
Solution to problem 1d) on page 77.

Let M be the surface of revolution obtained by rotating the graph z = x2

around z-axis. Then in polar coordinates the metric on M has the form
ds2 = (1 + 4r2)dr2 + r2dθ2. (In the notations of the book r = v and
θ = u). We claim that every geodesic which is not a meridian intersects
itself infinitely many times.

Step 1. Let us first prove that every such geodesic winds around z-
axis infinitely many times as t → ∞ and t → −∞. In other words, let
γ(t) = (r(t), θ(t)) be a unit speed geodesic with θ(t) 6= const. Then we
claim that θ(t) → +∞ or θ(t) → −∞ as t → ∞ (and the same holds for
t→ −∞). By uniqueness of geodesics γ(t) can not be tangent to a meridian
for any t and hence θ(t) is monotone and θ′(t) has the same sign for all t.

Therefore, it’s enough to show that
∫∞
0 θ′(t)dt and

∫ 0
−∞ θ

′(t)dt and diverge.
Let us consider the case t ≥ 0. The other half of the geodesic γ is treated

similarly. We first observe that r(t) satisfies the inequality

(1) r(t) ≤
√
r2(0) + t for all t ≥ 0

Indeed, we have

(2) 1 = |γ′(t)| =
√

(1 + 4r2)(r′)2 + r2(θ′)2 ≥
√

1 + 4r2|r′| ≥

≥ |2rr′| = |(r2)′|
Integrating the inequality |(r2(t))′| ≤ 1 we get |r2(t)−r2(0)| ≤

∫ t
0 |(r

2(s))′|ds ≤∫ t
0 ds = t and hence r2(t) ≤ r2(0) + t as claimed.

By part c) of the problem we have that γ(t) satisfies the Clairaut relation

(3) r(t) cosβ(t) = C

for some constant C 6= 0. Here β(t) is the angle between γ′(t) and the
parallel r = const passing through γ(t). In other words β is the angle

between γ′(t) and ∂
∂θ |γ(t). Since |γ′(t)| = 1 we have that cosβ =

〈γ′(t), ∂
∂θ
〉

| ∂
∂θ
| =

〈r′(t) ∂
∂r

+θ′(t) ∂
∂θ
, ∂
∂θ
〉

r(t) = θ′(t)r(t). Using Clairaut’s equation this gives

(4) θ′(t) =
C

r2(t)

which by (1) implies

|θ′(t)| ≥ |C|
r2(0)+t

. Therefore∫ ∞
0
|θ′(t)|dt ≥

∫ ∞
0

|C|
r2(0) + t

= +∞

Step 2. Next, let us show that r(t)→∞ as t→ ±∞. Together with the
fact that γ(t) spirals around z-axis infinitely many times this easily implies
that it has infinitely many self intersections.
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Suppose β(t0) > 0 for some t0. Then Clairaut’s relation easily implies
that sinβ(t) ≥ sinβ(t0) for all t > t0 and hence r′(t) > const > 0 for t > t0
which implies that r(t)→∞ as t→∞.

Now suppose β(t) ≤ 0 for all t so that r(t) is decreasing for all t. It’s
immediate from Clairaut’s equation that we can not have limt→∞ r(t) = 0
and hence limt→∞ r(t) = r0 > 0.

Geometrically this means that γ(t) ”spirals down” and approaches the
parallel r = r0 as t → ∞ but never reaches it. We will show that this can
not happen for a geodesic.

From (2) we have 1 = (1 + 4r2)(r′)2 + r2(θ′)2
by (4)

= (1 + 4r2)(r′)2 +

C2

r2
. Therefore limt→∞(r′)2 =

1−C
2

r20

1+4r20
. This of course means that r20 = C2

and limt→∞ r
′(t) = 0 since otherwise limt→∞ r

′(t) = const < 0 and hence
limt→∞ r(t) = −∞ which is a contradiction.

Thus limt→∞ r
′(t) = 0. Finally, by the second geodesic equation from b)

we have

r′′ − (θ′)2

1 + 4r2
+

4r

1 + 4r2
(r′)2 = 0

which by (4) gives

r′′ =
C2

(1 + 4r2)r4
− 4r

1 + 4r2
(r′)2

Since r(t)→ r0 and r′(t)→ 0 as t→∞ this means that r′′ > C2

2(1+4r20)r
4
0
>

0 for all large t which implies that r′(t) > 0 for large enough t.
Lastly, applying the same argument to γ̃(t) = γ(−t) we conclude that

limt→−∞ r(t) = +∞ as well.
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