(1) Let $f: S_1 \to S_2$ be a smooth map between smooth surfaces in \mathbb{R}^3 . It's called a *global isometry* if it's a local isometry and is a diffeomorphism.

Prove that if f is a global isometry then $d_{S_1}(p,q) = d_{S_2}(f(p), f(q))$ for any $p, q \in S_1$.

Is that true if f is only known to be a local isometry?

(2) Prove that for any $a, b, c, d \in \mathbb{R}^3$ the following equality holds

$$\langle a \times b, c \times d \rangle = \langle a, c \rangle \cdot \langle b, d \rangle - \langle a, d \rangle \cdot \langle b, c \rangle$$

(3) Let S be a smooth surface in \mathbb{R}^3 . For any $p \in S$ and r > 0 define the metric ball of radius r around p in S to be the set

 $B_S(p,r) = \{x \in S | \text{such that } d_S(p,x) < r\}$

Let $S = S^2 = \{x^2 + y^2 + z^2 = 1\}.$

Find the area of $B_S(p, r)$ for $p \in S$ and r > 0. (4) Let U be an open subset in $S^2 = \{x^2 + y^2 + z^2 = 1\}$ and let V be an open subset in the xy-plane in \mathbb{R}^3 .

Prove that U and V are not locally isometric.