open questions

Proposition 1 implies that many results about rational homotopy of homogeneous spaces
hold true for biquotients.

It is worth mentioning some interesting problems that have been solved for homogeneous
spaces but remain open for biquotients.

Let H be the class of simply-connected spaces whose rational cohomology algebras are finite
dimensional and have no nonzero derivations of negative degree.

According to Meier [Mei83], H contains any compact simply-connected manifold whose
cohomology ring satisfies the hard Lefschetz duality (in particular any simply connected
Kähler manifold).

Halperin conjectured that any elliptic space C of positive Euler characteristic belongs to
H . It is well-known (cf. [Mei82]) that a formal space belongs to H iff every orientable
rational fibration with fiber X is totally non-cohomologous to zero or equivalently iff its
Serre spectral sequence collapses on the E2 term.

The Halperin conjecture, which is considered one of the central problems in rational homo-
topy theory, has been confirmed in several important cases [FHT01, page 516].

In particular, it was shown by Shiga and Tezuka [ST87] that it holds for homogeneous
spaces of equal rank groups.

Problem 7. Show that the Halperin conjecture holds for any biquotient G//H where
rank(H) = rank(G).

The verification of the Halperin conjecture appears to be nontrivial even for some of the
most basic examples such as S1\Sp(n)/SU(n) despite the relative simplicity of its Cartan
model (2.6).

In view of the result of Meier mentioned above, one possible way to prove it in this case
would be by showing that H∗(S1\Sp(n)/SU(n)) satisfies the hard Lefschetz duality. Note,
that the homogeneous space Sp(n)/Un) is Kähler and hence its cohomology does satisfy
hard Lefschetz. Note also that Sp(n)/Un) and S1\Sp(n)/SU(n) have the same betti
numbers by Proposition 2. However, as Example 6 indicates their cohomology algebras are
distinct. The above discussion naturally leads us to the following question which appears
to be interesting from other points of view as well.

Question 8. When is a biquotient G//H Kähler?

More specifically, suppose that a homogeneous space G/H1 is Kähler. Let G//H2 be a
biquotient such that H1

∼= H2 . Is G//H2 Kähler?

Remark 9. The answer to Question 8 is unknown even for biquotients that do satisfy the
hard Lefschetz such as the Eschenburg biquotient M6 = S1\U(3)/T 2 .
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