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Abstract. We give topological conditions to ensure that a non-
collapsed almost Ricci-flat 4-manifold admits a Ricci-flat met-
ric. One sufficient condition is that the manifold is spin and has
a nonzero Â-genus. Another condition is that the fundamental
group is infinite or, more generally, of sufficiently large cardinality.

1. Introduction

One of the most basic pinching theorems in Riemannian geometry
says that a noncollapsed almost flat manifold admits a flat metric.
The word noncollapsed refers to a lower volume bound. More pre-
cisely, given n ∈ Z+ and v > 0, there is some ε = ε(n, v) > 0 so that
if (M, g) is a Riemannian n-manifold with vol(M) ≥ v , diam(M) ≤ 1
and |RmM | ≤ ε , then M admits a flat Riemannian metric. Here RmM

denotes the Riemann curvature tensor. This result seems to have first
been stated by Gromov in [Gr78], where he noted that it follows from
Cheeger’s arguments in [Ch69]. (The point of [Gr78] was to character-
ize what happens when one removes the volume assumption.)

One can ask if there is an analogous statement for noncollapsed al-
most Ricci-flat manifolds. In dimension less than four, being almost
Ricci-flat is the same as being almost flat. Hence the first interesting
case is in dimension four. We give topological conditions to ensure that
a noncollapsed almost Ricci-flat 4-manifold admits a Ricci-flat metric.
We also give more general results about noncollapsed manifolds with
almost nonnegative Ricci curvature, or almost nonnegative scalar cur-
vature and bounded Ricci curvature.

In the rest of the introduction we state the main results, outline the
proof of Theorem 1.1, mention some earlier related results and give the
structure of the paper.
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1.1. Statement of results. The first result is in four dimensions. Re-
call that the Â-genus Â(M) of a closed oriented manifold M is a cer-
tain rational combination of the Pontryagin numbers of M . In four

dimensions, Â(M) equals minus one eighth of the signature of M . We
consider a noncollapsed spin 4-manifold with almost nonnegative scalar

curvature and a nonzero Â-genus. With an upper bound on the Ricci
curvature, the conclusion is that the manifold must be diffeomorphic
to a K3 surface.

Let S denote scalar curvature.

Theorem 1.1. Given v > 0 and Υ < ∞, there is an ε = ε(v,Υ) >
0 with the following property. Suppose that (M, g) is a closed con-

nected Riemannian spin 4-manifold with Â(M) 6= 0, vol(M) ≥ v ,
diam(M) ≤ 1, RicM ≤ Υg and SM ≥ −ε. Then M is diffeomorphic
to a K3 surface.

As a consequence, if a noncollapsed almost Ricci-flat 4-manifold is

spin, and has a nonzero Â-genus, then it admits a Ricci-flat metric.

Corollary 1.2. Given v > 0, there is an ε′ = ε′(v) > 0 with the fol-
lowing property. Suppose that (M, g) is a closed connected Riemann-

ian spin 4-manifold with Â(M) 6= 0, vol(M) ≥ v , diam(M) ≤ 1 and
|RicM | ≤ ε′ . Then M is diffeomorphic to a K3 surface. In particular,
M admits a Ricci-flat metric.

For example, if M = K3#(S2 × S2) then there is no Riemannian
metric on M with vol(M) ≥ v , diam(M) ≤ 1 and |RicM | ≤ ε′ .

If π1(M) is infinite, or of sufficiently large cardinality, then we have
the following related n-dimensional result, which does not involve any
spin assumption on M .

Theorem 1.3. Given n ∈ Z+ , v > 0 and Λ,Υ < ∞, there exist
ε = ε(n, v,Λ,Υ) > 0, C = C(n, v,Λ,Υ) < ∞, ε′ = ε′(n, v,Λ) > 0
and C ′ = C ′(n, v,Λ) < ∞ with the following property. Suppose that
(M, g) is an n-dimensional closed connected Riemannian manifold with∫
M
|RmM |

n
2 dvolM ≤ Λ, vol(M) ≥ v and diam(M) ≤ 1.

(1) If −εg ≤ RicM ≤ Υg and |π1(M)| ≥ C then M admits a
W 2,p -regular Riemannian metric h with nonnegative measur-
able Ricci curvature for which the universal cover (M̃, h̃) iso-
metrically splits off an R-factor. In particular, π1(M) is
infinite.

(2) If |RicM | ≤ ε′ and |π1(M)| ≥ C ′ then M admits a Ricci-flat

metric h′ for which the universal cover (M̃, h̃′) isometrically
splits off an R-factor.
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In the four dimensional case, the conclusions of Theorem 1.3 can be
made more precise. Theorem 1.3(1) becomes a statement about man-
ifolds with almost nonnegative Ricci curvature, again under an upper
Ricci curvature bound. Theorem 1.3(2) becomes a second sufficient
topological condition, involving the fundamental group, for a noncol-
lapsed almost Ricci-flat 4-manifold to admit a Ricci-flat metric.

Corollary 1.4. Given v > 0 and Υ <∞, there exist ε′′ = ε′′(v,Υ) >
0, C ′′ = C ′′(v,Υ) < ∞, ε′′′ = ε′′′(v) > 0 and C ′′′ = C ′′′(v) < ∞
with the following property. Suppose that (M, g) is a closed connected
Riemannian 4-manifold with vol(M) ≥ v and diam(M) ≤ 1.

(1) If −ε′′g ≤ RicM ≤ Υg and |π1(M)| ≥ C ′′ then M admits
a smooth Riemannian metric with nonnegative Ricci curvature
for which the universal cover (M̃, g̃) isometrically splits off an
R-factor.

(2) If |RicM | ≤ ε′′′ and |π1(M)| ≥ C ′′′ then M admits a flat met-
ric.

As an example of Corollary 1.4(2), let M be the result of perform-
ing surgery along an embedded circle in T 4 , i.e. removing a tubular
neighborhood of the circle and attaching a copy of D2 × S2 . Then
there is no Riemannian metric on M with vol(M) ≥ v , diam(M) ≤ 1
and |RicM | ≤ ε′′′ . (On the other hand, Anderson showed that if the
circle is a meridian curve in T 4 , and one performs surgery with respect
to the canonical trivialization of its normal bundle, then the resulting
manifold does admit a sequence of collapsing almost Ricci-flat met-
rics [An92, Theorem 0.4].)

Remark 1.5. The diffeomorphism types of the manifolds M in the
conclusion of Corollary 1.4(1) are easy to describe, using [Ha86, Section
9].

Remark 1.6. The known Ricci-flat closed 4-manifolds are flat (hence
with infinite fundamental group) or are finitely covered by a K3 surface

(which is spin and has Â(K3) = 2). In view of this fact, the topological
hypotheses of Corollary 1.2 and Corollary 1.4(2) are not unreasonable.

Finally, we give a fundamental group restriction on noncollapsed
manifolds with almost nonnegative Ricci curvature.

Theorem 1.7. Given n ∈ Z+ and v > 0, there are ε = ε(n, v) >
0 and I = I(n, v) < ∞ with the following property. Suppose that
(M, g) is a closed connected Riemannian n-manifold with vol(M) ≥ v ,
diam(M) ≤ 1 and RicM ≥ −ε. Then π1(M) has an abelian subgroup
(of index at most I ) generated by at most n elements.
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1.2. Outline of the proof of Theorem 1.1. If the theorem fails
then we take a sequence of counterexamples, with ε → 0. The hy-
potheses imply that there is a uniform lower Ricci curvature bound.
From a result of Cheeger and Naber, there is an a priori upper bound
on
∫
M
|RmM |2 dvolM [CN15]. The first part of the argument for Theo-

rem 1.1 is now standard, based on ideas of Anderson [An90], Anderson-
Cheeger [AC91] and Bando [Ba90a]. We can pass to a subsequence
that converges, in the Gromov-Hausdorff topology, to a four dimen-
sional orbifold X that has a finite number of orbifold singular points,
and a C1,α -regular Riemannian metric gX on its regular part Xreg .
Doing appropriate blowups to zoom in on the formation of singular
points of X , one obtains noncompact Ricci-flat ALE orbifolds. Doing
further blowups to zoom in on the formation of their singular points,
one obtains a bubble tree whose vertices correspond to Ricci-flat orb-
ifolds. By assembling the geometric pieces in the bubble tree, one can
reconstruct the diffeomorphism type of the original manifold.

In order to proceed, we need more information about X and the

ALE blowups. The assumption that M is spin, with nonzero Â-genus,

helps in several ways. First, the nonvanishing of the Â-genus of M
implies that M has a nonvanishing harmonic spinor field. We show
that these harmonic spinor fields pass to a nonzero parallel spinor field
on Xreg . This forces Xreg to be smooth and Ricci-flat. Then using
a topological result from Appendix A, we show that X is a Ricci-flat
spin orbifold. The existence of the parallel spinor field now implies that
X is a hyperKähler orbifold.

The spin assumption on M also implies that the Ricci-flat ALE
blowup orbifolds are spin. Compatibility of spin structures, along with
the existence of the nonzero parallel spinor field on X , means that
the blowup orbifolds have spinor fields that are asymptotically parallel
at infinity, and nonzero there. Then a small variation on a result of
Nakajima [Na90] says that the blowup orbifolds are hyperKähler. One
knows enough about hyperKähler ALE 4-manifolds, and 4-orbifolds, to
conclude that after assembling the pieces in the bubble tree, the result
is diffeomorphic to a compact hyperKähler manifold. Theorem 1.1
follows from this fact.

1.3. Related results. Anderson gave a Ricci pinching result for Rie-
mannian metrics on S4 and CP 2 [An90, Theorem 1.3(b)].

Regarding Riemannian manifolds with almost nonnegative Ricci cur-
vature, the following is known.

Theorem 1.8. Given n ∈ Z+ , there are ε = ε(n) > 0 and J =
J(n) <∞ with the following property. Suppose that (M, g) is a closed
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connected Riemannian n-manifold with diam(M) ≤ 1 and RicM ≥
−ε.

(1) Then π1(M) has a nilpotent subgroup (of index at most J ) with
nilpotency rank at most n [KW11]. (This was also proved in
[BGT12] without the index bound.)

(2) If M is spin and n is divisible by four then |Â(M)| ≤ 2
n
2
−1

[Ga83], [Gr82, p. 86].

Theorem 1.7 refines Theorem 1.8(1) in the noncollapsed case, al-
though the constants I and J may not be related.

Remark 1.9. In four dimensions, Rokhlin’s theorem says that Â(M)
is even if M is spin. Hence under the assumptions of Theorem 1.8(2), if

n = 4 and Â(M) 6= 0 then |Â(M)| = 2. This means that after possibly
reversing orientation, M is spin-cobordant to the K3 surface. One can
ask whether Theorem 1.1 still holds without the upper Ricci curvature
bound, say assuming a lower Ricci curvature bound and possibly a
lower volume bound.

In a somewhat different direction, Cabezas-Rivas and Wilking an-
swered a question from [Lo00] by showing that a spin manifold with

almost nonnegative sectional curvature has vanishing Â-genus [CW].

Regarding almost Ricci-flat 4-manifolds, Brendle and Kapouleas
found an obstruction to perturbing an almost Ricci-flat metric to a
Ricci-flat metric [BK]. In their example, the relevant limit space was
a flat 4-dimensional orbifold. A gluing obstruction for a nonflat limit
space was found by Biquard [Bi13].

Finally, one can ask whether Corollary 1.4(1) holds without the up-
per Ricci curvature bound.

1.4. Structure of the paper. In Section 2 we prove Theorem 1.1.
In Section 3 we prove Theorem 1.3 and Corollary 1.4. In Section 4
we prove Theorem 1.7. Appendix A has a topological result about
extending a spin structure from the regular part of an orbifold to the
entire orbifold.

We thank the participants of the MSRI Spring 2016 geometry pro-
gram for helpful discussions, especially Olivier Biquard, Ronan Conlon
and Jeff Viaclovsky. We also thank Jeff for comments on an earlier
version of the paper.
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2. Proof of Theorem 1.1

Arguing by contradiction, if Theorem 1.1 is not true then there
is a sequence {(Mi, gi)}∞i=1 of closed connected Riemannian spin 4-
manifolds with

• Â(Mi) 6= 0,
• vol(Mi) ≥ v ,
• diam(Mi) ≤ 1,
• RicMi

≤ Υgi and
• SMi

≥ −1
i
, but

• Mi is not diffeomorphic to a K3 surface.

2.1. Harmonic spinors on Mi . By assumption, the second Stiefel-
Whitney class of Mi vanishes in H2(Mi;Z2). After reversing orien-

tation if necessary, we can assume that Â(Mi) > 0. We can then
choose a spin structure on Mi that is compatible with this orientation.
The Atiyah-Singer index theorem implies that Mi has a nonzero har-
monic spinor φi of positive chirality. By rescaling, we can assume that
‖φi‖2 = 1. Letting D denote the Dirac operator, the Lichnerowicz
formula gives

(2.1) 0 =

∫
Mi

|Dφi|2 dvolMi
=

∫
Mi

(
|∇φi|2 +

SMi

4
|φi|2

)
dvolMi

.

Hence

(2.2)

∫
Mi

|∇φi|2 dvolMi
≤ 1

4i
.

As

(2.3) ∇|φi| = ∇
√
〈φi, φi〉 =

〈∇φi, φi〉+ 〈φi,∇φi〉
2|φi|

away from the zero-locus of φi , we have

(2.4) |∇|φi|| ≤ |∇φi|
and so

(2.5)

∫
Mi

|∇|φi||2 dvolMi
≤ 1

4i
.

Let λi > 0 denote the Poincaré constant of (Mi, gi), so that

(2.6)

∫
Mi

|∇F |2 dvolMi
≥ λi

∫
Mi

(F − F )2 dvolMi

for all F ∈ H1(Mi), where F denotes the average value F = 1
vol(Mi)

∫
Mi
FdvolMi

.

Then

(2.7)

∫
Mi

(
|φi| − |φi|

)2

dvolMi
≤ 1

4iλi
.
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Lemma 2.8. If Vi is open in Mi then

(2.9)

∫
Vi

|φi|2 dvolMi
≤

(
1√
4iλi

+

√
vol(Vi)

vol(Mi)

)2

.

Proof. We work more generally with a measure space (M,dµ) having
finite mass, a measurable subset V ⊂M and a function f ∈ L2(M,dµ)
with ‖f‖L2(M) = 1. By the Cauchy-Schwarz inequality, |f | ≤ 1√

µ(M)
.

Then

(2.10) ‖f‖L2(V ) ≤ ‖f − f‖L2(V ) +‖f‖L2(V ) ≤ ‖f − f‖L2(M) +

√
µ(V )

µ(M)
,

from which the lemma follows. �

2.2. Parallel spinors on X . From the scalar curvature condition and
the upper bound on Ricci curvature, for large i we have RicMi

≥
−10Υgi . Then from [CN15, Theorem 1.13], there is a uniform upper
bound on

∫
Mi
|RmMi

|2 dvolMi
. By [An90, Theorem 2.6 and Pf. of

Main Lemma 2.2], after passing to a subsequence we can assume that
limi→∞(Mi, gi) = (X, gX) in the Gromov-Hausdorff topology, where

• X is a four dimensional compact orbifold with finitely many
isolated orbifold singularities,
• gX is a continuous orbifold Riemannian metric on X , and
• gX is locally W 2,p -regular away from the singular points, for

all p <∞ .

Let Xreg denote the regular part of the orbifold X , i.e. the complement
of the finitely many singular points Xsing . It is a W 3,p -manifold, for
all p < ∞ , so we can assume that it is equipped with an underlying
smooth structure (although with a Riemannian metric that is W 2,p -
regular in that smooth structure). Then Xreg is also a C2,α -manifold
and gX is locally C1,α -regular, for all α ∈ (0, 1).

For large j , let Uj be the union of the 1
j
-balls around the singular

points in X . Note that X −Uj and Mi are both smooth. For large i ,
there is a smooth map σj,i : (X − Uj) → Mi that is a diffeomorphism
onto its image, so that limi→∞ σ

∗
j,igi = gX−Uj in the C1,α -topology. In

particular, X−Uj admits a spin structure. As H1(X−Uj;Z2) is finite,
after passing to a subsequence of i ’s, we can assume that each φj,i is
spin compatible. From (2.2),

(2.11)

∫
σj,i(X−Uj)

|∇φi|2 dvolMi
≤ 1

4i
.
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From Lemma 2.8,∫
σj,i(X−Uj)

|φi|2 dvolMi
≥(2.12)

1−

(
1√
4iλi

+

√
vol(Mi − σj,i(X − Uj))

vol(Mi)

)2

.

It makes sense to compare spinor fields on two diffeomorphic Rie-
mannian manifolds (c.f. [Lo00, p. 531-532]), so we can consider σ∗j,iφi ,

a spinor field on X − Uj . The H1 -norm on spinor fields over X − Uj
is

(2.13) ‖ψ‖2
H1(X−Uj) =

∫
X−Uj

(
|ψ|2 + |∇ψ|2

)
dvolX−Uj .

Note that the Christoffel symbols on X − Uj are locally Cα -regular
and locally W 1,p -regular. From (2.11) and the normalization of φi ,
the H1 -norms of {σ∗j,iφi}∞i=1 are uniformly bounded, so we can take

a subsequence that converges weakly in H1 to some positive chirality
spinor field ψj on X − Uj . By Rellich compactness, after passing to a
further subsequence we can assume that limi→∞ σ

∗
j,iφi = ψj in L2 . In

particular,

‖ψj‖2
L2(X−Uj) = lim

i→∞
‖σ∗j,iφi‖2

L2(X−Uj) = lim
i→∞
‖φi‖2

L2(σj,i(X−Uj))(2.14)

= lim
i→∞

∫
σj,i(X−Uj)

|φi|2 dvolMi
.

As norms can only decrease when taking weak limits, using (2.11) we
have

‖ψj‖2
H1(X−Uj) ≤ lim inf

i→∞
‖σ∗j,iφi‖2

H1(X−Uj) = lim inf
i→∞

‖φi‖2
H1(σj,i(X−Uj))

(2.15)

= lim inf
i→∞

∫
σj,i(X−Uj)

(
|∇φi|2 + |φi|2

)
dvolMi

= lim
i→∞

∫
σj,i(X−Uj)

|φi|2 dvolMi
.

Thus ‖ψj‖H1(X−Uj) = ‖ψj‖L2(X−Uj) , so ∇ψj vanishes weakly.
There is a uniform positive lower bound on λi in terms of the

upper diameter bound and the lower Ricci bound; see [BQ00] and
references therein. We have convergence limi→∞(Mi, gMi

, dvolMi
) →
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(X, gX , dvolX) in the measured Gromov-Hausdorff topology. Then us-
ing (2.12), we find

(2.16) 1− vol(Uj)

vol(X)
≤ ‖ψj‖2

L2(X−Uj) ≤ 1.

The preceding construction of ψj was for a fixed but sufficiently large
j . We can take j →∞ , and apply a diagonal argument in j and i , to
obtain a weakly parallel positive chirality spinor field ψ∞ on the spin
manifold Xreg , with ‖ψ∞‖L2(Xreg) = 1.

In a coordinate chart and using an orthonormal frame {ea}4
a=1 , the

fact that ψ∞ is weakly parallel means that

(2.17) ∂kψ∞ = −1

8

4∑
a,b=1

Γabk[γ
a, γb]ψ∞

holds weakly, where {γa}4
a=1 are the Dirac matrices. We know that ψ∞

is W 1,2 -regular. As Γ is W 1,p -regular for all p <∞ , using the Sobolev
embedding theorem and bootstrapping, one finds that ψ∞ is locally
W 2,p -regular for all p < ∞ . In particular, ψ∞ is locally C1,α -regular
for all α ∈ (0, 1). Hence ψ∞ satisfies (2.17) in the classical sense. Then
for any smooth vector field V on Xreg , we have

(2.18) V 〈ψ∞, ψ∞〉 = 〈∇V ψ∞, ψ∞〉+ 〈ψ∞,∇V ψ∞〉 = 0,

showing that |ψ∞| is a (nonzero) constant.
Since ψ∞ is parallel and locally W 2,p -regular, for smooth vector

fields V and W on Xreg we have

(2.19) 0 = ∇V∇Wψ∞ −∇W∇V ψ∞ −∇[V,W ]ψ∞ = R(V,W )ψ∞

in Lploc , for all p <∞ . Along with the nowhere-vanishing of ψ∞ , this
implies algebraically that RicX = 0 [BHMMM15, Corollary 2.8].

We recall that the W 2,p -regularity of gX around x ∈ Xreg is derived
using coordinates that are constructed by starting with harmonic co-
ordinates around points mi ∈Mi , with limi→∞mi = x and passing to
the limit [An90, Pf. of Main Lemma 2.2]. Hence the formula for Ric in
harmonic coordinates [An90, (2.7)] still holds weakly in the coordinates
around x ∈ X . By elliptic regularity, the vanishing of RicX implies
that gX is smooth on Xreg , relative to the smooth structure defined
by these coordinates. Being parallel, ψ∞ is also smooth.

From Theorem A.3, the spin structure on Xreg extends to an orbifold
spin structure on X . By removable singularity results for Einstein
metrics, gX is a smooth Ricci-flat orbifold Riemannian metric on X ;
c.f. [BKN89, §5].
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Given p ∈ Xsing , let (U, q,Γp) be an orbifold chart for a neighbor-
hood of p . Here U is a ball in R4 around the origin q , and Γp is the

local group of p . The lift of ψ∞ is a parallel spinor field ψ̂∞ on U − q .
Since U−q is simply connected, ψ̂∞ has a unique extension to a smooth
parallel spinor field over U . Hence ψ∞ extends uniquely to a nonzero
positive chirality parallel spinor field on X . Given x ∈ Xreg , let γ be
a special loop at x in the sense of [KL14, Chapter 2.2]. Identifying
the oriented isometry group of TxX with SO(4), from the decomposi-
tion Spin(4) = SU(2) × SU(2) it follows that the holonomies around
such γ ’s lie in one of the SU(2)-factors. (As the parallel spinor field
has positive chirality, our conventions are that the SU(2)-factor is the
second factor.) That is, X acquires the structure of a hyperKähler
orbifold. In particular, if p ∈ Xsing then we can take the orbifold chart
(U, q,Γp) to have U an open ball in C2 with origin q and Γp a finite
subgroup of SU(2) that acts freely on T 1

q U
∼= S3 .

2.3. ALE blowups. If p ∈ Xsing then there are points pi ∈Mi so that
limi→∞(Mi, pi) = (X, p) in the pointed Gromov-Hausdorff topology.
After passing to a subsequence, from [AC91, Remark 3.1] and [Ba90a,
Proposition 2] there is an appropriate sequence {δi}∞i=1 of positive num-

bers with limi→∞ δi = 0 so that limi→∞

(
Mi,

1
δ2i
gMi

, pi

)
= (Y, gY , y0) in

the pointed Gromov-Hausdorff topology, where Y is an nonflat Ricci-
flat ALE orbifold with finitely many orbifold singular points. The
decay rate of Y is order-4 in the terminology of [BKN89]; see [Ba90a,
Proposition 2] and [BKN89, Theorem 1.5]. For any small ε > 0, the
complement Cε of the ε-neighborhood of Ysing embeds in Mi for large
i . In particular, Cε admits a spin structure. Since H1(Cε;Z2) is finite,
after passing to a subsequence we can assume that the embeddings are
spin compatible. Taking ε going to zero, Yreg acquires a spin structure.
From Theorem A.3, the orbifold Y is a spin orbifold. Its tangent cone
at infinity is C2/Γp .

Lemma 2.20. Y has a nonzero parallel spinor field.

Proof. The proof is essentially the same as that of [Na90, Corollary
3.4], which treats the case when Y is a manifold, with only minor
changes. To make this clear, we outline the steps of the proof. From
the existence of the positive chirality parallel spinor ψ∞ in a neighbor-
hood of p ∈ X , the action of Γp on S3 is a right action in the sense of
[Na90, p. 390]. As in Witten’s proof of the positive mass theorem, one
constructs a positive chirality spinor field η0 on Y that is asymptot-
ically parallel at infinity, with norm approaching one. Then one puts
η = η0−DGDη , where D is the Dirac operator and G is the inverse of
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the (invertible) operator D2 , when considered as an operator between
appropriate weighted function spaces. The spinor field η is harmonic
and has the same asymptotics as η0 . This linear analysis extends with
only trivial change to the orbifold case.

Integration by parts, and the fact that Y is scalar-flat, give

(2.21) m = const.

∫
Y

|∇η|2 dvolY ,

where m is the ADM mass, as defined using integration over large
distance spheres in Y . The order-4 decay rate of Y implies that m =
0. Hence the positive chirality spinor field η is parallel.

�

Thus Y is also a hyperKähler orbifold.

2.4. Bubble tree. We can repeat the blowup analysis at a point of
Ysing , using the fact that Y has a nonzero parallel spinor field of
positive chirality. The result is that we get a bubble tree T , as in
[AC91, Ba90a]. (The papers [Ba90a, Ba90b] treat the case when the
initial manifold is Einstein, while [AC91] treats the more general case
of bounded Ricci curvature.) This is a finite directed rooted tree, with
a connected orbifold associated to each vertex. The orbifold associated
to the root vertex is X . The orbifolds associated to the other vertices v
are Ricci-flat ALE orbifolds Wv . The edges of T point inward toward
the root vertex. Given a vertex v ∈ T , the edges with terminus v are
in bijective correspondence with Wv,sing . The initial vertex v′ of such
an edge e is the result of the blowup analysis at the corresponding
point w ∈ Wv,sing . If Γw is the local group of w then the asymptotic
cone of Wv′ is C2/Γw . The finiteness of T comes from the uniform
upper bound on

∫
Mi
|RmMi

|2 dvolMi
, since each blowup orbifold has a

definite amount of
∫
|Rm|2 dvol.

Given k ≥ 0, let Tk be the vertices of distance k from the root
vertex. Let N be the largest k for which Tk 6= ∅ , which we will
call the height of T . The orbifolds associated to vertices in TN are
manifolds.

From T we can construct a compact smooth manifold MT that is
diffeomorphic to Mi , for large i . To describe MT , first consider the
case when N = 0. Then X is a smooth manifold and MT = X . If
N = 1 then T consists of the root vertex along with vertices in T1 . The
only edges in T join vertices in T1 to the root vertex. Given x ∈ Xsing ,
a small neighborhood Ox of x is orbifold-diffeomorphic to a finite cone
over the space form S3/Γx . If v′ ∈ T1 is the initial vertex of the edge
corresponding to x then its associated orbifold Wv′ has asymptotic
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cone C2/Γx . Let Px be a truncation of Wv′ whose boundary is a copy
of S3/Γx at large distance. We remove Ox from X and glue in a
rescaled copy of Px . Doing this for all x ∈ Xsing gives MT . Given
the combinatorics of the matchings, the gluing process is unique up to
isotopy, because of the existence of the small-scale asymptotics near x
and the large-scale asymptotics of Wv′ .

For N > 1, we do the same gluing procedure inductively. That is,
given a vertex v ∈ TN−1 , if there are no edges terminating at v then
the orbifold associated to v is a manifold and we leave it alone. If
there are edges terminating at v then the orbifold associated to v has
singular points. We remove neighborhoods of the singular points and
glue in truncated manifolds associated to the vertices v′ ∈ TN that
are joined to v in T . Doing this for all v ∈ TN−1 , the result is a
tree of height N − 1 for which the orbifolds associated to the vertices
of distance N − 1 from the root vertex are all noncompact manifolds.
Then we iterate downward in the height of the tree, until we finish with
MT .

From the uniqueness of the gluing procedure, up to isotopy, if we
know the orbifolds associated to the vertices of T and the combinatorics
of the matchings then we can uniquely determine the diffeomorphism
type of MT .

2.5. End of the proof. In the previous subsection, we did not make
reference to the hyperKähler structures. In our situation, all of the
orbifolds associated to the vertices of T carry hyperKähler structures.

Lemma 2.22. For large i, the manifold Mi is diffeomorphic to a hy-
perKähler manifold.

Proof. Consider the height N of the bubble tree T . If N = 0 then Mi

is diffeomorphic to the hyperKähler manifold X . If N > 0 then the
orbifolds associated to the vertices of T are hyperKähler ALE orbifolds.
Those associated to vertices in TN are hyperKähler ALE manifolds.

For a hyperKähler ALE manifold associated to a vertex in TN , if its
asymptotic cone is C2/Γ then the manifold is deformation equivalent
to the minimal resolution of C2/Γ, through hyperKähler ALE mani-
folds with asymptotic cone C2/Γ [Jo00, Theorem 7.2.3],[Kr89]. Conse-
quently, for our gluing purposes, we can assume that the hyperKähler
structure on the ALE manifold is exactly that of the minimal resolu-
tion.

Consider first the case N = 1. Using the compatible trivializations
of the positive chirality spinor bundles, in a neighborhood of a singular
point of X and at the infinity of the corresponding ALE manifold, there
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is no ambiguity in the matchings. We see that MT is the minimal
resolution of the hyperKähler orbifold X . As X is hyperKähler, it
has a trivial canonical bundle. The minimal resolution of an orbifold
of complex dimension two is a crepant resolution, i.e. the minimal
resolution of X also has a trivial canonical bundle. Hence it admits a
hyperKähler structure.

If N > 1 then let v be a vertex in TN−1 , with associated hyperKähler
ALE orbifold Wv . If there are no edges terminating at v then Wv is
a hyperKähler ALE manifold. As before, we deform it to a minimal
resolution of a C2/Γ. If there are edges terminating at v then Wv

is a hyperKähler ALE orbifold with singular points. From [Ba90a,
Theorem 4], after we perform the gluing procedure around the orbifold
singular points of Wv , the result has the structure of a hyperKähler
ALE manifold. We again deform it to a minimal resolution of a C2/Γ.

Doing this for all v ∈ TN−1 , we have reduced to a tree of height
N − 1. The lemma follows from downward iteration. �

Lemma 2.22 says that for large i , the manifold Mi is diffeomorphic
to a compact hyperKähler 4-manifold. Such a hyperKähler manifold

is a 4-torus or a K3 surface [BHPV04, Chapter 6]. Since Â(T 4) =
0, in either case we obtain a contradiction to the assumptions of the
argument.

Remark 2.23. From the gluing procedure, one obtains geometric ap-
proximations for the Mi ’s, for large i . It seems possible that one could
perturb the geometric approximation, as in [BM11, Theorem 2.5], in
order to find a Ricci-flat metric on Mi that is biLipschitz close to gi .

Remark 2.24. The direct higher dimensional analog of Theorem 1.1
would be to ask whether for any n ∈ Z+ , v > 0 and Λ,Υ <∞ , there
is some ε = ε(n, v,Λ,Υ) > 0 so that if M is a closed connected spin

Riemannian n-manifold with Â(M) 6= 0, vol(M) ≥ v , diam(M) ≤ 1,∫
M
|Rm|n2 dvolM ≤ Λ, RicM ≤ ΥgM and SM ≥ −ε , then M admits a

Ricci-flat metric of special holonomy.
The discussions of Subsections 2.3-2.4 go through without change to

produce a limit orbifold X with special holonomy, blowup Ricci-flat
ALE orbifolds with special holonomy and a bubble tree. However, if
n > 4 then there are more possibilities for the holonomies and hence
more possibilities for the orbifolds associated to the vertices of the
bubble tree. Rather than trying to classify the possibilities, it is con-
ceivable that one could perform a gluing construction, as mentioned in
Remark 2.23, in order to directly construct Ricci-flat metrics of special
holonomy.
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3. Proofs of Theorem 1.3 and Corollary 1.4

We first prove Theorem 1.3(1). Arguing by contradiction, if it is not
true then for some n ∈ Z+ , v > 0 and Λ,Υ <∞ , there is a sequence
{(Mi, gi)}∞i=1 of closed connected n-dimensional Riemannian manifolds
with

•
∫
Mi
|RmMi

|n2 dvolMi
≤ Λ,

• vol(Mi) ≥ v ,
• diam(Mi) ≤ 1,
• − 1

i
gi ≤ RicMi

≤ Υgi and
• |π1(Mi)| ≥ i , but
• Mi does not admit a W 2,p -regular Riemannian metric hi with

nonnegative measurable Ricci curvature for which the universal
cover (M̃i, h̃i) isometrically splits off an R-factor.

By [An90, Theorem 2.6], after passing to a subsequence we can as-
sume that limi→∞(Mi, gi) = (X, gX) in the Gromov-Hausdorff topol-
ogy, where

• X is a four dimensional compact orbifold with finitely many
isolated orbifold singularities,
• gX is a continuous orbifold Riemannian metric on X , and
• gX is locally C1,α -regular away from the singular points, for all
α ∈ (0, 1).

As before, gX is locally W 2,p -regular on Xreg , for all p < ∞ . In
particular, gX has a locally-Lp Ricci tensor.

Given x ∈ X , there are points pi ∈ Mi so that limi→∞(Mi, pi) =
(X, x) in the pointed Gromov-Hausdorff topology. Put Γi = π1(Mi, pi),
let πi : M̃i →Mi be the universal cover of Mi equipped with the pull-
back metric gM̃i

, and pick p̃i ∈ π−1
i (pi). After passing to a subsequence,

we can assume that limi→∞(M̃i, p̃i,Γi) = (Y, p̃,Γ) in the equivariant
pointed Gromov-Hausdorff topology of [FY92, §3], where (Y, p̃) is a
pointed length space on which Γ acts by isometries, with quotient X .

Since |π1(Mi)| ≥ i , we know that vol(M̃i) ≥ iv , so limi→∞ vol(M̃i) =
∞ . Using the fact that RicMi

≥ −1, volume comparison implies that

limi→∞ diam(M̃i) = ∞ . Hence diamY = ∞ and Y is noncompact.
We have RicMi

≥ − 1
i
, so the Cheeger-Colding almost splitting theo-

rem [CC96, Theorem 6.64] holds on Y . As the action of Γ on Y is
cocompact, the Cheeger-Gromoll argument [CG72, §9] implies that Y
is isometric to Rm × Z , where 1 ≤ m ≤ n and Z is a compact length
space.
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Lemma 3.1. Given r > 0, there is a upper bound on the integral of
|RmM̃i

|n2 over r -balls in M̃i , uniform in i.

Proof. Since RicMi
≥ − 1

i
gi , Bishop-Gromov relative volume compar-

ison gives an explicit c = c(n, v, r) > 0 such that for any mi ∈ Mi ,
we have vol(Br(mi)) ≥ c . Let m̃i be a preimage of mi in M̃i . Ab-
solute volume comparison gives an explicit c′ = c′(n, r) < ∞ such
that vol(B10r(m̃i)) ≤ c′ . Suppose now that some m′i ∈ Br(mi) has N
preimages in Br(m̃i). Then any m′′i ∈ Br(mi) has at least N preimages
in B10r(m̃i). Thus

(3.2) N ≤ vol(B10r(m̃i))

vol(Br(mi))
≤ c′

c
.

Hence

(3.3)

∫
Br(m̃i)

|RmM̃i
|
n
2 dvolM̃i

≤ c′

c

∫
Mi

|RmMi
|
n
2 dvolMi

≤ c′

c
Λ.

This proves the lemma. �

Using Lemma 3.1, we can apply [An90] to conclude that Y is an
n-dimensional orbifold with a discrete set of isolated orbifold singular
points, and a nonnegative measurable Ricci tensor. From the splitting
Y ∼= Rm × Z , the set of singular points in Y must be empty. Then
limi→∞(M̃i, p̃i) = (Y, p̃), with Riemannian metrics converging in the
pointed weak W 2,p -topology; c.f. [An90, Remark 2.7(ii)]. In particular,
Y has nonnegative measurable Ricci curvature.

Since X = Y/Γ is n-dimensional, it follows that Γ ⊂ Iso(Y ) is
discrete. A priori, Γ need not act freely on Y . However, since the
orbifold singular points of X are isolated, if Γ does not act freely on Y
then the points in Y with nontrivial isotropy groups must be isolated.
We claim that the action is free in our situation.

Lemma 3.4. The group Γ acts freely on Y .

Proof. Suppose to the contrary that there is a point q ∈ Y with a
nontrivial isotropy group. Let γ ∈ Γ be a nontrivial element that fixes
q . Then q is isolated in the fixed point set of γ . Since the action of γ
near q can be linearized, there exist r > 0 and δ ∈ (0, r/100) such that
Bs(q) is a topological ball for any s ∈ (0, 10r), and dY (γ(y), y) > δ for
any y ∈ Y with r/2 < dY (q, y) < 2r .

Let γi ∈ Γi converge to γ and let qi ∈ M̃i converge to q . Since
γ(q) = q we have limi→∞ dM̃i

(γi(qi), qi) = 0. Hence for large i ,

(3.5) Br− δ
100

(qi) ⊂ γi(Br(qi)) ⊂ Br+ δ
100

(qi).
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Also, dM̃i
(γi(m̃i), m̃i) > δ/2 for any m̃i ∈ M̃i with r/2 < dM̃i

(m̃i, qi) <

2r . Since limi→∞(M̃i, qi) = (Y, q) in the pointed C1,α -topology, we
can find a closed topological 4-disk Di ⊂ M̃i which is εi -Hausdorff
close to Br(qi) with εi → 0. Its image γi(Di) is εi -Hausdorff close
to γi(Br(qi)). Then for large i , equation (3.5) implies that γi(Di) is
δ
50

-Hausdorff close to Br(qi). Using the fact that B2r(qi) is C1,α -close
to B2r(q) ⊂ Y , by slightly squeezing B2r(qi) inward we can find a
continuous map φi : B2r(qi)→ M̃i such that

• φi acts as the identity on Br−δ/10(qi),
• φi sends Br+δ/20(qi) into Br−δ/20(qi), and

• dM̃i
(φi(m̃i), m̃i) <

δ
5

for all m̃i ∈ B2r(qi).

Then φi(γi(Di)) ⊂ Di .
The map φi ◦ γi : Di → Di is continuous. We wish to show that

for large i , it has no fixed points. If m̃i ∈ Br−δ/5(qi) then for large i ,
we have γi(m̃i) ∈ Br−δ/10(qi) and so (φi ◦ γi)(m̃i) = γi(m̃i) 6= m̃i . If
m̃i ∈ Di but m̃i /∈ Br−δ/5(qi) then

dM̃i
((φi ◦ γi)(m̃i), m̃i) ≥(3.6)

dM̃i
(γi(m̃i), m̃i)− dM̃i

((φi ◦ γi)(m̃i), γi(m̃i)) >
3

10
δ.

Hence φi ◦ γi has no fixed points in Di . This contradicts the Brouwer
fixed point theorem, so Γ must act freely on Y . �

We now know that X is a W 3,p -manifold. Therefore, from conver-
gence theory, Mi is W 3,p -diffeomorphic to X for all large i . Pulling
back the metric on X to Mi gives a metric hi that contradicts our
assumptions. This proves Theorem 1.3(1).

To prove part (2) of the theorem, we replace the upper Ricci curva-
ture bound in the contradiction argument, by the assumption that

• |RicMi
| ≤ 1

i
.

We construct the orbifold X as before. Because of the Ricci pinching of
Mi , the metric gX has vanishing measurable Ricci tensor away from the
singular points. Then gX is smooth and Ricci-flat away from the sin-
gular points. By removable singularity results for Einstein metrics, gX
is a smooth Ricci-flat orbifold Riemannian metric on X ; c.f. [BKN89,
§5]. The rest of the proof proceeds as before. �

We now prove part (1) of Corollary 1.4. From [CN15, Theorem 1.13],
for any v > 0 there is a constant Λ = Λ(v) > 0 so that vol(M) ≥ v ,
diam(M) ≤ 1 and |RicM | ≤ 3 imply that

∫
M
|Rm|2 dvolM ≤ Λ. With-

out loss of generality, we can assume that the constant ε in Theo-
rem 1.3 is less than 3. From the proof of Theorem 1.3(1), we obtain a
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W 2,p -regular metric h on M with nonnegative measurable Ricci cur-
vature for which the universal cover (M̃, h̃) is an isometric product
Rm ×K , where 1 ≤ m ≤ n and K is a compact length space. Since
isometries take lines to lines, the arguments of [CG72, §9] show that
Iso(Rm×K) ∼= Iso(Rm)×Iso(K), with the action of π1(M) on Rm×K
being diagonal. By [CN12, Theorem 1.21], Iso(K) is a Lie group.

Now K is a compact W 3,p -manifold of dimension at most three,
equipped with a W 2,p -regular Riemannian metric gK having nonneg-
ative measurable Ricci tensor. Also, Iso(K) is a compact Lie group
G that acts on K by W 3,p -diffeomorphisms. We can fix an under-
lying smooth structure on K for which G acts by smooth diffeomor-
phisms; c.f. [Pa70, Theorem B]. (Any two such smooth structures are
G-diffeomorphic; c.f. [Pa70, Theorem A].) We can slightly smooth gK
to get a sequence {gk}∞k=1 of Riemannian metrics on K with diameter
uniformly bounded above, volume uniformly bounded below by a pos-
itive number, and Ricgk ≥ − 1

k
. Furthermore, this smoothing can be

done equivariantly with respect to G . (For example, we could pick a
smooth G-invariant metric on K and apply the ensuing heat operator,
acting on symmetric 2-tensor fields, to our W 2,p -regular Riemannian
metric for short time.) From [Si12, Corollary 1.12], there is a smooth
Riemannian metric on K with nonnegative Ricci curvature. The con-
struction of this metric, using Ricci flow, can be done G-equivariantly.
Hence we obtain a smooth metric h∞ on (Rm ×K)/π1(M) with non-
negative Ricci curvature. There is a C∞ -diffeomorphism from M to
(Rm×K)/π1(M), the latter being equipped with the quotient smooth
structure. Pulling back h∞ to M , part (1) of the corollary follows.

The proof of part (2) of the corollary is similar but easier, using
Theorem 1.3(2). In this case, K is Ricci-flat. Since it has dimension
at most three, it is flat. Hence the metric h′ of Theorem 1.3(2) is flat.
The corollary follows. �

Remark 3.7. In the conclusions of Theorem 1.3 and Corollary 1.4, a
finite cover of M is diffeomorphic to a product S1 ×N .

Remark 3.8. With regard to the conclusion of Corollary 1.4(2), we
can also say that the flat metric is C1,α -close to the original metric g .

4. Proof of Theorem 1.7

Arguing by contradiction, if Theorem 1.7 is not true then there is
a sequence {(Mi, gi)}∞i=1 of closed connected Riemannian n-manifolds
with

• vol(Mi) ≥ v ,
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• diam(Mi) ≤ 1 and
• RicMi

≥ − 1
i
, but

• π1(Mi) does not have an abelian subgroup (of index at most i)
generated by at most n elements.

By Gromov’s precompactness theorem, we can assume that limi→∞(Mi, gi) =
(X, dX) in the Gromov-Hausdorff topology, where (X, dX) is a compact
length space. The uniform lower volume bound on the Mi ’s implies
that X has Hausdorff dimension n [CC97, Theorem 5.9].

Let p ∈ X be a regular point, meaning that every tangent cone
TpX is isometric to Rn . The existence of regular points is guaranteed
by [CC97, Theorem 2.1]. A small neighborhood of p is homeomorphic
to an open ball in Rn [CC97, Theorem A.1.8]. Furthermore, for any
sequence pi ∈ Mi converging to p , there is some ε > 0 such that for
all large i , the ball Bε(pi) is contained in a topological disk Di ⊂
Mi [CC97, Theorem A.1.8].

In particular, for all large i ,

(4.1) any loop at pi of length at most ε/2 is contractible.

By passing to a subsequence, we can assume that this is true for all i .
As in Section 3, put Γi = π1(Mi, pi), let πi : M̃i → Mi be the

universal cover of Mi equipped with the pullback metric gM̃i
, and

pick p̃i ∈ π−1
i (pi). After passing to a subsequence, we can assume

that limi→∞(M̃i, p̃i,Γi) = (Y, p̃,Γ) in the equivariant pointed Gromov-
Hausdorff topology, where Γ is a closed subgroup of Iso(Y ) and Y/Γ =
X .

Given γi ∈ Γi we will refer to |γi| = d(p̃i, γi(p̃i)) as the norm or the
length of γi . We will use the same notation for elements γ of Γ. By
(4.1), any nontrivial γi ∈ Γi satisfies |γi| ≥ ε/2. This property passes
to the limit, so

(4.2) any nontrivial γ ∈ Γ satisfies |γ| = d(p̃, γp̃) ≥ ε/2.

The length space Y satisfies the splitting theorem [CC96, Theorem
6.64]. Since the action of Γ on X is cocompact, the Cheeger-Gromoll
argument [CG72, §9] implies that Y is isometric to Rm × Z where Z
is a compact length space and m ≤ n . Furthermore, since isometries
take lines to lines, the arguments of [CG72, §9] show that Iso(Y ) ∼=
Iso(Rm)× Iso(Z), with the action of Γ on Y = Rm×Z being diagonal.
Let φ : Γ→ Iso(Rm) be the composition of inclusion Γ→ Iso(Y ) and
projection onto the first factor. Put H = kerφ . Then H is a subgroup
of the compact group Iso(Z). Property (4.2) and the compactness of
Z imply that H is a discrete subgroup of Iso(Z), and hence is finite.
Again using property (4.2), we obtain that L = φ(Γ) is a closed discrete
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subgroup of Iso(Rm). It must be cocompact and hence it contains a
free abelian subgroup of finite index and rank m , consisting only of
translations. There is a short exact sequence

(4.3) 1→ H → Γ→ L→ 1,

where H is finite, Γ is finitely presented and L is crystallographic.
Let 〈γ1, . . . γN1|w1, . . . , wN2〉 be a presentation of Γ. By possibly

increasing the generating set, we can assume that it contains all of the
elements γ of Γ with |γ| ≤ 10. The number of such elements is still
bounded because of (4.2) and Bishop-Gromov volume comparison. Let
T be the maximum wordlength of the relations w1, . . . , wN2 .

For large i , properties (4.1) and (4.2), along with the definition of
equivariant pointed Gromov-Hausdorff convergence [FY92, §3], imply
that for any generator γj , there is a unique γij ∈ Γi that approximates
γj in the sense of [FY92, Definition 3.3]. In other words, all generators
γj have unique “lifts” to Γi . In particular, γij will be uniformly ε

10T
-

close to γj on B10T (p̃i), in the sense of [FY92, Definition 3.3(4,5)].
Hence any relation ws(γ1, . . . , γN1) = 1 remains true for the lifts, i.e.
ws(γ

i
1, . . . , γ

i
N1

) = 1, as otherwise one would obtain a noncontractible
loop at pi with length at most ε/2.

Thus there is a homomorphism ρi : Γ→ Γi defined by ρi(γk) = γik .
Now ρi is an epimorphism, since π1(Mi, pi) is generated by loops of
length at most 2 diam(Mi) ≤ 2, and the image of ρi contains all such
elements by construction. From (4.3), it follows that Γ contains a
finite-index free abelian subgroup Γ′ of rank m . Call the index c .
Then ρi(Γ

′) is an abelian subgroup of Γi (of index at most c) generated
by at most n elements. This contradicts our assumptions and proves
Theorem 1.7. �

Appendix A. Orbifold Spin Structures

Let M be a smooth oriented n-dimensional Riemannian manifold.
Let F (M) denote the oriented orthonormal frame bundle of M , a
principal SO(n)-bundle. A spin structure on M is given by a principal
Spin(n)-bundle F̃ (M) over M and a double cover F̃ (M) → F (M)
that is equivariant, with respect to the Spin(n)-action on F̃ (M) and
the SO(n)-action on F (M). A spin structure exists if and only if
w2(M) = 0. If w2(M) = 0 then H1(M ;Z2) acts freely and transitively
on the set of spin structures on M .

Now let X be a smooth oriented effective n-dimensional Riemannian
orbifold. In this appendix, we denote its underlying topological space
by |X| . The oriented orthonormal frame bundle F (X) is a smooth
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manifold with a locally free SO(n)-action. The quotient F (X)/SO(n)
is homeomorphic to |X| . Given p ∈ |X| , choose f ∈ F (X) that
projects to p . The isotropy group Gf , for the SO(n)-action at f , is
isomorphic to the local group Γp of the orbifold point.

Suppose that F̃ (X) is a smooth manifold with a locally free Spin(n)-
action and a surjective map r : F̃ (X) → F (X) that is equivariant,
with respect to the Spin(n)-action on F̃ (X) and the SO(n)-action

on F (X). Given f̃ ∈ F̃ (X) and putting f = r(f̃), we obtain a
homomorphism hf̃ : Gf̃ → Gf between isotropy groups.

Definition A.1. A spin structure on X is given by a manifold F̃ (X)
as above such that the homomorphisms hf̃ are all isomorphisms.

If X happens to be a smooth manifold then we recover the notion
of a spin structure for a manifold.

Let Sn be the Spin(n)-spinor module.

Definition A.2. A spinor field on X is a Spin(n)-equivariant smooth
map from F̃ (X) to Sn .

Theorem A.3. Suppose that X is a smooth orientable effective n-
dimensional Riemannian orbifold with isolated singular points. If n ≥ 4
then any spin structure on the manifold |X|reg extends to an orbifold
spin structure on X .

To prove Theorem A.3, we begin by localizing the problem. Given
p ∈ |X|sing , let Γp denote its local group. We can choose an orbifold
chart (U, q,Γp) and a neighborhood V ⊂ |X| of p so that

(1) U is a ball in Rn around the origin q ,
(2) Γp acts linearly on U and freely on U\{q} , and
(3) U/Γp is homeomorphic to V , with q mapping to p .

As |X|reg has a spin structure, there is an induced spin structure on
∂V ∼= Sn−1/Γp .

Consider the double cover π : Spin(n)→ SO(n). Put Γ̃p = π−1(Γp).
There is a short exact sequence

(A.4) 1→ Z2 → Γ̃p → Γp → 1.

Lemma A.5. Suppose that for all p ∈ |X|sing , the sequence (A.4)
splits. Then Theorem A.3 is true.

Proof. Given p ∈ |X|sing , let ρp : Γp → Γ̃p ⊂ Spin(n) be a splitting of
(A.4). Then U ×ρp Spin(n) maps to F (V ) = U ×Γp SO(n) equivari-
antly, with respect to the Spin(n)-action on U ×ρp Spin(n) and the
SO(n)-action on F (V ). The map U ×ρp Spin(n) → F (V ) gives an
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isomorphism of isotropy groups for the Spin(n) and SO(n)-actions.
The restriction ∂U ×ρp Spin(n) → F (∂V ) gives a spin structure on
∂V ∼= Sn−1/Γp . The splittings of (A.4) are acted upon freely and
transitively by H1(Γp;Z2), while the spin structures on Sn−1/Γp are
acted upon freely and transitively by H1(Sn−1/Γp;Z2) ∼= H1(Γp;Z2)
(where the latter isomorphism holds since n ≥ 4 and hence Sn−1 is 2-
connected). Thus we can find a possibly different splitting ρp : Γp → Γ̃p
of (A.4) that is compatible with the given spin structure on ∂V .

For all p ∈ |X|sing , we can assume that V is an εp -ball around
p ∈ |X| , for some εp > 0. Put Xtrunc = |X|\

⋃
p∈|X|sing B(p, εp), a

smooth manifold. Let F̃ (Xtrunc) be the restriction of the principal
Spin(n)-bundle from |X|reg to Xtrunc . For each p ∈ |X|sing and in

terms of its local model, glue U ×ρp Spin(n) to F̃ (Xtrunc) over ∂V .
The resulting manifold has a locally free Spin(n)-action and is a model
for F̃ (X), compatible with the given spin structure on |X|reg . This
shows that X is a spin orbifold. �

We now show that the hypothesis of Lemma A.5 is satisfied. For
convenience, we drop the p-subscripts. To begin, we know that Sn−1/Γ
has a spin structure.

Let f : Γ → SO(n) be the inclusion map and let Bf : BΓ →
BSO(n) be its extension to classifying spaces. Let wuniv2 ∈ H2(BSO(n);Z2)
denote the universal second Stiefel-Whitney class for SO(n)-bundles.

Lemma A.6. Bf ∗(wuniv2 ) vanishes in H2(BΓ;Z2).

Proof. Taking the Γ-quotient of the vector bundle decomposition Sn−1×
Rn = TSn−1⊕ ε1 gives Sn−1×Γ Rn = T (Sn−1/Γ)⊕ ε1 . Thus the stable
tangent bundle of Sn−1/Γ is the flat bundle Sn−1 ×Γ Rn .

Let g : Sn−1/Γ→ BΓ be the classifying map for the universal cover
Sn−1 → Sn−1/Γ. Then Sn−1 ×Γ Rn is the pullback under g of the flat
bundle EΓ×Γ Rn over BΓ.

It follows that the classifying map for the vector bundle T (Sn−1/Γ)⊕
ε1 is h = Bf ◦ g : Sn−1/Γ→ BSO(n). As Sn−1/Γ is spin,

(A.7) 0 = w2(Sn−1/Γ) = h∗(wuniv2 ) = g∗(Bf ∗(wuniv2 )).

Since n ≥ 4, the map g∗ is an isomorphism on H2(−;Z2). Hence
Bf ∗(wuniv2 ) vanishes in H2(BΓ;Z2). This proves the lemma. �

We wish to give an alternative interpretation of Bf ∗(wuniv2 ). Let us
first consider an auxiliary problem of classifying fibrations with BZ2 =
RP∞ fibers. Since BZ2 is an Eilenberg-Maclane K(Z2, 1) space, such
a fibration over a reasonable space Y is classified by its k -invariant,
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an element of [Y,K(Z2, 2)] ∼= H2(Y ;Z2). The k -invariant is functorial
with respect to pullbacks.

Next, let G be a finitely generated group. (We will eventually take
G = Γ, but for the moment we work in greater generality.) A Z2 -
extension

(A.8) 1→ Z2 → G̃→ G→ 1

is classified algebraically by an element α ∈ H2(G;Z2). In addition,
the exact sequence (A.8) induces a fibration

(A.9) BZ2 → BG̃→ BG

Lemma A.10. The obstruction class α ∈ H2(G;Z2) of the short exact
sequence (A.8) vanishes if and only if the k -invariant k ∈ H2(BG;Z2)
of the fibration (A.9) vanishes.

Proof. If α = 0 then the extension (A.8) splits, so the fibration (A.9) is
trivial and k = 0. Conversely, suppose that k = 0. Then the fibration
(A.9) is trivial. Looking at its long exact homotopy sequence we see
that the sequence

(A.11) 1→ π1(BZ2)→ π1(BG̃)→ π1(BG)→ 1

is split exact. Hence (A.8) is split exact and α = 0. This proves the
lemma. �

Remark A.12. The proof of Lemma A.10 shows that two extensions

(A.13) 1→ Z2 → G̃i → G→ 1 i = 1, 2

are equivalent if and only if the corresponding fibrations

(A.14) BZ2 → BG̃i → BG i = 1, 2

are equivalent. Hence α = k , relative to the identification H2(G;Z2) ∼=
H2(BG;Z2). �

The short exact sequence 1 → Z2 → Spin(n) → SO(n) → 1 gives
rise to a universal bundle

(A.15) BZ2 → BSpin(n)→ BSO(n).

Lemma A.16. The k -invariant of (A.15) equals wuniv2 ∈ H2(BSO(n);Z2).

Proof. The bundle (A.15) is nontrivial and hence it has a nonzero k -
invariant in H2(BSO(n);Z2). But H2(BSO(n);Z2) ∼= Z2 with the
generator equal to the universal Stiefel-Whitney class wuniv2 . Thus the
k -invariant is equal to wuniv2 . �
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To complete the proof of Theorem A.3, we have the following com-
mutative diagram :

(A.17) BZ2

��

BZ2

��
BΓ̃ //

��

BSpin(n)

��
BΓ

Bf // BSO(n).

By naturality and Lemma A.16, the k -invariant of the bundle BZ2 →
BΓ̃ → BΓ equals Bf ∗(wuniv2 ). By Lemma A.6, this vanishes. Apply-
ing Lemma A.10 with G = Γ and G̃ = Γ̃, the short exact sequence
(A.4) splits. Hence Lemma A.5 implies Theorem A.3.

Remark A.18. If X has cyclic local groups then Theorem A.3 was
proven in [Ru94, Appendix A] by different means.
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[BK] S. Brendle and N. Kapouleas. Gluing Eguchi-Hanson metrics and a question
of Page. to appear in Comm. Pure and Applied Math.

[CW] E. Cabezas-Rivas and B. Wilking. to appear.
[Ch69] J. Cheeger. Pinching theorems for a certain class of Riemannian manifolds.

Amer. J. Math. 91:807–834, 1969.
[CC96] J. Cheeger and T. Colding. Lower bounds on Ricci curvature and the almost

rigidity of warped products. Ann. of Math. 144(1):189–237, 1996.
[CC97] J. Cheeger and T. Colding. On the structure of spaces with Ricci curvature

bounded below I. J. Differential Geom. 46(3):406-480, 1997.
[CG71] J. Cheeger and D. Gromoll. The splitting theorem for manifolds of nonneg-

ative Ricci curvature J. Differential Geometry 6:119–128, 1971/72.
[CG72] J. Cheeger and D. Gromoll. On the structure of complete manifolds of

nonnegative curvature. Ann. of Math. 96:413–443, 1972.
[CN15] J. Cheeger and A. Naber. Regularity of Einstein manifolds and the codi-

mension 4 conjecture. Ann. of Math. 182(3):1093–1165, 2015.
[CN12] T. Colding and A. Naber. Sharp Hölder continuity of tangent cones for
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