(1) Let *A* be an orthogonal 3×3 matrix with det A > 0.

Prove that for any $u, v \in \mathbb{R}^3$ we have that $Au \times Av = A(u \times v)$.

Hint: Prove this formula for orthonormal vectors *u*, *v* first.

You are not allowed to use results from appendix A1 of the book without proof.

(2) Give a full proof of the following result from class.

Let $\gamma(t)$ be a regular curve in \mathbb{R}^3 whose curvature is positive for all *t*.

Let *A* be an orthogonal 3×3 matrix with det A > 0 and let v_0 be a point in \mathbb{R}^3 . Let $F \colon \mathbb{R}^3 \to \mathbb{R}^3$ be a rigid motion given by the formula $F(v) = Av + v_0$.

- Let $\tilde{\gamma}(t) = F(\gamma(t))$.
- (a) Prove that $k(\gamma(t)) = k(\tilde{\gamma}(t))$ and $\tau(\gamma(t)) = \tau(\tilde{\gamma}(t))$ fot any *t*.
- (b) what happens with the above formula if the matrix *A* is orthogonal with negative determinant?
- (3) Let $\gamma(t)$ be a regular curve in \mathbb{R}^3 whose curvature is positive for all *t*. Prove that $\gamma(t)$ lies in a plane if and only if $\gamma'(t), \gamma''(t), \gamma'''(t)$ are linearly dependent for all *t*.
- (4) Let $\gamma: [a, b] \to \mathbb{R}^2$ be a unit speed curve. Let $g(t) = \gamma'(t)$ (it's also a curve in \mathbb{R}^2) and let k_t be the signed curvature of γ . Prove that $\int_a^b k_t = \int_g x dy - y dx$
- (5) Let γ be a simple closed curve in \mathbb{R}^2 . Suppose its curvature is ≥ 1 everywhere. Prove that the area of the interior of γ is $\leq \pi$.
- (6) Recall that in homework 1 we considered the γ(t) obtained by tracing a point on a circle of radius 1 rolling along a circle of radius 3 on the inside (see the image here http://www.math.toronto.edu/vtk/363Winter2014/curve.gif).

Find the area inside γ .