An optimal lower curvature bound for convex hypersurfaces in Riemannian manifolds

S. Alexander, V. Kapovitch, A. Petrunin

The purpose of this paper is to provide a reference for the following theorem:

Theorem 1. Let M be a Riemannian manifold with sectional curvature $\geq \kappa$. Then any convex hypersurface $F \subset M$ equipped with the induced intrinsic metric is an Alexandrov's space with curvature $\geq \kappa$.

Here is a slightly weaker statement:

Theorem 2. [Buyalo] If M is a Riemannian manifold, then any convex hypersurface $F \subset M$ equipped with the induced intrinsic metric is locally an Alexandrov's space.

In the proof of Theorem 2 in [Buyalo], the (local) lower curvature bound depends on (local) upper as well as lower curvature bounds of M. We show that the proof in [Buyalo] can be modified to give 1.

Definition 3. A locally Lipschitz function f on an open subset of a Riemannian manifold is called λ -concave if for any unit-speed geodesic γ , the function

$$f \circ \gamma(t) - \lambda t^2/2$$

is concave.

Lemma 4. Let $f: \Omega \to \mathbb{R}$ be a λ -concave function on an open subset Ω of a Riemannian manifold. Then there is a sequence of nested open domains Ω_i , with $\Omega_i \subset \Omega_j$ for i < j and $\cup_i \Omega_i = \Omega$, and a sequence of λ_i -concave functions $f_i: \Omega_i \to \mathbb{R}$ such that

(i) on any compact subset $K \subset \Omega$, f_i converges uniformly to f;

(*ii*) $\lambda_i \to \lambda$ as $i \to \infty$.

This lemma is a slight generalization of [Greene–Wu, Theorem 2] and can be proved exactly the same way.

Proof of Theorem 1. Without loss of generality one can assume that

- (a) $\kappa \ge -1$,
- (b) F bounds a compact convex set C in M,

- (c) there is a (-2)-concave function μ defined in a neighborhood of C and $|\mu(x)| < 1/10$ for any $x \in C$,
- (d) there is unique minimal geodesic between any two points in C.

(If not, rescale and pass to the boundary of the convex piece cut by F from a small convex ball centered at $x \in F$, taking $\mu = -10 \operatorname{dist}_x^2$.)

Consider the function $f = \text{dist}_F$. From the Rauch comparison, for any unit-speed geodesic γ in the interior of C, $(f \circ \gamma)''$ is bounded in the support sense by the corresponding value in the model case (when $M = \mathbb{H}^2$ and F is a geodesic). In particular,

$$(f \circ \gamma)'' \leqslant f \circ \gamma.$$

Therefore $f + \varepsilon \mu$ is $(-\varepsilon)$ -concave in $\Omega_{\varepsilon} = C \cap f^{-1}((0,\varepsilon))$. Take $K_{\varepsilon} = f^{-1}([\frac{1}{3}\varepsilon, \frac{2}{3}\varepsilon]) \cap C$. Applying lemma 4, we can find a smooth $(-\frac{\varepsilon}{2})$ -concave function f_{ε} which is arbitrarily close to $f + \varepsilon \mu$ on K_{ε} and which is defined on a neighborhood of K_{ε} . Take a regular value $\vartheta_{\varepsilon} \approx \frac{1}{2}\varepsilon$ of f_{ε} . (In fact one can take $\vartheta_{\varepsilon} = \frac{1}{2}\varepsilon$, but it requires a little work.) Since $|\mu|_C| < 1/10$, the level set $F_{\varepsilon} = f_{\varepsilon}^{-1}(\vartheta_{\varepsilon})$ will lie entirely in K_{ε} . Therefore F_{ε} forms a smooth closed convex hypersurface. By the Gauss formula, the sectional curvature of the induced intrinsic metric of F_{ε} is $\geq \kappa$. F_{ε} bounds a compact convex set C_{ε} , where $F_{\varepsilon} \to F$, $C_{\varepsilon} \to C$ in Hausdorff sense as $\varepsilon \to 0$. By property (d), the restricted metrics from M to C, C_{ε} are intrinsic, and so C_{ε} is an Alexandrov space with F_{ε} as boundary, that converges in Gromov–Hausdorff sense to C. It follows from [Petrunin, Theorem 1.2] (compare [Buyalo, Theorem 1]) that F_{ε} equipped with its intrinsic metric. Therefore F is an Alexandrov space with curvature $\geq \kappa$.

Remark 5. We are not aware of any proof of theorem 1 which is not based on the Gauss formula. (Although if M is Euclidean space, there is a beautiful purely synthetic proof in [Milka].) Finding such a proof would be interesting on its own, and also could lead to the generalization of theorem 1 to the case when M is an Alexandrov space.

References

- [Buyalo] Buyalo, S., Shortest paths on convex hypersurface of a Riemannian manifold (Russian), Studies in Topology, Zap. Nauchn. Sem. LOMI 66 (1976) 114–132; translated in J. of Soviet Math. 12 (1979), 73–85.
- [Greene–Wu] Greene, R. E.; Wu, H.-H., On the subharmonicity and plurisubharmonicity of geodesically convex functions. Indiana Univ. Math. J. 22 (1972/73), 641–653.

- [Milka] Milka, A. D. Shortest arcs on convex surfaces (Russian), Dokl. Akad. Nauk SSSR 248 1979, no. 1, 34–36; translated in Soviet Math. Dokl. 20 (1979), 949-952.
- [Petrunin] Petrunin, A., Applications of quasigeodesics and gradient curves. Comparison geometry (Berkeley, CA, 1993–94), 203–219, Math. Sci. Res. Inst. Publ., 30, Cambridge Univ. Press, Cambridge, 1997.