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Abstract. We show that if X is a limit of n-dimensional Riemannian manifolds with Ricci
curvature bounded below and γ is a limit geodesic in X then along the interior of γ same
scale measure metric tangent cones Tγ(t)X are Hölder continuous with respect to measured
Gromov-Hausdorff topology and have the same dimension in the sense of Colding-Naber.

1. Introduction

In this paper we obtain new continuity results for tangent cones along interiors of limit
geodesics in Gromov-Hausdorff limits of manifolds with lower Ricci curvature bounds.

Our main technical result is the following

Theorem 1.1. For any H ∈ R and 0 < δ < 1/3, there exist r0(n, δ,H), ε(n, δ,H) > 0 and
0 < α(n) < 1 such that the following holds:
Suppose that (Mn, g) is a complete n-dimensional Riemannian manifold with RicM ≥ (n −
1)H and let γ : [0, 1] → M be a unit speed minimizing geodesic. Then for any t1, t2 ∈
(δ, 1 − δ) with |t1 − t2| < ε and any r < r0 there exist subsets Cr

i ⊂ Br(γ(ti)) (i = 1, 2) with

volCr
i

vol Br(γ(ti))
≥ 1 − |t1 − t2|α(n)

and a
(
1 + |t1 − t2|α(n)

)
-Bilipschitz onto map fr : Cr

1 → C
r
2, that is, fr is bijective and∣∣∣∣∣d( fr(x), fr(y))

d(x, y)
− 1

∣∣∣∣∣ ≤ |t1 − t2|α(n)

for any x, y ∈ Cr
1 with x , y.

Let d voli,r = d vol
vol Br(γ(ti))

(i = 1, 2) be the renormalized volume measures at γ(ti). It’s then
obvious that under the assumptions of the theorem we have(

1 −C(n, δ)|t1 − t2|α(n)
)

d vol2,r ≤ ( fr)#(d vol1,r) ≤
(
1 + C(n, δ)|t1 − t2|α(n)

)
d vol2,r(1.1)

for some universal C(n, δ) > 0.
Let (Mn

j , q j) → (X, q) where RicM j ≥ (n − 1)H. By passing to a subsequence we

can assume that the renormalized volume measures
d volM j

vol B1(p j)
on M j converge to a measure

d vol on X [CC97]. For a point x ∈ X let (TxX, ox) = lim
k→∞

(rkX, x) be a tangent cone at x

corresponding to some rk → ∞.
Again, up to passing to a subsequence we can assume that the renormalized measures

d vol
volB1/rk (x) converge to a renormalized measure d volx on TxX (Note that volx(B1(ox)) = 1).
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Given x1, x2 ∈ X we will call tangent cones (Txi X, oi, d voli) i = 1, 2 together with the
limit measures same scale if they come from the same rescaling sequence rk → ∞.

Using precompactenss and a standard Arzela-Ascoli type argument Theorem 1.1 easily
yields

Corollary 1.2. For any H ∈ R and 0 < δ < 1/3, there exist ε(n, δ,H) > 0 and 0 < α(n) < 1
such that the following holds:

Let Mn
j → X where RicM j ≥ (n − 1)H. Let γ : [0, 1] → X be a unit speed geodesic

which is a limit of geodesics in Mi. Let d vol be a renormalized limit volume measure on
X.

Then for any t1, t2 ∈ (δ, 1− δ) with |t1 − t2| < ε there exist subsets Ci (i = 1, 2) in the unit
ball around the origin oi in the same scale tangent cones (Tγ(ti)X, d voli) (i = 1, 2) such that

voli Ci ≥ 1 − |t1 − t2|α(n)

and there exists a map f : C1 → C2 satisfying
(i) f is (1 + |t1 − t2|α(n))-Bilipschitz onto;

(ii)
(1 − |t1 − t2|α(n)) d vol2 ≤ f#(d vol1) ≤ (1 + |t1 − t2|α(n)) d vol2 .

In particular, f#(d vol1) ( f −1
# (d vol2)) is absolutely continuous with respect to vol2

(vol1).

In [CN12] Colding and Naber show that under the assumptions of Corollary 1.2 same
scale tangent cones along γ vary Hölder continuously in t. Corollary 1.2 implies that
Hölder continuity of tangent cones also holds in measure-metric sense with respect to the
renormalized limit volume measures on the tangent cones. This does not follow from the
results of [CN12] which do not address measured continuity. Since same scale tangent
cones do not need to exists for all t for any given scaling sequence, we state the Hölder
continuity quanitatively using Sturm distance D which metrizes the measured Gromov-
Hausdorff topology on the class of spaces in question [Stu06, Lemma 3.7].

Corollary 1.3. There exist ε = ε(n, δ,H) > 0, 0 < α(n) < 1 such that the following holds.
Let Mn

j → X where RicM j ≥ (n − 1)H. Let γ : [0, 1] → X be a unit speed geodesic
which is a limit of geodesics in Mi. Then for any t1, t2 ∈ (δ, 1 − δ) with |t1 − t2| < ε we have
that

D((B1(o1), d vol1), (B1(o2), d vol2)) ≤ |t1 − t2|α(n)

where (Tγ(t1)X, d vol1), (Tγ(t2)X, d vol2) are same scale tangent cones and B1(oi) ⊂ Tγ(ti)X is
the unit ball around the vertex in Tγ(ti)X.

Remark 1.4. Note that Bishop-Gromov volume comparison implies that in Corollary 1.2
the set Ci is C(n)|t1 − t2|α(n)/n dense in B1(oi) for i = 1, 2 and hence same scale tangent
cones Tγ(t)X are Hölder continuos in the pointed Gromov-Hausdorff topology. Of course,
this is already known by [CN12].

Let X be a limit of n-manifolds with Ricci curvature bounded below. Recall that a point
p ∈ X is called k-regular if every tangent cone TpX is isometric to Rk. The collection of
all k-regular points is denoted by Rk(X). (When the space X in question is clear we will
sometimes simply write Rk).

The set of regular points of X is the union

R(X) ≡ ∪kRk(X) .(1.2)
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The set of singular points S is the complement of the set of regular points. It was proved
in [CC97] that vol(S) = 0 with respect to any renormalized limit volume measure d vol
on X. Moreover, by [CC00b, Theorem 4.15], dimHaus Rk ≤ k and d vol is absolutely
continuous on Rk(X) with respect to the k-dimensional Hausdorff measure. In particular,

(1.3) dimHaus Rk = k if vol(Rk) > 0.

It was further shown in [CN12, Theorem 1.18] that there exists unique integer k such that

vol(Rk) > 0 .(1.4)

Altogether this implies that there exists unique integer k such that

(1.5) vol(X\Rk) = 0 .

Moreover, it can be shown (Theorem 1.9 below) that this k is equal to the largest integer m
for which Rm is non-empty. Following Colding and Naber we will call this k the dimension
of X and denote it by dim X. (Note that it is not known to be equal to the Hausdorff
dimension of X in the collapsed case).

Corollary 1.2 immediately implies

Theorem 1.5. Under the assumptions of Corollary 1.2 the dimension of same scale tangent
cones Tγ(t)X is constant for t ∈ (0, 1).

Proof. For t2 sufficiently close to t1 = t let Ci ⊂ B1(oi) (i = 1, 2), f : C1 → C2 be provided
by Corollary 1.2. Let ki = dim Tγ(ti)X. Suppose k1 , k2, say k1 < k2. By using (1.5)
and Corollary 1.2 (ii) we can assume that Ci ⊂ Rki (Tγ(ti)X). By above this means that
dimHaus Ci = ki.

Since f is Lipschitz we have dimHaus( f (C1)) ≤ dimHaus C1 = k1. Since d vol2 is ab-
solutely continuous with respect to the k2-dim Hausdorff measure on Rk2 and k2 > k1 this
implies that vol2 f (C1) = 0. This is a contradiction since vol2 f (C1) = vol2(C2) > 0. �

Note that a “cusp” can exist in the limit space of manifolds with lower Ricci curvature
bound, for example, a horn [CC97, Example 8.77]. Theorem 1.5 indicates that a ”cusp”
cannot occur in the interior of limit geodesics. In particular, it provides a new way to
rule out the trumpet [CC00a, Example 5.5] and its generalizations [CN12, Example 1.15].
Moreover, it shows that the following example cannot arise as a Gromov-Hausdorff limit
of manifolds with lower Ricci bound, even through the tangent cones are Hölder (in fact,
Lipschitz) continuous along the interior of geodesics. This example cannot be ruled out by
previously known results.

Example 1.6. Let Y =
{
(x, y, z) ∈ R3 : z ≥

√
x4 + |y| − x2

}
.

Then T(x,0,0)Y =
{
(y, z) ∈ R2 : z ≥ |y|

2x2

}
× R for x , 0 and T(0,0,0)Y = R+ × R. Let X be

the double of Y along its boundary. Then all points not on the x-axis are in R3 and along
the x-axis we have that for x , 0, T(x,0,0)X = (double of

{
(y, z) ∈ R2 : z ≥ |y|

2x2

}
) × R (i.e. it’s

a cone ×R) degenerating to T(0,0,0)X = R+ × R .
So dim T(0,0,0)X = 2 but dim T(x,0,0)X = 3 for x , 0. Lastly, any segment of the geodesic

γ(t) = (t, 0, 0) is unique shortest between its end points and hence it’s a limit geodesic if Y
is a limit of manifolds with Ric ≥ −(n − 1)H. Hence Theorem 1.5 is applicable to γ and
therefore X is not a limit of n-manifolds with Ric ≥ −(n − 1)H.

Note that one can further smooth out the metric on X along ∂Y\{x−axis} to obtain a
space X1 with similar properties but which in addition is a smooth Riemannian manifold
away from the x-axis. In particular X1 is non-branching.
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Figure 1. Y =
{
(x, y, z) ∈ R3 : z ≥

√
x4 + |y| − x2

}
Next we want to mention several semicontinuity results about the Colding-Naber di-

mension which further suggest that this notion is a natural one.
Let Mn be the space of pointed Gromov-Hausdorff limits of manifolds with Ric ≥

−(n − 1). Recall the following notions from [CC97]

Definition 1.7. Let X ∈ Mn.
• WEk(X) = {x ∈ X| such that some tangent cone TxX splits off isometrically as
Rk × Y}.

• Ek(X) = {x ∈ X| such that every tangent cone TxX splits off isometrically as
Rk × Y}.

• (WEk)ε(X) = {x ∈ X| such that there exist 0 < r ≤ 1, Y and q ∈ Rk × Y such that
dG−H(Br(x), BR

k×Y
r (q)) < εr}.

By [CC97, Lemma 2.5] there exists ε(n) > 0 such that if p ∈ (WEk)ε(X) for some
ε ≤ ε(n) then vol Br(p) ∩ Ek > 0 for all sufficiently small r.

Suppose (Xi, pi) ∈ Mn, (Xi, pi)→ (X, p) and p ∈ Rk(X). Then p ∈ (WEk)ε(n)(X) which
obviously implies that pi ∈ (WEk)ε(n)(Xi) for all large i as well. By above this implies that
volEk(Xi) > 0 for all large i.

This together with (1.5) yields the following result of Honda proved in [Hon13b, Prop
3.78] using very different tools.

Theorem 1.8. [Hon13b, Prop 3.78] Let Xi ∈ M
n and dim Xi = k. Let (Xi, pi)

G−H
−→ (X, p).

Then dim X ≤ k. In other words, the dimension function is lower semicontinuous onMn

with respect to the Gromov-Hausdorff topology.

This theorem, applied to the convergence ( 1
r X, p) −→

r→0
(TpX, o) = (Rk, 0) for p ∈ Rk,

immediately gives the following result which also directly follows from [Hon13a, Prop
3.1] and (1.5).
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Theorem 1.9. Let X ∈ Mn. Then dim X is equal to the largest k for which Rk(X) , ∅.

Another immediate consequence of Theorem 1.8 is the following
Corollary 1.10. [Hon13b, Prop 3.78] Let X ∈ Mn. Then for any x ∈ X and any tangent
cone TxX it holds that

dim TxX ≤ dim X .

It is obvious from (1.3) that for any X ∈ Mn we have dim X ≤ dimHaus X. However, as
was mentioned earlier, the following natural question remains open.

Question 1.11. Let X ∈ Mn. Is it true that dim X = dimHaus X?

1.1. Idea of the proof of Theorem 1.1. Let γ : [0, 1] → Mn be a unit speed shortest
geodesic in an n-manifold with Ric ≥ (n− 1)H. In [CN12] Colding and Naber constructed
a parabolic approximation hτ to d(·, p) given as the solution of the heat equation with initial
conditions given by d(·, p), appropriately cut off near the end points of γ and outside a large
ball containing γ. They showed that hr2 provides a good approximation to d− = d(·, p) on
an r-neighborhood of γ|[δ,1−δ]. In particular, they showed that∫ (1−δ)

δ

(?
Br(γ(t))

|Hesshr2 |
2
)

dt ≤ c(n, δ,H)(1.6)

for all r ≤ r0(n, δ,H). They used this to show that for any t ∈ (δ, 1 − δ) most points
in Br(γ(t)) remain r-close to γ under the reverse gradient flow of d− for a definite time
s ≤ ε = ε(n, δ,H). In section 3 we show that the same holds true for the reverse gradient
flow φs of hr2 . Next, the standard weak type 1-1 inequality for maximum function applied
to the inequality (1.6) implies that∫ (1−δ)

δ

(?
Br(γ(t))

(Mx |Hesshr2 |)
2
)

dt ≤ c(n, δ,H)(1.7)

as well. This implies that for every x in a subset Cr(γ(t)) in Br(γ(t)) of almost full measure
the integral

∫ ε

0 Mx |Hesshr2 |(φs(x))ds is small (see estimate (4.4)). Using a small modifi-
cation of a lemma from [KW11] this implies that for any such point x and any 0 < r1 ≤ r
most points in Br1 (x) remain r1-close to φs(x) for all s ≤ ε under the flow φs. This then
easily implies that φs is Bilipschitz on Cr(γ(t)) using Bishop-Gromov volume comparison
and triangle inequality.

1.2. Acknowledgements. We are very grateful to Aaron Naber for helpful conversations
and to Shouhei Honda for bringing to our attention results of [Hon13a] and [Hon13b]. We
are also very greateful to the referee for pointing out that our results imply Corollary 1.3.

2. Preliminaries

In this section we will list most of the technical tools needed for the proof of Theo-
rem 1.1. Throughout the rest of the paper, unless indicated otherwise, we will assume that
all manifolds Mn involved are n-dimensional complete Riemannian satisfying

RicMn ≥ −(n − 1) .
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2.1. Segment inequality. We will need the following result of Cheeger and Colding:
Theorem 2.1 (Segment inequality). [CC96, Theorem 2.11] Given n and r0 > 0 there
exists c = c(n, r0) such that the following holds.

Let F : Mn → R+ be a nonnegative measurable function. Then for any r ≤ r0 and
A, B ⊂ Br(p) it holds∫

A×B

∫ d(x,y)

0
F(γx,y(u)) du d volx d voly ≤ c · r · (vol A + vol B)

∫
B2r(p)

F(z) d volz ,

where γz1,z2 denotes a minimal geodesic from z1 to z2.

2.2. Generalized Abresch-Gromoll Inequality. Let γ : [0, L] → M be a minimizing
unit speed geodesic with γ(0) = p, γ(L) = q where L = d(p, q). To simplify notations and
exposition from now on we will assume that L = 1. Let d− = d(·, p), d+ = d(·, q), and let
e = d+ + d− − d(p, q) be the excess function.

The following result is a direct consequence of [CN12, Theorem 2.8] and, as was ob-
served in [CN12], using the fact that |∇e| ≤ 2 it immediately implies the Abresch-Gromoll
estimate [AG90].

Theorem 2.2 (Generalized Abresh-Gromoll Inequality). [CN12, Theorem 2.8] There exist
c(n, δ), r0(n, δ) > 0 such that for any 0 < δ < t < 1 − δ < 1, 0 < r < r0 it holds?

Br(γ(t))
e ≤ c(n, δ) r2 .

2.3. Parabolic approximation for distance functions. Fix δ > 0 and let h±t be parabolic
approximations to d± constructed in [CN12]. They are given by the solutions to the heat
equations

d
dt

h±t = ∆h±t , h±0 (x) = λ(x) · d±(x)

for appropriately constructed cutoff function λ. We will need the following properties of
ht established in [CN12].

Lemma 2.3. [CN12, Lemma 2.10] There exists c(n, δ) such that

(2.1) ∆h±t ≤ c(n, δ) .

Theorem 2.4. [CN12, Theorem 2.19] There exist c(n, δ), r0(n, δ) > 0 such that for all
r1 ≤ r0 there exists r ∈ [ r1

2 , 2r1] such that the following properties are satisfied

(i) |h±r2 − d±|(x) ≤ c r2 for any x ∈ B2(p)\(Bδ(p) ∪ Bδ(q)) with e(x) ≤ r2

(ii)
>

Br(x) ||∇h±r2 |
2 − 1| ≤ c r.

(iii)
∫ (1−δ)
δ

>
Br(γ(t)) ||∇h±r2 |

2 − 1| ≤ c r2.

(iv)
∫ (1−δ)
δ

>
Br(γ(t)) |Hessh±

r2
|2 ≤ c.

2.4. First Variation formula. We will need the following lemma (cf. [CN12, Lemma
3.4] ).

Lemma 2.5. Let X be a smooth vector field on M and let σ1(t), σ2(t) be smooth curves.
Let p = σ1(0), q = σ2(0). Then∣∣∣∣∣d+

dt
d(σ1(t), σ2(t))|t=0

∣∣∣∣∣ ≤ |X(p) − σ′1(0)| + |X(q) − σ′2(0)| +
∫
γp,q

|∇·X| ,
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where γp,q : [0, d(p, q)] → M is a shortest geodesic from p to q. Here |∇·X| means the
norm of the full covariant derivative of X i.e. norm of the map v 7→ ∇vX. In particular, if
h : M → R is smooth and X = ∇h, then∣∣∣∣∣d+

dt
d(σ1(t), σ2(t))|t=0

∣∣∣∣∣ ≤ |X(p) − σ′1(0)| + |X(q) − σ′2(0)| +
∫
γp,q

|Hessh | .

Proof. The lemma easily follows from the first variation formula for distance functions
and the triangle inequality. �

2.5. Maximum function. Let f : M → R be a nonnegative function. Consider the maxi-
mum function Mxρ f (p) := supr≤ρ −

∫
Br(p) f for ρ ∈ (0, 4]. We’ll set Mx f := Mx1 f .

The following lemma is well-known [Ste93, p. 12].

Lemma 2.6 (Weak type 1-1 inequality). Suppose (Mn, g) has Ric ≥ −(n − 1) and let
f : M → R be a nonnegative function. Then the following holds.

(i) If f ∈ Lα(M) with α ≥ 1 then Mxρ f is finite almost everywhere.
(ii) If f ∈ L1(M) then vol

{
x ∈ M : Mxρ f (x) > c

}
≤

C(n)
c

∫
M f for any c > 0.

(iii) If f ∈ Lα(M) with α > 1 then Mxρ f ∈ Lα(M) and ||Mxρ f ||α ≤ C(n, α)|| f ||α.

This lemma easily generalizes to functions defined on subsets as follows:

Corollary 2.7. Let RicMn ≥ −(n − 1) and f : M → R+ be measurable. Let A ⊂ M be
measurable such that f ∈ Lα(Uρ(A)) where α > 1. Here Uρ(A) denotes the ρ-neighborhood
of A . Then

||Mxρ f ||Lα(A) ≤ C(n, α)|| f ||Lα(Uρ(A)) .

Proof. Let f̄ = f · χUρ(A). Obviously, Mxρ f (x) = Mxρ f̄ (x) for any x ∈ A. The result
follows by applying Lemma 2.6 (iii) to f̄ . �

3. Gradient flow of the parabolic approximation

Let φs be the reverse gradient flow of h = h−r2 (i.e. the gradient flow of −h−r2 ) and let ψs

be the reverse gradient flow of d−. We first want to show that for most points x ∈ Br(γ(t))
we have that φs(x) ∈ B2r(γ(t − s)) for all t ∈ (δ, 1 − δ) and s ∈ [0, ε] for some uniform
ε = ε(n, δ).

Note that this (and more) is already known for ψs by [CN12]. Following Colding-Naber
we use the following

Definition 3.1. For 0 < s < t < 1 define the set At
s(r) ≡ {z ∈ Br(γ(t)) : ψu(z) ∈ B2r(γ(t −

u)), ∀0 ≤ u ≤ s}. Similarly, we define Bt
s(r) ≡ {z ∈ Br(γ(t)) : φu(z) ∈ B2r(γ(t − u)), ∀0 ≤

u ≤ s}.

An important technical tool used to prove the main results of [CN12] is the following

Proposition 3.2. [CN12, Proposition 3.6] There exist r0(n, δ) and ε0(n, δ) such that if t ∈
(δ, 1 − δ) and ε ≤ ε0 then ∀r ≤ r0 as in Theorem 2.4 we have

1
2
≤

vol(At
ε(r))

vol(Br(γ(t)))
.

Unlike Colding-Naber we prefer to work with the gradient flow of the parabolic ap-
proximation h rather than the gradient flows of d±, because the gradient flow of h provides
better distance distortion estimates since in that case the two terms outside the integral
in Lemma 2.5 vanish and the resulting inequality scales better in the estimates involving
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maximum function (see Lemma 4.2 below). Therefore, our first order of business is to
establish the following lemma which says that Proposition 3.2 holds for the gradient flow
of −h as well:

Lemma 3.3. There exists r1(n, δ) and ε1(n, δ) such that if δ < t − ε < t < 1 − δ and ε ≤ ε1
then ∀r ≤ r1 we have

1
2
≤

vol(At
ε(r))

vol(Br(γ(t)))

and
1
2
≤

vol(Bt
ε(r))

vol(Br(γ(t)))
.

The proof of Proposition 3.2 uses bootstrapping in ε, r starting with infinitesimally small
(depending on M!) r (cf. Lemma 4.2 below) for which the claim easily follows from
Bochner’s formula applied to d− along γ. We don’t utilize bootstarpping in r and instead
use that the result has already been established for the gradient flow of −d−.

Proof. Of course, we only need to prove the second inequality as the first one holds by
Proposition 3.2 for some r0(n, δ), ε0(n, δ) > 0. By possibly making r0 smaller we can
ensure that it satisfies Theorem 2.4.

Let 0 < ε < ε0 be small (how small it will be chosen later). Let

(3.1) S t ≡

{
0 ≤ s < t − δ :

1
2
<

vol(Bt
s(r))

vol(Br(γ(t)))

}
.

We wish to show that S t contains [0, ε] for some uniform ε = ε(n). Obviously S t is open
in [0, ε] so it’s enough to show that it’s also closed. To establish this it’s enough to show
that if ε′ ≤ ε and [0, ε′) ⊂ S t then ε′ ∈ S t.

For any 0 < s < t we define c̃t
s to be the characteristic function of the setAt

s(r) × Bt
s(r).

The same argument as in [CN12] shows that?
Br(γ(t))×Br(γ(t))

c̃t
s(x, y)

∫
γψs (x),φs (y)

|Hessh |

 d volx d voly(3.2)

≤ C(n, δ) r
(

vol(Br(γ(t − s)))
vol(Br(γ(t)))

)2 ?
B5r(γ(t−s))

|Hessh | .

Indeed, we have∫
Br(γ(t))×Br(γ(t))

c̃t
s(x, y)

∫
γψs (x),ψs (y)

|Hessh |

 d volx d voly(3.3)

=

∫
At

s(r)×Bt
s(r)

∫
γψs (x),ψs (y)

|Hessh |

 d volx d voly

≤ C(n, δ)
∫
ψs(At

s(r))×φs(Bt
s(r))

∫
γx,y

|Hessh |

 d volx̄ d volȳ ,

where the last inequality follows from the fact that ∆h ≤ c(n, δ) by Lemma 2.3 and hence
the Jacobian of φs satisfies

(3.4) Jφs ≥ eC(n,δ)s .
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Similar inequality holds for ψs by Bishop-Gromov volume comparison. Since ψs(At
s(r)),

φs(Bt
s(r)) ⊆ B2r(γ(t − s)) by definition, by the segment inequality (Theorem 2.1 ) we have∫

ψs(At
s(r))×φs(Bt

s(r))

∫
γx,y

|Hessh |

 d volx̄ d volȳ(3.5)

≤ C(n, δ) r [vol(ψs(At
s(r))) + vol(φs(Bt

s(r)))]
∫

B5r(γ(t−s))
|Hessh |

≤ C(n, δ) r vol(B5r(γ(t − s)))
∫

B5r(γ(t−s))
|Hessh |

= C(n, δ) r vol(B5r(γ(t − s)))2
?

B5r(γ(t−s))
|Hessh |

≤ C(n, δ) r vol(Br(γ(t − s)))2
?

B5r(γ(t−s))
|Hessh | ,

where the last inequality follows by Bishop-Gromov. Thus,∫
Br(γ(t))×Br(γ(t))

c̃t
s(x, y)

∫
γψs (x),ψs (y)

|Hessh |

 d volx d voly(3.6)

≤ C(n, δ) r vol(Br(γ(t − s)))2
?

B5r(γ(t−s))
|Hessh | .

Dividing by vol(Br(γ(t)))2 we get (3.2). By [CN12, Cor 3.7] we have that

(3.7) C−1 ≤
vol(Br(γ(t − s)))

vol(Br(γ(t)))
≤ C .

for some universal C = C(n, δ) and therefore?
Br(γ(t))×Br(γ(t))

c̃t
s(x, y)

∫
γψs (x),φs (y)

|Hessh |

 d volx d voly(3.8)

≤ C(n, δ) r
?

B5r(γ(t−s))
|Hessh | .

Let

Ĩr
ε ≡

?
Br(γ(t))×Br(γ(t))

∫ ε

0
c̃t

s(x, y)
∫

γψs (x),φs (y)

|Hessh |

 ds d volx d voly .(3.9)

Then by (3.8) and Theorem 2.4 we have that

Ĩr
ε′ =

∫ ε′

0

?
Br(γ(t))×Br(γ(t))

c̃t
u(x, y)

∫
γψu(x),φu(y)

|Hessh |

 d volx d voly ds(3.10)

≤ C(n, δ) r
∫ ε′

0

(?
B5r(γ(t−s))

|Hessh | d vol
)

ds

≤ C(n, δ)r
√
ε′

(∫ 1−δ

δ

?
B5r(γ(s))

|Hessh |
2 d vol ds

)1/2

≤ C(n, δ)
√
ε′ r .

Let

T̃ r
η ≡

x ∈ Br(γ(t)) : x ∈ At
ε(r) and

?
{x}×Br(γ(t))

∫ ε′

0
c̃t

s(x, y)
∫

γψs (x),φs (y)

|Hessh |

 ≤ η−1 Ĩr
ε′

 ,
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and for x ∈ T̃ r
η let us define

(3.11) T̃ r
η(x) ≡

y ∈ Br(γ(t)) :
∫ ε′

0
c̃t

s(x, y)
∫

γψs(x),φs (y)

|Hessh |

 ds ≤ η−2 Ĩr
ε′

 .

Here η = η(n, δ, d(p, q)) > 0 is small and chosen first. Then ε is chosen later depending
on η. By [CN12, page 34, equations (115) (117)] we can assume that

(3.12)
vol(At

ε(r))
vol(Br(γ(t)))

≥ 1 −C(n, δ)η .

if ε ≤ C(n, δ)ηα(n) for some universal α(n) > 1. Therefore, by construction we have that

(3.13)
vol(T̃ r

η)

vol(Br(γ(t)))
≥ 1 −C(n, δ)η ,

and hence

(3.14)
vol(T̃ r

η(x))

vol(Br(γ(t)))
≥ 1 −C(n, δ)η, ∀x ∈ T r

η .

We choose η so that C(n, δ)η � 1 in (3.13) and (3.14).
Let x ∈ T̃ r

η ∩ T̃ r/100
η (this intersection is non-empty for small η = η(n) by Bishop-

Gromov) and let y ∈ T̃ r
η(x). We will fix η > 0 satisfying the above conditions from now on.

We claim that then y ∈ Bt
ε′ (r).

Indeed d(ψs(x), γ(t − s)) ≤ r/50 for all s ≤ ε′ since x ∈ T̃ r/100
η ⊂ At

ε(r/100) . So by the
triangle inequality it’s enough to show that d(ψs(x), φs(y)) ≤ 1.1r for any s ≤ ε′.

Let S = {s ≤ ε′ : y ∈ Bt
s(r)}. This set is obviously open and connected in [0, ε′]. We

claim that S = [0, ε′]. Let s̄ = sup{s : s ∈ S }.
Note that for any 0 < s < s̄ we have that c̃t

s(x, y) = 1. Therefore, by (3.10) and (3.11)
for any 0 < s < s̄ we have

(3.15)
∫ s

0

∫
γψu (x),φu (y)

|Hessh |

 du ≤ η−2 Ĩr
t−s̄ ≤

C(n, δ)
η2

√
εr ≤ 0.001r

if ε = ε(η) is chosen small enough.
Next, recall that by [CN12, Lemma 2.20(3)] we have that for any x ∈ Br(γ(t)),

(3.16)
∫ s

0
|∇h(ψu(x)) − ∇d−(ψu(x))|du ≤ c(n, δ)

√
s (

√
e(x) + r) .

Further, by Theorem 2.2 we know that

(3.17)
?

Br(γ(t))
e ≤ c(n, δ) r2 .

Therefore, without losing generality by making the sets T̃ r
η slightly smaller we can assume

that for any x ∈ T̃ r
η we have

(3.18) e(x) ≤ η−1r2 .

Thus, for all x ∈ T̃ r
η we have

(3.19)
∫ s

0
|∇h(ψu(x) − ∇d−(ψu(x)|du ≤ c(n, δ)

√
s · (η−1/2r + r) < 0.001r



ON DIMENSIONS OF TANGENT CONES IN LIMIT SPACES WITH LOWER RICCI CURVATURE BOUNDS 11

if ε = ε(n, δ, η) is small enough. Therefore, by Lemma 2.5 and using (3.15) and (3.19) we
get that

(3.20) d(ψs(x), φs(y)) ≤ 0.002r + d(x, y) < 1.1r .

By the triangle inequality,

(3.21) d(φs(x), γ(t − s)) ≤ r/50 + 1.1r ≤ 1.5r < 2r .

By continuity the same holds for s̄ and hence s̄ ∈ S . Thus S is both open and closed
in [0, ε′] and therefore S = [0, ε′]. Unwinding this further we see that this means that
T̃ r
η(x) ⊂ Bt

ε′ (r). Therefore, by (3.14)

(3.22)
1
2
≤

vol(Bt
ε′ (r))

vol(Br(γ(t)))
when η was chosen small enough so that C(n, δ)η < 1/2. Hence ε′ ∈ S t. Therefore, S t is
both open and closed and ε′ = ε. �

The proof of Lemma 3.3 shows that T̃ r
η(x) ⊂ Bt

ε(r) for appropriately chosen ε depending
on η. Moreover, the proof shows that ε can be chosen to be of the form ε = C(n, δ)ηα(n)

for some α(n) > 1. In view of (3.13) this means that the conclusion can be strengthened as
follows (cf. [CN12])

Lemma 3.4. For every η ≤ η0(n, δ) and r ≤ r0(n, δ) that there exists ε ≡ ε(n, η, δ) such
that the set Bt

ε(r) ≡ {z ∈ Br(γ(t)) : φs(z) ∈ B2r(γ(t − s)) ∀0 ≤ s ≤ ε} satisfies

volBt
ε(r)

vol(Br(γ(t)))
≥ 1 −C(n, δ) η .

Moreover, ε(n, η, δ) can be chosen to be of the form ε = C̃(n, δ)ηα(n) for some α(n) > 1.

When η is sufficiently small this means that most points in Br(γ(t)) remain close to the
geodesic γ under the flow φs. Also, provided C(n, δ)η < 1/2 using Bishop-Gromov, the
above lemma, (3.4) and (3.7) give the following

Lemma 3.5. Let F : M → R be a nonnegative measurable function. Then?
Bt
ε(r)

F(φs(x)) d volx ≤ C(n, δ)
?

B2r(γ(t−s))
F(x̄) d volx̄

for any s ≤ ε as in Lemma 3.4.

Remark 3.6. It is obvious that all results of this section concerning the flow of −h−r2 are
also true for the flow of −h+

r2 .

4. Bilipschitz control

The goal of this section is to prove the following equivalent version of Theorem 1.1

Theorem 4.1. Given H ∈ R, 0 < δ < 1/3, 0 < η < 1 there exist r0(n, δ,H), ε =

C(n, δ,H)ηα(n) where α(n) > 1 such that the following holds:
Suppose (Mn, g) is complete with RicM ≥ (n − 1)H and let γ : [0, 1] → Mn be a unit

speed minimizing geodesic. Then for any t1, t2 ∈ (δ, 1 − δ) with |t1 − t2| < ε and any r < r0
there are subsets Cr

i ⊂ Br(γ(ti)) (i = 1, 2) such that

volCr
i

vol Br(γ(ti))
≥ 1 − η

and there exists a (1 +C(n, δ,H)ηβ(n))-Bilipschitz map fr : Cr
1 → C

r
2 for some 0 < β(n) < 1.
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As before, to simplify notation we will assume that H = 1 and RicMn ≥ −(n − 1).
Corollary 2.7 essentially means that all estimates involving integrals of |Hessh | from

the previous section remain true for Mxρ |Hessh |. In particular, for r0 as in Theorem 2.4
and any r ≤ r0/10 we have

(4.1)
∫ 1−δ

δ

(?
B4r(γ(t))

|Hessh16r2 |
2
)

dt ≤
C
δ
.

By Corollary 2.7 this implies that

(4.2)
∫ 1−δ

δ

(?
B2r(γ(t))

(Mxr |Hessh |)2
)

dt ≤
C
δ
.

where h = h−16r2 . It is clear that all results from the previous section work for this h as well
as h−r2 . Therefore, everywhere in the previous section where we used (4.1) we could have
used (4.2) instead. Indeed, we have for any 2δ < t < 1 − 2δ,∫ ε

0

(?
B2r(γ(t−s))

Mxr |Hessh |

)
ds(4.3)

≤
√
ε ·

∫ ε

0

(?
B2r(γ(t−s))

Mxr |Hessh |

)2

ds

≤
√
ε ·

∫ ε

0

?
B2r(γ(t−s))

(Mxr |Hessh |)2 ds ≤ C(n, δ)
√
ε .

In view of Lemma 3.5 this implies that

(4.4)
?
Bt
ε(r))

∫ ε

0
Mxr |Hessh(φs(x))| ds ≤ C(n, δ)

√
ε .

This means that for most points x ∈ Bt
ε(r) the integral

∫ ε

0 Mxr |Hessh(φs(x))| ds is bounded.
More precisely, given any 0 < ν < 1 let

(4.5) Bt
ε(r, ν) ≡

{
x ∈ Bt

ε(r) :
∫ ε

0
Mxr |Hessh(φs(x))| ds ≤

C(n, δ)
√
ε

ν

}
.

Then

(4.6)
volBt

ε(r, ν)
volBt

ε(r)
> 1 − ν .

We will need the following slight modification of Lemma 3.7 from [KW11]

Lemma 4.2. Given c > 0, there exists (explicit) C = C(n, λ) such that the following holds.
Suppose (Mn, g) has RicMn ≥ −(n−1) and Xt is a vector field with compact support, which
depends on time but is piecewise constant in time. Let c(t) be the integral curve of Xt with
c(0) = p0 ∈ Mn and assume that div Xt ≥ −λ on B10(c(t)) for all t ∈ [0, 1].

Let φt be the flow of Xt. Define the distortion function dtr(t)(p, q) of the flow on scale r
by the formula

dtr(t)(p, q) := min
{
r, max

0≤τ≤t

∣∣∣ d(p, q) − d(φτ(p), φτ(q))|
}
.(4.7)

Put µ =
∫ 1

0 Mx1(‖∇·Xt‖)(c(t)) dt. Then for any r ≤ 1/10 we have?
Br(p0)×Br(p0)

dtr(1)(p, q) d volp d volq ≤ Cr · µ(4.8)
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and there exists Br(p0)′ ⊂ Br(p0) such that
vol(Br(p0)′)
vol(Br(p0))

≥ 1 −Cµ(4.9)

and φt(Br(p0)′) ⊂ B2r(c(t)).

This lemma immediately implies

Corollary 4.3. Under the assumptions of Lemma 4.2 for every r ≤ 1/10 there exists
Br(p0)′′ ⊂ Br(p0) such that

vol(Br(p0)′′)
vol(Br(p0))

≥ 1 −C(n, λ)µ

φt(Br(p0)′′) ⊂ B2r(c(t)) for all t ∈ [0, 1]
and

∀p, q ∈ Br(p0)′′, dtr(1)(p, q) ≤ C(n, λ)r · µ .

In [KW11] Lemma 4.2 is stated for divergence free vector fields. We want to apply it to
X = −∇h which is not divergence free. However, recall that by Lemma 2.3 it does satisfy
div X ≥ −λ(n, δ) and hence the Jacobian of its flow map satisfies

(4.10) Jφs ≥ e−λ(n,δ)s

pointwise.
The proof given in [KW11] goes through verbatim with a straightforward change in one

place using (4.10) instead of the flow of X being volume-preserving. We include the proof
here for reader’s convenience.

Proof of Lemma 4.2. We prove the statement for a constant in time vector field Xt. The
general case is completely analogous except for additional notational problems.

Notice that all estimates are trivial if µ ≥ 2
C . Therefore it suffices to prove the statement

with a universal constant C(n, λ) for all µ ≤ µ0(n, λ). We put µ0 = 1
2C and determine C ≥ 2

in the process. We proceed by induction on the size of r.
Notice that the differential of φs at c(0) is Bilipschitz with Bilipschitz constant

e
∫ s

0 ‖∇·X‖(c(t))dt ≤ 1 + 2µ .(4.11)

Thus the Lemma holds for very small r.
Suppose the result holds for some r/10 ≤ 1/100. It suffices to prove that it then holds

for r. By induction assumption we know that for any t there exists Br/10(c(t))′ ⊂ Br/10(c(t))
such that for any s ∈ [−t, 1 − t] we have

vol(Br/10(c(t))′) ≥ (1 −Cµ) vol(Br/10(c(t))) ≥
1
2

vol(Br/10(c(t)))(4.12)

and

φs(Br/10(c(t))′) ⊂ Br/5(c(t + s)) ,(4.13)

where we used µ ≤ 1
2C in the inequality. This easily implies that vol(Br/10(c(t))) are com-

parable for all t. More precisely, for any t1, t2 ∈ [0, 1] we have that

(4.14) 1
C0

vol Br/10(c(t1)) ≤ vol Br/10(c(t2)) ≤ C0 vol Br/10(c(t1))

with a computable universal C0 = C0(n). Put

h(s) =

?
Br/10(c(0))′×Br(c(0))

dtr(s)(p, q) d volp d volq ,(4.15)
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Us := {(p, q) ∈ Br/10(c(0))′ × Br(c(0)) | dtr(s)(p, q) < r} ,(4.16)
φs(Us) := {(φs(p), φs(q)) | (p, q) ∈ Us} , and

dt′r(s)(p, q) := lim sup
h↘0

dtr(s+h)(p,q)−dtr(s)(p,q)
h .

As dtr(t) ≤ r is monotonously increasing, we deduce that if dtr(s)(p, q) = r, then dt′r(s)(p, q) =

0. Since dtr(s + h)(p, q) ≤ dtr(s)(p, q) + dtr(h)(φs(p), φs(q)) and φs satisfies Jφt ≥ e−λt it
follows

h′(s) ≤
?

Us

dt′r(φ1(x), φs(y)) ≤ esλ
?
φs(Us)

dt′r(0)(p, q)(4.17)

≤ esλ 4 vol B3r(c(s))2

vol Br/10(c(0))2

?
B3r(c(s))2

dt′r(0)(p, q) ,

where we used that φs(Br/10(p0)′)2 ⊂ φs(Us) ⊂ B3r(c(s))2. We would like to point out
that using Jφs ≥ e−λs instead of Jφs = 1 (which is true for flows of harmonic maps) in the
above inequality is the only place where the proof of Lemma 4.2 differs from the proof
of [KW11, Lemma 3.7].)

If p is not in the cut locus of q and γpq : [0, 1] → M is a minimal geodesic between p
and q, then by Lemma 2.5

dt′r(0)(p, q) ≤ d(p, q) +

∫ 1

0
‖∇·X‖(γpq(t)) dt .(4.18)

Combining the last two inequalities with the segment inequality we deduce

h′(s) ≤ C1(n, λ)r
?

B6r(c(s))
‖∇·X‖(4.19)

≤ C1(n, λ)r Mx1‖∇·X‖(c(s)) .

Note that the choice of the constant C1(n, λ) can be made explicit and independent of the
induction assumption. We deduce h(1) ≤ C1(n, λ)rµ and thus the subset

Br(p0)′ :=
{

p ∈ Br(p0)
∣∣∣∣ ?

Br/10(p0)′
dtr(1)(p, q) d volq ≤ r/2

}
(4.20)

satisfies

vol(Br(p0)′) ≥ (1 − 2C1(n, λ)µ) vol(Br(p0)) .(4.21)

It is elementary to check that

φt(Br(p0)′) ⊂ B2r(c(t)) for all t ∈ [0, 1] .(4.22)

Then arguing as before we estimate that?
Br(p0)′×Br(p0)

dtr(1)(p, q)d volp d volq ≤ C2(n, λ) · r · µ .(4.23)

Using dtr(1) ≤ r and the volume estimate (4.21) this gives?
Br(c(p0))2

dtr(1)(p, q) d volp d volq ≤ C2 · r · µ + 2rC1µ =: C3rµ .(4.24)

This completes the induction step with C(n, λ) = C3 and µ0 = 1
2C3

. In order to remove
the restriction µ ≤ µ0 one can just increase C(n, λ) by the factor 4, as indicated at the
beginning. �
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Remark 4.4. It’s obvious from the proof that Lemma 4.2 and Corollary 4.3 remain valid
for r ≤ ρ/10 if we change Mx1 to Mxρ in the assumptions.

We can now finish the proof of Theorem 4.1 by establishing the following

Lemma 4.5. Fix a small R < r0/10 and let ν = η � 1 and let ε ≤ ν4

C2(n,δ) (where C(n, δ) is
the constant in (4.5) ) satisfies Lemma 3.4. Then for any s ≤ ε we have

(1) the map φs|Bt
ε(R,ν) is (1 + (C(n, δ)ν1/n)-Bilipschitz onto its image,

(2)
φs(Bt

ε(R, ν)) ⊂ B(1+C(n,δ)ν1/n)R(γ(t − s))

for any s ≤ ε.

Proof. Since ε ≤ ν4

C2(n,δ) in (4.5) we have C(n,δ)
√
ε

ν
≤ ν and therefore by the definition of

Bt
ε(R, ν) for all x ∈ Bt

ε(R, ν) it holds

(4.25)
∫ ε

0
MxR|Hessh(φs(x))| ds ≤ ν .

This means that we can apply Corollary 4.3 at all such points with λ = λ(n, δ) and µ = ν.
Let C1(n, λ(n, δ)) = C1(n, δ) be the constant provided by Corollary 4.3.

Let x, y ∈ Bt
ε(R, ν). Let r1 = C2(n, δ)ν1/nd(x, y) and set r = 0.5d(x, y) + r1. Using

Corollary 4.3, by Bishop-Gromov we can be assured that Br(x)′′ ∩ Br(y)′′ , ∅ provided
C2(n, δ) � C1(n, δ) and ν is chosen small enough. Pick any z ∈ Br(x)′′ ∩ Br(y)′′ , ∅.
Likewise, using Bishop-Gromov we can find x1 ∈ Br(x)′′∩Br1 (x) and y1 ∈ Br(y)′′∩Br1 (y).

Therefore, by Corollary 4.3 we have

d(φs(x), φs(x1)) ≤ 2d(x, x1) ≤ C(n, δ)ν1/nd(x, y),(4.26)

d(φs(y), φs(y1)) ≤ 2d(y, y1) ≤ C(n, δ)ν1/nd(x, y),(4.27)

d(φs(x1), φs(z)) ≤ d(x1, z) + C(n, δ)νr ≤ (0.5 + C(n, δ)ν1/n)d(x, y)(4.28)

and

d(φs(y1), φs(z)) ≤ d(y1, z) + C(n, δ)νr ≤ (0.5 + C(n, δ)ν1/n)d(x, y).(4.29)

Summing up the above inequalities and using the triangle inequality we get

d(φs(x), φt(y)) ≤ d(φs(x), φs(x1)) + d(φs(x1), φs(z)) + d(φs(z), φs(y1)) + d(φs(y1), φt(y))

≤ C(n, δ)ν1/nd(x, y) + (0.5 + C(n, δ)ν1/n)d(x, y)

+ (0.5 + C(n, δ)ν1/n)d(x, y) + C(n, δ)ν1/nd(x, y)

≤ (1 + C(n, δ))ν1/n)d(x, y).(4.30)

This shows that φs is (1 + C(n, δ))ν1/n)-Lipschitz on Bt
ε(R, ν).

Next, let us show that it’s Bilipschitz. As before, using Bishop-Gromov, we can find
y2 ∈ Bd(x,y)−r1 (x)′′ ∩ B2r1 (y)′′ and x2 ∈ Br1 (x)′′ ∩ Bd(x,y)−r1 (x)′′. This implies that

d(φs(y2), φs(y)) ≤ 4r1 ≤ C(n, δ)ν1/nd(x, y),(4.31)

d(φs(x2), φs(x)) ≤ 2r1 ≤ C(n, δ)ν1/nd(x, y)(4.32)

and

d(φs(x2), φs(y2))) ≥ d(x2, y2) −C(n, δ)νd(x, y) ≥ (1 −C(n, δ)ν1/n)d(x, y).(4.33)
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By the triangle inequality this yields

d(φs(x), φs(y))) ≥ (1 −C(n, δ)ν1/n)d(x, y) −C(n, δ))ν1/nd(x, y) −C(n, δ)ν1/nd(x, y)

≥ (1 −C(n, δ)ν1/n)d(x, y),(4.34)

which finally proves part (1) of Lemma 4.5.
Let us prove part (2).
Recall that by Lemma 3.4 and (4.6) we have that

volBt
ε(R, ν)

vol(BR(γ(t)))
≥ 1 −C(n, δ) ν .(4.35)

Therefore, By Bishop-Gromov we can find z ∈ Bt
ε(R, ν) ∩ B

t
ε((C(n, δ)ν1/nR, ν). Since

by construction we have that Bt
ε((C(n, δ)ν1/nR, ν) ⊂ Bt

ε((C(n, δ)ν1/nR), by Lemma 3.4 we
have that d(φs(z), γ(t − s)) ≤ 2C(n, δ)ν1/nR. By part (1), for any x ∈ Bt

ε(R, ν) we also have
that d(φs(z), φs(x)) ≤ (1 + (C(n, δ)ν1/n)d(x, z) ≤ (1 + (C(n, δ)ν1/n)R. Applying the triangle
inequality we get that d(φs(x), γ(t − s)) ≤ (1 + (C(n, δ)ν1/n)R. This yields (2) and finishes
the proof of Lemma 4.5 and hence of Theorem 4.1.
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