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The purpose of this paper is to provide a reference for the following theorem:

Theorem 1. Let M be a Riemannian manifold with sectional curvature > κ .
Then any convex hypersurface F ⊂M equipped with the induced intrinsic metric
is an Alexandrov’s space with curvature > κ .

Here is a slightly weaker statement:

Theorem 2. [Buyalo] If M is a Riemannian manifold, then any convex hyper-
surface F ⊂M equipped with the induced intrinsic metric is locally an Alexan-
drov’s space.

In the proof of Theorem 2 in [Buyalo], the (local) lower curvature bound
depends on (local) upper as well as lower curvature bounds of M . We show
that the proof in [Buyalo] can be modified to give 1.

Definition 3. A locally Lipschitz function f on an open subset of a Riemannian
manifold is called λ -concave if for any unit-speed geodesic γ , the function

f ◦ γ(t)− λt2/2

is concave.

Lemma 4. Let f : Ω → R be a λ-concave function on an open subset Ω of
a Riemannian manifold. Then there is a sequence of nested open domains Ωi ,
with Ωi ⊂ Ωj for i < j and ∪iΩi = Ω , and a sequence of λi -concave functions
fi : Ωi → R such that

(i) on any compact subset K ⊂ Ω , fi converges uniformly to f ;

(ii) λi → λ as i→∞ .

This lemma is a slight generalization of [Greene–Wu, Theorem 2] and can
be proved exactly the same way.

Proof of Theorem 1. Without loss of generality one can assume that

(a) κ > −1,

(b) F bounds a compact convex set C in M ,
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(c) there is a (−2)-concave function µ defined in a neighborhood of C and
|µ(x)| < 1/10 for any x ∈ C ,

(d) there is unique minimal geodesic between any two points in C .

(If not, rescale and pass to the boundary of the convex piece cut by F from a
small convex ball centered at x ∈ F , taking µ = −10 dist2x .)

Consider the function f = distF . From the Rauch comparison, for any
unit-speed geodesic γ in the interior of C , (f ◦ γ)′′ is bounded in the support
sense by the corresponding value in the model case (when M = H2 and F is a
geodesic). In particular,

(f ◦ γ)′′ 6 f ◦ γ.

Therefore f + εµ is (−ε)-concave in Ωε = C ∩ f−1((0, ε)). Take Kε =
f−1([ 13ε,

2
3ε]) ∩ C . Applying lemma 4, we can find a smooth (− ε

2 )-concave
function fε which is arbitrarily close to f + εµ on Kε and which is defined
on a neighborhood of Kε . Take a regular value ϑε ≈ 1

2ε of fε . (In fact one
can take ϑε = 1

2ε , but it requires a little work.) Since |µ|C | < 1/10, the
level set Fε = f−1ε (ϑε) will lie entirely in Kε . Therefore Fε forms a smooth
closed convex hypersurface. By the Gauss formula, the sectional curvature of
the induced intrinsic metric of Fε is > κ . Fε bounds a compact convex set Cε ,
where Fε → F , Cε → C in Hausdorff sense as ε → 0. By property (d), the
restricted metrics from M to C,Cε are intrinsic, and so Cε is an Alexandrov
space with Fε as boundary, that converges in Gromov–Hausdorff sense to C .
It follows from [Petrunin, Theorem 1.2] (compare [Buyalo, Theorem 1]) that Fε

equipped with its intrinsic metric converges in Gromov–Hausdorff sense to F
equipped with its intrinsic metric. Therefore F is an Alexandrov space with
curvature > κ .

Remark 5. We are not aware of any proof of theorem 1 which is not based
on the Gauss formula. (Although if M is Euclidean space, there is a beautiful
purely synthetic proof in [Milka].) Finding such a proof would be interesting on
its own, and also could lead to the generalization of theorem 1 to the case when
M is an Alexandrov space.
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