Solution to problem 1d) on page 77.

Let M be the surface of revolution obtained by rotating the graph z = z?

around z-axis. Then in polar coordinates the metric on M has the form
ds®> = (1 + 4r%)dr? + r2d6?. (In the notations of the book 7 = v and
0 = u). We claim that every geodesic which is not a meridian intersects
itself infinitely many times.

Step 1. Let us first prove that every such geodesic winds around z-
axis infinitely many times as t — oo and ¢ — —oo. In other words, let
v(t) = (r(t),0(t)) be a unit speed geodesic with 6(t) # const. Then we
claim that 6(t) — 400 or 6(t) — —oo0 as t — oo (and the same holds for
t — —o0). By uniqueness of geodesics v(t) can not be tangent to a meridian
for any t and hence 0(t) is monotone and #'(t) has the same sign for all t.
Therefore, it’s enough to show that fo ¢’ (t)dt and f t)dt and diverge.

Let us consider the case t > 0. The other half of the geodesm v is treated
similarly. We first observe that r(t) satisfies the inequality

(1) r(t) < 4/r?(0) +tforall t >0
Indeed, we have
@) =R Ol= VO 207 2 Va2 >
> [2rr'] = |(r?)']
Integrating the inequality |(r2(¢))'] < 1 we get |[r?(¢t)—r2(0)| < fo ) |ds <

fot ds =t and hence r2(t) < r2(0) +t as claimed.
By part c) of the problem we have that (¢) satisfies the Clairaut relation

(3) r(t)cos B(t) = C

for some constant C' # 0. Here §(t) is the angle between +/(¢) and the
parallel r = const passing through 7(¢). In other words [ is the angle
/(4). 2
between +/(¢) and %h(ﬂ' Since |/(t)] = 1 we have that cos § = % =
o6
(r' () 246 (1) %, 55)
r(t)

= 0'(t)r(t). Using Clairaut’s equation this gives

(1 00 =

which by (1) implies
10/(t)] > —1SL_. Therefore

IO
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Step 2. Next, let us show that r(t) — oo as t — £oo. Together with the
fact that ~(t) spirals around z-axis infinitely many times this easily implies
that it has infinitely many self intersections.
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Suppose B(tg) > 0 for some ty. Then Clairaut’s relation easily implies
that sin 3(t) > sin 8(tg) for all ¢ > ¢y and hence r/(t) > const > 0 for t > tg
which implies that r(t) — oo as t — oo.

Now suppose S(t) < 0 for all ¢ so that r(t) is decreasing for all ¢. It’s
immediate from Clairaut’s equation that we can not have lim; o, r(t) = 0
and hence limy_,o 7(t) = ro > 0.

Geometrically this means that «(¢) ”spirals down” and approaches the
parallel r = rg as t — oo but never reaches it. We will show that this can

not happen for a geodesic.

From (2) we have 1 = (1 + 4r2)(r")2 + r2(@)2 "= (1 4 42)(")2 4

%2. Therefore limy oo (1) = e 4:%. This of course means that r% = C?
and limy_o 7/ (t) = 0 since otherwise lim;_,o, r'(t) = const < 0 and hence
limy_, o 7(t) = —oo which is a contradiction.

Thus lim¢—,o 7’(t) = 0. Finally, by the second geodesic equation from b)
we have
yo 2w
1+4r2  1+4r2

() =0
which by (4) gives

" C? 4r
(1 4r2)rt 1+ 42

(7’/)2
Since r(t) — ro and 7’'(t) — 0 as t — oo this means that r” > m >
0 for all large ¢ which implies that 7/(¢) > 0 for large enough ¢.

Lastly, applying the same argument to J(¢) = v(—t) we conclude that
limy—, oo 7(t) = +00 as well.
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