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Abstract. We discuss folklore statements about distance func-
tions in manifolds with two sided bounded curvature. The topics
include regularity, subsets of positive reach and the cut locus.

1. Introduction

1.1. Distance functions in smooth Riemannian manifolds. We
discuss slightly generalized versions of some folklore results about dis-
tance functions dA to subsets A of smooth Riemannian manifolds M .
The results turn out to be local and are proved without any complete-
ness assumptions. Our proofs do not involve Jacobi fields, but only
basic facts about semi-concavity and semi-convexity of distance func-
tions. Therefore, the statements generalize to the synthetic setting of
manifolds with two sided curvature bounds, as will be explained below.

The first statement is well-known in the complete situation, see, for
instance, [MM03], [CS04], [GS19, Section 2].

Proposition 1.1. Let M be a smooth Riemannian manifold. Let A ⊂
M be a closed subset and let f denote the distance function to the set
A. Then f is semiconcave in M \ A. The following conditions are
equivalent for an open subset O ⊂M \ A:

(1) f is semiconvex in O.
(2) f is C1,1 in O.
(3) f is C1 in O.
(4) For any y ∈ O, there exists at most one geodesic γy : [0, ε)→M

starting at y and parametrized by arclength, with the property
f ◦ γy(t) = f(y)− t, for all t in [0, ε).
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We assume some familiarity with the notions of semiconcave (semi-
convex) functions and their gradient flows, [Pet07], [AKP19], [AGS05].
Here and below, the notions of semi-concavity (convexity) and C1,1 are
local. For instance, we say that a function f is C1,1 if it is C1 and the
gradient ∇f is locally Lipschitz continuous.

For a closed subset A of M , denote by RegdA the set of points x ∈
M \ A, such that dA is C1 in a neighborhood of x. Thus, RegdA is the
maximal open set O ⊂M \A which satisfies the equivalent conditions
of Proposition 1.1. The closed subset CL(A) = (M \ A) \ RegdA of
M \ A is called the cut locus of A in M .

If M is complete, then the geodesic γy in (4) can be extended to
a unique minimizing geodesic γy : [0, dA(y)] → M from y to A. The
endpoint of this geodesic is the unique projection point ΠA(y) of y on
A. Moreover, the whole geodesic γy([0, dA(y))) is contained in RegdA .

If M is complete and A is a Ck submanifold, for k ≥ 2, then dA :
RegdA → R can be expressed in terms of the normal exponential map
of A and turns out to be Ck, see, for instance, [MM03, Prop. 4.3].

In the non-complete situation, none of the above statements need to
hold, see Example 4.3.

The next result is known to specialists for some subsets in complete
manifolds, [ACNS13], [Alb15], [CCF19], [CC21]. We include a short
proof based on a general fact about gradient flows. Note, that the
function dA is semi-concave on M \A and has a uniquely defined (local)
gradient flow.

Proposition 1.2. Let A be a closed subset of a Riemannian manifold
M . Then the cut locus CL(A) ⊂ M \ A of A is invariant under the
gradient flow Φ of the distance function dA.

A natural generalization of the above result and its proof is valid
in Alexandrov spaces, [AKP19, Prop. 14.1.5]. As an application of
Proposition 1.2 one can derive a very short proof of the nice geometric
observation [GS19, Theorem 6.1], see Corollary 4.2 below.

Finally, we address (again essentially well-known to specialists) prop-
erties of subsets of positive reach, defined and investigated by Federer
in Euclidean spaces, [Fed69], and by Bangert and Kleinjohann in Rie-
mannian manifolds, [Ban82], [Kle81]; see also [Lyt05b], [Lyt04], [RZ17].

Recall that a closed subset A in a Riemannian manifold is said to
have positive reach, if A has a neighborhood O such that the foot
point projection ΠA is uniquely defined on O. As has been shown
by Federer and Bangert, the notion only depends on the underlying
smooth structure and not on the Riemannian metric. The following
result is essentially contained in [Kle81], [Ban82], [Lyt05b].
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Proposition 1.3. Let A be a closed subset of a smooth Riemannian
manifold M . Then the following are equivalent:

(1) The subset A is of positive reach.
(2) There is an open neighborhood O of A such that the distance

function dA is C1,1 in O \ A.
(3) The function dA is semiconvex on a neighborhood O of A.

See [Ban82] and [Lyt05b] for other characterizations.
Any subset of positive reach A ⊂M has a well-defined tangent cone

TxA at every point x ∈ A. This tangent cone is a convex cone in TxM ,
[Fed69, Theorem 4.8]. The normal cone T⊥x A is the convex cone of all
vectors in TxM enclosing angles at least π

2
with all vectors in TxA.

For the following folklore statement about subsets of positive reach
we could not find appropriate references. In the Euclidean case the
result is contained in [Fed69].

Proposition 1.4. Let A ⊂ M be a subset of positive reach. Then for
any x ∈ A and unit h ∈ T⊥x A the geodesic γh starting at x in the
direction of h satisfies dA(γh(s)) = s, for all s > 0 such that γh([0, s])
is contained in the open subset O from Proposition 1.3.

1.2. Manifolds with two sided curvature bounds. Here we dis-
cuss some basic observations about non-smooth Riemannian manifolds
which have two sided curvature bounds in the sense of Alexandrov and
the extensions of the above results to this setting. These results have
been applied in [KL20]. Readers only interested in the smooth situation
can skip this part of the introduction together with Section 6.

Manifolds with two sided curvature bounds in the sense of Alexan-
drov appear in one of the most prominent examples of Gromov–Hausdorff
convergence. Namely, the class of such compact manifolds with uni-
form bounds on injectivity radius, diameter and curvature is compact
with respect to the Gromov–Hausdorff convergence, [BN93], [Gro07],
[Pet87]. It provides a natural compactification of the corresponding
class of smooth Riemannian manifolds. Moreover, all manifolds with
two sided curvature bounds in the sense of Alexandrov turn out to
have a rather regular analytic structure and to admit a smoothing,
as has been proved by Nikolaev in a series of papers. A good read-
able summary of these results of Nikolaev and related statements on
the structure of such manifolds has appeared in [BN93]. Results and
ideas of Nikolaev motivated many theorems in the theory of Alexandrov
spaces with one-sided curvature bounds, [BGP92], [KKK19], [Per94],
[OS94], [Pet98], [LN18].

3



We will assume some familiarity with the theory of Alexandrov spaces,
and refer the non-familiar reader to [AKP19]. The most appropriate
setting for our local results is the following one.

Definition 1.5. A locally compact length metric space X has two sided
bounded curvature if for any point x ∈ X there exists a compact convex
neighborhood U and some K > 0 such that U is an Alexandrov space
of curvature ≥ −K and a CAT (K) space.

A space X with two sided bounded curvature is topologically a mani-
fold M with boundary ∂M . Moreover, M \∂M is convex in M , [BN93],
cf. [KKK19]. We restrict the attention to the case ∂M = ∅.

By a manifold with two sided curvature bounds we will denote a space
as in the above Definition 1.5 which, in addition, is homeomorphic to
a manifold without boundary.

Any manifold M with two sided curvature bounds admits a natural
atlas of distance coordinates, see [BN93] and Section 3 below. The
distance in M is defined by a C0,1 Riemannian metric g in this atlas.
Moreover, the C1,1-smoothness of the atlas and the C0,1-smoothness of
the Riemannian metric is optimal, as can be observed in the manifold
M arising from the gluing of a flat cylinder and a hemisphere. Results
of this type with weaker conclusions have been obtained for distance
coordinates under one-sided curvature bounds, [Per94], [OS94], [LN18].

On any C1,1 manifold M with a Lipschitz continuous Riemannian
metric, any harmonic function is C1,α, for all α < 1, [Tay00, III, Chap-
ter 9] and there exist harmonic coordinates around any point, [Tay00,
III, Chapter 9]. The atlas of harmonic coordinates is of class C2,α,
[Sv76, p. 689] and the distance is defined by a metric of class Cα in
these coordinates. One of the central results of Nikolaev’s theory, see
[BN93], is that for any manifold M with two sided curvature bounds,
the harmonic atlas is of class C3,α, for any α < 1, and the Riemannian
metric in this atlas is of class C1,α, for any α < 1.

In a general C1,1-manifold with a C0,1 Riemannian metric a harmonic
function does not need to be of class C1,1, cf. [Sv76, p. 693] and Problem
1.9 below. Our first observation is that such a loss of smoothness cannot
happen on a manifold with two sided bounded curvature.

Proposition 1.6. Let M be a manifold with two sided bounded curva-
ture. Then any harmonic function on an open subset U in M is of class
C1,1 in distance coordinates. Thus, any transformation from distance
to harmonic coordinates is of class C1,1.
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Thus, the C1,1 atlas of distance coordinates can be assumed to include
all harmonic coordinates as well. From now on all statements will refer
to this C1,1 atlas. The following result might be folklore knowledge:

Proposition 1.7. Let M be a manifold with two sided curvature bounds
and let N ⊂M be a C1,1 submanifold. Then N with its intrinsic metric
is a manifold with two sided curvature bounds.

This result follows from the Gauß equation and another central result
of Nikolaev’s theory, stating that manifolds with two sided curvature
bounds are exactly the limit spaces (in a precise local sense) of smooth
Riemannian manifolds with uniform bounds on sectional curvature.

The final statement discussed in the introduction is that all results
about distance functions in smooth Riemannian manifolds are valid in
this more general setting:

Theorem 1.8. The statements of Proposition 1.1, Proposition 1.2 and
Proposition 1.3 are valid for any closed subset A of any manifold M
with two sided bounded curvature. The differentiability in Propositions
1.1, 1.3 is considered with respect to distance coordinates.

1.3. A few questions. We would like to finish the introduction with a
few open questions about manifolds with two sided curvature bounds.

Problem 1.9. Does there exist a Riemannian metric of class C0,1 and
a harmonic function with respect to this metric, which is not C1,1?

It is possible that a positive answer to this problem might be obtained
following the ideas in the examples discussed in [Sv76, p. 693].

The second part of the next problem is motivated by Proposition 1.7.
It should be compared with Nash’s embedding theorem for Riemannian
manifolds of higher regularity, see [And02].

Problem 1.10. Let M be a (compact, complete, local) manifold with
two sided curvature bounds in the sense of Alexandrov. Do there exist
coordinates on M in which the distance is defined by a Riemannian
metric of class C1,1? Can M be length-preserving embedded as a C1,1
submanifold in a Euclidean space?

We would like to mention that the folklore argument providing a
negative answer to the first question above, for instance, [Pet87], is
not correct. Indeed, [Pet87] provides a surface with two sided curva-
ture bounds such that in harmonic coordinates the Riemannian metric
is not of class C1,1. Then the proof invokes the statement of [DK81],
[Sv76] that the smoothness of the metric is optimal in harmonic coor-
dinates. However, this elliptic regularity statement is not covered by
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[DK81] (since elliptic regularity does not work well for Lipschitz func-
tions). Indeed, the following result has appeared in [Sv76, Example
2] and provides a counter-example to the folklore proof. There ex-
ists a Riemannian metric of class C2 on R2 such that in any harmonic
coordinates the metric is not C1,1.

The second question concerns the existence of a canonical smoothing
of manifolds with two sided curvature bounds. While the existence
part in the next question is a direct consequence of the approximation
results of Nikolaev and [Shi89], the uniqueness is more subtle:

Problem 1.11. Let M be a complete manifold with two sided bounded
curvature. If the curvature bounds can be chosen uniformly on M then
there exists a unique Ricci flow coming out of the manifold M .

The final problem we would like to mention is due to the following
fact. The theory of Nikolaev is scattered through several works and
some of them are not easy to read (and to find). Thus, we formulate:

Problem 1.12. Find a streamlined proof of Nikolaev’s result on smooth-
ings of manifolds with two sided curvature bounds, [Nik91], [Nik88].

1.4. Structure of the paper. In Section 2, we recall basics on semi-
concave functions and their gradient flows and verify a local version
of Proposition 1.2. In Section 3, we recall basic facts about distance
coordinates. In Section 4, we prove Proposition 1.1 and 1.2. In Section
5, we prove the stated results about subsets of positive reach, Propo-
sitions 1.3, 1.4. Finally, in Section 6, we prove Proposition 1.6 and
Proposition 1.7.

1.5. Acknowledgements. The authors are grateful to Anton Petrunin
and Carlo Sinestrari for helpful comments.

2. Semiconcavity and gradient flows

2.1. Notation. Distance will be denote by d. The distance function
from a subset A of a space X will be denote by dA. By definition, this is
a 1-Lipschitz function. A geodesic will denote an isometric embedding
γ : I → X of an interval. Thus, our geodesics are always parametrized
by arclength and globally minimizing.

2.2. Special neighborhood. Let M be a manifold with two sided
curvature bounds. For any point x ∈ M , we find a compact neighbor-
hood U of x as in Definition 1.5. Restricting the neighborhood and
using convexity of small balls in CAT (K) spaces we may assume that
the neighborhood U = Ux has the following form.
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The set Ux is the closed ball of radius rx around x and it is homeo-
morphic to a Euclidean ball, [BN93, Theorem 12.1]. Any pair of points
in Ux is connected by a unique geodesic in Ux. For some Kx > 0, the
space Ux is CAT (Kx) and an Alexandrov space of curvature ≥ −Kx,
moreover, εx := rx ·Kx << 1. Any geodesic in Ux extends to a geodesic
starting and ending on the distance sphere ∂Ux, [BN93, Prop. 8.3].

2.3. Semiconvexity, semiconcavity and gradient flows. A locally
Lipschitz function f on an open subset O of M is C-concave, respec-
tively C-convex, if for any geodesic γ : I → O the function f ◦γ(t)− C

2
t2

is concave, respectively convex, on I.
A function f is C-concave if and only if for all pairs of points

p1, p2 ∈M which are sufficiently close to each other and any midpoint
m between p1 and p2, we have

(2.1) f(m) ≥ 1

2
(f(p1) + f(p2))−

C

8
· d2(p1, p2) .

The function f : O → R is semiconcave (semiconvex) if for any
x ∈ O there is some C ∈ R, such that the restriction of f to some
neighborhood of x in O is C-concave (C-convex).

If f : O → R is semiconcave and h : O → R is continuous, we say
that the function f is h-concave, if for any x ∈ O and any ε > 0, there
exists a neighborhood Oε of x such that f is (h(x) + ε)-concave in Oε.

This is equivalent to the requirement that, for any geodesic γ : I →
O, we have (f ◦ γ)′′ ≤ h ◦ γ on I in the sense of distributions.

Since the notion of semiconcavity and of gradient curves and flows
of semiconcave functions is local, the whole theory of gradient flows in
Alexandrov spaces, [AKP19], [Pet07], applies to the present situation.

For any semiconcave function f : O → R and every x ∈ O there
exists a unique vector ∇xf ∈ TxO, the gradient of f at x. Moreover,
there exists a unique maximal curve ηx : [0, a) → O with some a ∈
(0,∞), the gradient curve of f , which starts in x and satisfies

η′x(t) = ∇ηx(t)f and (f ◦ ηx)′(t) = |∇ηx(t)f |2 ,

for all t ∈ [0, a). Furthermore, if a <∞ then ηx([0, a)) is not contained
in a compactum in O. Finally, the map (x, t) → Φ(t, x) := ηx(t) is a
local flow defined on a neighborhood of O×{0} ⊂ O× [0,∞) is locally
Lipschitz continuous, [Pet07].

A point x ∈ O is critical for f if ∇xf = 0. In this case ηx is
the stationary curve ηx(t) = x. On the other hand, if the curve ηx
does not contain critical points of f , it has a unique parametrization
η̃x : [0, ã)→ O by arclength.
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The following is a not very well-known but fundamental observation.
The first statement is exactly [AKP19, Theorem 14.1.3]; the second one
follows from the first by localization:

Lemma 2.1. Let f : O → R be C-concave. Then for the arclength
reparametrization η̃x of any gradient curve ηx of f in O, the composi-
tion f ◦ η̃x : [0, a)→ R is C-concave.

If f is h-concave for a continuous function h : O → R then f ◦ η̃x is
h ◦ η̃x-concave on [0, a).

2.4. Distance functions in special neighborhoods. Let U ⊂M be
a special neighborhood of some point as in Subsection 2.2. Thus, U is
convex, compact, CAT (K) and it is an Alexandrov space of curvature
≥ −K, for some K > 0.

Then, for any point x ∈ U the distance function f = dx is convex in
U . Moreover, f is also semiconcave on U \ {x}. More precisely, on the
set O of points y ∈ U with d(x, y) > δ, the function f is C-concave,
for some C = C(K, δ).

Since an infimum of C-concave functions is C-concave, for any subset
B ⊂ U the distance function dB is C(K, δ) concave on the set of all
points y ∈ U with dB(y) > δ.

The function f = dB is 1-Lipschitz, thus |∇yf | ≤ 1 for all y ∈ U \B.
By the first variation formula, |∇yf | = 1 if and only if y is connected
with B by a unique shortest geodesic.

The conclusion of Proposition 1.2 will easily follow from the next
Lemma, cf. [AKP19, Prop. 14.1.5], [ACNS13, Theorem 4.5]:

Lemma 2.2. Let B ⊂ U be any closed subset in a special neighborhood
U as above. Let y ∈ U \ B be arbitrary and let ηy : [0, a) → U be the
gradient curve in U of the distance function f = dB starting at y. If
|∇yf | < 1 then |∇zf | < 1, for all z on the gradient curve ηy.

Proof. Rescaling the space, we may assume that the lower curvature
bound on U equals −1. Then, for the distance function F = dp to any

p ∈ U the composition F̂ = cosh ◦F is F̂ -concave on U , [AKP19, The-
orem 7.4.1]. Hence, also for the infimum f = dB of distance functions

to points, the composition f̂ := cosh ◦f is f̂ -concave on U .
The gradient curves of f and f̂ on U \B coincide up to parametriza-

tions, [AKP19, Theorem 11.4.4]. Thus, the arclength reparametriza-
tion η̃y of ηy is also the arclength parametrization of the gradient curve

of f̂ . From Lemma 2.1, we deduce that f̂ ◦ η̃y is f̂ ◦ η̃y-concave on the
interval of definition [0, b] of η̃y from y to z.
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Define h : [0, b]→ R as h(t) = f ◦ η̃y(t). Then h is an increasing, 1-
Lipschitz, semiconcave function; we have h′(0) < 1 and the composition

ĥ := cosh ◦h is ĥ-concave. We only need to verify h′(b) < 1.
Assume, by contrary that h′(b) = 1. Consider the linear function

h0(t) = t+ (h(b)− b). Then

h0(b) = h(b) ; h′0(b) = h′(b) ; (cosh ◦h0)′′ = cosh ◦h0 .

By comparison, cf. [AKP19, Theorem 4.5.3], we deduce

cosh ◦h(t) ≤ cosh ◦h0(t) ,

for all t ∈ [0, b]. Hence h(t) ≤ h0(t) for all t. However, h is 1-Lipschitz.
Thus, h(t) = h0(t) for all t ∈ [0, b]. This implies h′(0) = 1 in contra-
diction to our assumption. This finishes the proof. �

2.5. Distance functions to remote subsets. Let M be a manifold
with two sided curvature bounds (possibly non-complete and without
uniform bounds on curvature), as in Subsection 1.2. Let A be a closed
subset of M and consider the distance function f = dA to A.

Consider an arbitrary point x ∈ M \ A and a special neighborhood
U = Ux = B̄rx(x) as in Subsection 2.2. Making rx smaller, we may
assume that U is disjoint from A.

Let Ũ be a smaller ball of radius r < 1
3
·rx around x. Set s = f(x) and

denote by B the compact subset B = f−1(s−2r)∩U . By compactness
and convexity of U , for any y ∈ Ũ , we find at least one footpoint ŷ of
y on B, thus d(y, ŷ) = dB(y). By the triangle inequality,

f(y) ≤ f(ŷ) + d(y, ŷ) = (s− 2r) + dB(y) .

On the other hand, any curve η from A to y must contain points z with
f(z) = s − 2r. If z is not in U then the length of η is at least s + r.
Thus, any such η with length less than s + r, contains points on B.
Thus by the triangle inequality we deduce the equality

dA = f = (s− 2r) + dB

on Ũ . Since dB is semiconcave on Ũ , so is f , moreover, the gradient
curves of f and dB coincide in Ũ .

Now we arrive at the following results (also valid in all Alexandrov
spaces and their localized version, Alexandrov regions, [LN20]).

Corollary 2.3. Let A be a closed subset in a manifold M with two sided
curvature bounds. Then, the distance function f = dA is semiconcave
on M \A. For any point x ∈M \A with |∇xf | < 1 we have |∇yf | < 1
for all y on the gradient curve ηx.
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Proof. The semiconcavity condition is local and has been verified above
in the neighborhood of any x ∈M \ A.

In order to see the second statement, we consider the compact part
ηx : [0, b] → M of the gradient curve ηx between x and y. Assuming
the contrary, and using that f ◦ η̃x is semiconcave, we find a smallest
t ∈ (0, b] such that |∇ηx(t)f | = 1.

Now we find a small special neighborhood U of z = ηx(t), identify on
a smaller neighborhood Ũ (up to an additive constant) f with dB for
a closed subset B ⊂ U and derive a contradiction to Lemma 2.2. �

3. Coordinates

3.1. Distance coordinates. Let U ⊂ M be a special neighborhood
of a point x in a manifold M with two sided curvature bounds.

For any x ∈ U the function dx is convex in U . Moreover, dx is
C(K, δ) concave on the set of points y in U with d(x, y) > δ.

For any p in the interior of U , consider any points p1, ..., pn in U such
that the starting directions of the geodesics ppi are almost orthogonal
at p, (see [BN93, Theorem 13.2]). Then the map F : U → Rn with
coordinates fi := dpi is a biLipschitz map F : O → Õ from an open
ball O around p onto an open subset of Rn. (This is even true for any
Alexandrov space, [BGP92]).

Any such restriction F : O → Õ is called a distance chart on M .
The distance charts define a C1,1 atlas on M and the distance on M is
given by a Riemannian metric of class C0,1 with respect to this atlas,
[BN93, Theorem 13.2].

3.2. Distance charts and semiconcavity. The following observa-
tion can also be used to obtain a shorter alternative proof of [BN93,
Theorem 13.2], using the observation that a homeomorphism between
open subsets of Rn is C1,1 if and only if it preserves the class of semi-
concave functions.

Lemma 3.1. Let F : O → Õ ⊂ Rn be a distance chart in a mani-
fold with two sided curvature bounds. Then a function f : Õ → R is
semiconcave if and only if f ◦ F is semiconcave on O.

Proof. From the biLipschitz property of F , and semiconcavity and
semiconvexity of the coordinates fi, we deduce the following. For any
geodesic γ in O connecting q1 and q2 and having m as its midpoint the
distance between F (m) and the midpoint m̄ = 1

2
(F (q1) + F (q2)) in Rn

between F (qi), we have

d(F (m), m̄) ≤ C · d2(q1, q2) .
10



Here the constant C depends only on the biLipschitz constant of F and
the curvature bounds.

Since F is biLipschitz, F−1 sends midpoints in Õ to ”almost mid-
points” in O in the same sense as above. Now the equivalence of semi-
concavity of f and f ◦ F follows after applying (2.1). �

4. Main results

4.1. General distance functions. We are going to prove the follow-
ing slight generalization of Proposition 1.1

Proposition 4.1. Let M be a manifold with two sided curvature bounds.
Let A ⊂ M be a closed subset and f = dA. Then the following condi-
tions are equivalent for an open subset O ⊂M \ A:

(1) f is semiconvex in O.
(2) f is C1,1 in O.
(3) f is C1 in O.
(4) For all x ∈ O we have |∇xf | = 1
(5) For any x ∈ O, there exists at most one geodesic γx : [0, ε)→M

starting at x, with f ◦ γx(t) = f(x)− t, for all t in [0, ε).

Proof. All statements are local on O. We may fix p ∈ O and consider
a special neighborhood U of p in M . Furthermore, in Subsection 2.5,
we have found a closed subset B in U and a smaller neighborhood O0

of p in O, such that on O0 the function f coincides with dB up to an
additive constant. Thus, we may assume without loss of generality,
that A = B ⊂ U and O = O0. Making O smaller, if needed, we
may assume that O is a coordinate chart. Thus, on O the notion of
semiconcavity are the same with respect to the metric structure and
to the coordinate chart.

The semiconcavity of f has been verified in Corollary 2.3. Since on
open subsets of Rn a function is C1,1 if and only if it is semiconcave
and semiconvex, the properties (1) and (2) are equivalent.

Clearly, (2) implies (3).
For any x ∈ O, we find, by compactness, at least one shortest ge-

odesic γx : [0, f(x)] → U from x to A = B. Then (f ◦ γx)′ = −1 on
[0, f(x)). This shows, that for all t ∈ (0, f(x)), we have |∇γx(t)f | = 1.
If f is C1 it also implies |∇xf | = 1. Hence, (3) implies (4).

By the first formula of variation, |∇xf | = 1 if and only x is connected
with B by exactly one shortest geodesic γx. Note that for any such
geodesic f ◦ γx(t) = f(x) − t for all t ∈ [0, f(x)]. Moreover, for any
geodesic, γ̃x : [0, ε) → U satisfying the above equality for all t ∈ [0, ε),
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the unique extension of γ̃x to length f(x) ends on B. This shows the
equivalence of (4) and (5).

It remains to show that (4) implies (1). In this case, gradient lines
ηx of f in O are parametrized by arclength and f ◦ ηx has everywhere
velocity 1. This implies that any gradient line ηx in O is an (as always
minimizing) geodesic.

Fix x ∈ O and consider δ such that the ball of radius 3δ around x
is contained in O. Consider C = C(K, δ), the semiconcavity constant
of distance functions in O at distance ≥ δ, as in Subsection 2.4. We
claim that f is −C-convex on the ball W of radius δ around x.

Indeed, consider points q1, q2 ∈ W and their midpoint m. Set z =
ηm(2δ). Then, for i = 1, 2,

f(z) = f(m) + 2δ = f(m) + d(m, z) ≤ f(qi) + d(qi, z) ,

due to the triangle inequality. This implies

f(m) ≤ 1

2
(f(q1) + f(q2)) + (

1

2
(d(q1, z) + d(q2, z))− d(m, z)) ≤

≤ 1

2
(f(q1) + f(q2)) +

C

8
· d2(q1, q2) .

This implies the claimed semiconvexity of f . �

4.2. Cut locus. As a combination of previous results we now obtain

Proof of Proposition 1.2. As before set f = dA. Due to Proposition
4.1, the cut locus CL(A) of A is exactly the closure CL(A) = X̄ of

X = {x ∈M \ A : |∇xf | < 1} .
As we have seen in Corollary 2.3, the set X is invariant under the
gradient flow of f . By continuity of the gradient flow, the closure
C̄ = CL(A) is invariant under the gradient flow as well. �

As a consequence we deduce the following observation from [GS19]:

Corollary 4.2. Let M be a complete Riemannian manifold. Let A be
a closed subset of M and let X = CL(A) ⊂ M \ A be the cut locus of
A. Assume that the distance function dA is concave on M .

Let x ∈ M \ A be arbitrary and let x0 ∈ CL(A) be a point with
d(x, x0) = d(x,CL(A)). Then dA(x0) ≥ dA(x).

Proof. Assume the contrary, thus dA(x0) < dA(x). Consider a geodesic
γ from x0 to x. Since h := dA ◦ γ is concave, the derivative of h at 0
is positive. In particular, x0 is non-critical for the function dA. Thus,
the gradient curve ηx0 of dA starting at x0 is non-constant. Moreover,
the angle between γ′(0) and ∇x0dA is less than π

2
.
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By the first variation formula, the derivative of l(t) := d(x, ηx0(t)) at
0 is negative. Hence, for small t > 0, we have

d(x, ηx0(t)) < d(x, x0) .

Due to Proposition 1.2, ηx0(t) is contained CL(A). Thus, x0 is not a
nearest point to x in CL(A). This contradiction finishes the proof. �

4.3. Simple counterexample. The following example shows that with-
out a completeness assumption no higher smoothness of the distance
function can be expected:

Example 4.3. Let M be the flat non-complete manifold R2 \ C, where
C is the ray C = {(0, t) : t ≥ 0}. Let A be the singleton (1, 0) ∈ M .
It is not difficult to see (for instance, using that the completion of M is
CAT(0), [LW18, Proposition 12.1], thus uniquely geodesic) that RegdA

is the whole complement M \A. While M is smooth and A is a smooth
submanifold, the distance function f to A is not smooth: level sets of
f−1(s) of f are concatenations of parts of Euclidean circles of radii s
and s− 1 and thus not C2.

5. Subsets of positive reach

5.1. Characterization. We are going to provide:

Proof of Proposition 1.3. Proposition 1.1 shows the equivalence of (1)
and (2). Moreover, by Proposition 1.1, (3) implies (2).

It remains to show that (2) implies (3). Thus, let O be a neighbor-
hood of A such that f = dA is C1,1 in O \ A. Then f is semiconvex
on O \ A and we need to show that f is semiconvex around any point
x ∈ A. Consider a special ball Ux around x of radius r. Let W be
the ball of radius r

3
around x. For any q1, q2 ∈ W with midpoint m we

either have m ∈ A and then

f(m) = 0 ≤ 1

2
(f(q2) + f(q2)) .

Or m /∈ A. Then the gradient curve ηm of f starting in m is a geodesic
on [0, r

3
]. As in the last part of the proof of Proposition 1.1, we deduce

f(m) ≤ 1

2
(f(q1) + f(q2)) +

C

8
· d2(q1, q2) ,

for some C depending only on Ux. Hence f is semiconvex in W , finish-
ing the proof. �
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5.2. Geodesics in normal directions. Now we derive:

Proof of Proposition 1.4. The distance function f = dA is semiconvex
in a neighborhood O of A. Thus, we have a well-defined (directional)
differential Dxf : TxM → R and this differential coincides with the
distance to the tangent cone TxA, cf. [Lyt05a].

By the definition of normal directions, we have Dxf(h) = 1. In other
word, (f ◦ γh)′)(0) = 1. By semiconvexity of f ◦ γh, we have

lim
t→0

(f ◦ γh)′(t) = 1 .

By the first variation formula, this implies that for t → 0, the angle
between (γh)′(t) and the unique shortest geodesic from γh(t) to A con-
verges to π. Thus the angle between the gradient curve ηt of f starting
at γh(t) and γh at the point γh(t) converges to 0. Since, the gradi-
ent curves ηt are geodesics on a fixed interval [0, s0], we deduce that
ηt : [0, s0]→ O converge to γh.

Thus, d(γh(t), A) = t for all t ∈ [0, s0]. This implies the claim. �

6. Harmonic coordinates and submanifolds

6.1. Harmonic and distance coordinates. We provide:

Proof of Proposition 1.6. . Thus, let M be a manifold with two sided
curvature bounds. Let G : V → Rn be some distance coordinates on
an open subset V of M and let f : V → R be a harmonic function.

We identify V with G(V ) ⊂ Rn. The Riemannian metric g of M
restricted to is Lipschitz continuous on V , [BN93, Theorem 13.2].

Let x ∈ V be arbitrary and consider arbitrary harmonic coordinates
F : O → Rn defined on a neighborhood O of x. Thus, the coordinates
of F are harmonic functions in O.

Due to Nikolaev’s theorem, the pull-back Riemannian metric g̃ :=
(F−1)∗(g) is C1,α on Õ := F (O) ⊂ Rn, for all α < 1, [BN93, Theorem
14.2]. In particular, g̃ is locally Lipschitz continuous.

Then F : (O, g) → (Õ, g̃) is an isometry between Riemannian man-
ifolds with C0,1 Riemannian metrics. And such an isometry is always
C1,1, [Sab93]. See also [LY06] and [Tay06] for other proofs of this fact.
Hence, F and F−1 are of class C1,1.

The function F−1◦f is harmonic on Õ. By elliptic regularity, [Tay00]
or [Sv76, p. 689], the function F−1 ◦ f is C3,α. In particular, it is C1,1.
Hence, f = F ◦F−1 ◦f is C1,1 on O as well. This finishes the proof. �

6.2. Submanifolds. This subsection is devoted to
14



Proof of Proposition 1.7. Let M be a manifold with two sided bounded
curvature and let N be a C1,1 submanifold with respect to distance
coordinates.

The statement is local. We fix any point x ∈ N and consider a special
neighborhood Ux of x in M . Then we find a compact C1,1 submanifold
N̂ of M which is contained in Ux and such that N and N̂ coincide in
a neighborhood of x.

Since the statement is local we may assume that N = N̂ . We may
further assume that Ux is a distance chart and identify it with a ball
in Rn. Then the distance in U is given by a Lipschitz continuous
Riemannian metric g.

Due to [Lyt05b, Proposition 1.5] and [Lyt04, Theorem 1.2], the space
N is CAT (κ) for some κ. It thus remains to show that N has curvature
bounded from below.

Applying Proposition 1.6 and Nikolaev’s approximation theorem,
[BN93, Theorem 15.1], we may further assume on U there exist smooth
Riemannian metrics gε, which are uniformly Lipschitz continuous and
converge to the Riemannian metric g. Moreover, the Riemannian mani-
fold (U, gε) have sectional curvature uniformly bounded from above and
below.

Smoothing the submanifold N we find a family of smooth subman-
ifolds N ε ⊂ U with uniform bounds on their C1,1-norms (thus any N ε

is a union of a uniform number of charts each of them of bounded
C1,1-norm), such that N ε converge to N in C1 sense.

Considering N ε with the the intrinsic metric induced by gε, we see
that N ε converge to N in the Gromov–Hausdorff metric (in fact, the
convergence is much stronger). Thus, it remains to show that all N ε are
Alexandrov space of curvature ≥ −κ, for some fixed κ. However, the
C1,1 bounds of N ε directly imply, that the second fundamental forms of
N ε are uniformly bounded (as subsets of the flat space Rn and therefore,
of the Riemannian manifold (U, gε)). Applying the Gauß equation, we
derive a uniform lower bound on the sectional curvatures of N ε. By
Toponogov’s theorem and compactness of N ε, the manifolds N ε are
Alexandrov spaces of curvature ≥ −κ. This finishes the proof. �
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[Kle81] N. Kleinjohann, Nächste Punkte in der Riemannschen Geometrie, Math.
Z. 176 (1981), no. 3, 327–344. MR 610214

[LN18] A. Lytchak and K. Nagano, Geodesically complete spaces with an upper
curvature bound, arXiv:1804.05189, 2018.

[LN20] N. Lebedeva and A. Nepechiy, Alexandrov regions, Preprint (2020).

16



[LW18] A. Lytchak and S. Wenger, Isoperimetric characterization of upper cur-
vature bounds, Acta Math. 221 (2018).

[LY06] A. Lytchak and A. Yaman, On Hölder continuous Riemannian and
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