(1) (10 pts)

Let $\gamma(t) = (t - \sin t, 1 - \cos t)$ be the cycloid obtained by tracing a point on a circle of radius 1 rolling along the x-axis.

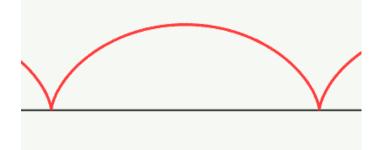


FIGURE 1. Cycloid

(a) Is γ regular?

Solution

We compute $\gamma'(t) = (1 - \cos t, \sin t)$. We see that $\gamma'(2\pi k) = (1 - \cos 2\pi k, \sin 2\pi k) = (0, 0)$ which means that γ is not regular.

(b) Find the length of one arch of γ .

Solution

The cycloid touches the *x*-axes when $1 - \cos t = 0$ i.e. for $t = 2\pi k$ where $k \in Z$. Therefore we need to compute the length of γ on the interval $[0, 2\pi]$. We have $L(\gamma|_{[0,2\pi]}) = \int_0^{2\pi} |\gamma'(t)| dt = \int_0^{2\pi} \sqrt{(1 - \cos t)^2 + \sin^2 t} dt = \int_0^{2\pi} \sqrt{1 + \cos^2 t} - 2\cos t + \sin^2 t dt = \int_0^{2\pi} \sqrt{2(1 - \cos t)} dt = \int_0^{2\pi} \sqrt{4\sin^2(t/2)} dt = \int_0^{2\pi} |2\sin(t/2)| dt = \int_0^{2\pi} 2\sin(t/2) dt = -4\cos(t/2)|_0^{2\pi} = 8.$ **Answer:** L = 8.

(2) (10 pts) Let $\gamma(t)$ be a regular cure in \mathbb{R}^3 such that its tangent line at $\gamma(t)$ (i.e. the line passing through $\gamma(t)$ and parallel to $\gamma'(t)$) passes through 0 for all t. Prove that there is a line l in \mathbb{R}^3 such that $\gamma(t) \in l$ for all t. *Hint:* Differentiate $\gamma(t) \times \gamma'(t)$.

Solution

By the assumption $\gamma(t)$ and $\gamma'(t)$ are proportional which implies that $\gamma(t) \times \gamma'(t) = 0$ for all t. Differentiating this equality we get

 $0 = \gamma'(t) \times \gamma'(t) + \gamma(t) \times \gamma''(t) = \gamma(t) \times \gamma''(t) \text{ since } \gamma'(t) \times \gamma'(t) = 0.$ Thus $\gamma(t) \times \gamma''(t) = 0$ for all t.

Fix some t_0 . If $\gamma(t_0) \neq 0$ then $\gamma(t_0) = \lambda \gamma'(t_0)$ for some $\lambda \neq 0$ and hence $0 = \gamma(t) \times \gamma''(t) = \lambda \gamma'(t_0) \times \gamma''(t_0)$. Therefore $\gamma'(t_0) \times \gamma''(t_0) = 0$. Hence $k(t_0) = \frac{|\gamma'(t_0) \times \gamma''(t_0)|}{|\gamma'(t_0)|^3} = 0$.

Thus the curvature of γ is zero for all points t such that $\gamma(t) \neq 0$. Suppose $\gamma(t_0) = 0$. Since γ is regular $\gamma'(t_0) \neq 0$ and hence $\gamma(t) \neq 0$ for all $t \neq t_0$ near t_0 . By above, for all such t we have that k(t) = 0. By continuity of k(t) this implies that $k(t_0) = 0$ as well.

Thus, k(t) = 0 for all t which implies that γ is contained in a line by a theorem from class.

(3) (10 pts) Let $\gamma(t)$ be a regular curve in \mathbb{R}^2 .

Let A(t) be the 2 × 2 matrix with columns $\gamma'(t), \gamma''(t)$. Prove that the signed curvature k_t of γ is positive if and only if det A(t) > 0. *Hint:* Reduce to the case when γ is unit speed.

Solution

Let s be the arc length parameter of γ then we have the general formulas $\frac{d\gamma}{ds} = \frac{\gamma'}{|\gamma'|}, \frac{d^2\gamma}{ds^2} = \frac{|\gamma'|^2 \gamma'' - \langle \gamma', \gamma'' \rangle \gamma'}{|\gamma'|^4} = \frac{\gamma''}{|\gamma'|^2} - \frac{\langle \gamma', \gamma'' \rangle \gamma'}{|\gamma'|^4}.$ Therefore, $\det(\frac{d\gamma}{ds}, \frac{d^2\gamma}{ds^2}) = \det(\frac{\gamma'}{|\gamma'|}, \frac{\gamma''}{|\gamma'|^2} - \frac{\langle \gamma', \gamma'' \rangle \gamma'}{|\gamma'|^4}) = \det(\frac{\gamma'}{|\gamma'|}, \frac{\gamma''}{|\gamma'|^2}) = \frac{1}{|\gamma'|^3} \det(\gamma', \gamma'').$ Since $|\gamma'| > 0$ we have that $\det(\frac{d\gamma}{ds}, \frac{d^2\gamma}{ds^2})$ and $\det(\gamma', \gamma'')$ have the same sign. Thus it's enough to show that for a unit speed curve $\gamma(s)$, the curvature has the same sign as $\det(\frac{d\gamma}{ds}, \frac{d^2\gamma}{ds^2})$.

From now on we will assume that γ is unit speed. To finish the proof it's enough to establish the following

Claim. Let $\gamma(s)$ be a unit speed curve in \mathbb{R}^2 . Then its signed curvature k_s is equal to det (γ', γ'')

Indeed, recall that the signed curvature k_s is defined as follows. Let $\vec{\tau} = \gamma'$ be the unit tangent. Then the unit normal \vec{n} is defined by rotating $\vec{\tau}$ by $\pi/2$ counterclockwise. Then k_s is determined by the formula $\gamma'' = k_s \vec{n}$. Observe

Name:__

that counterclockwise rotation $R_{\pi/2}$ in \mathbb{R}^2 sends v = (x, y) to (-y, x). Therefore det $(v, R_{\pi/2}(v)) = det \begin{pmatrix} x & -y \\ y & x \end{pmatrix} = x^2 + y^2$. In particular, if |v| = 1 then $det(v, R_{\pi/2}(v)) = 1$.

Applying this to $v = \vec{\tau}$ we get $\det(\gamma', \gamma'') = \det(\vec{\tau}, k_s \vec{n}) = k_s \det(\vec{\tau}, \vec{n}) = k_s \det(\vec{\tau}, R_{\pi/2}(\vec{\tau})) = k_s \cdot 1 = k_s$. This proves the Claim. \Box . (4) (10 pts) Let $\gamma(t) = (e^t, t, e^{-t})$.

Find the curvature and the torsion of γ at t = 0.

Solution

We compute $\gamma'(t) = (e^t, 1, -e^{-t}), \gamma''(t) = (e^t, 0, e^{-t}), \gamma'''(t) = (e^t, 0, -e^{-t}).$ Plugging in t = 0 this gives $\gamma'(0) = (1, 1, -1), \gamma''(0) = (1, 0, 1), \gamma'''(0) = (1, 0, -1).$ We have the general formulas

 $k = \frac{|\gamma' \times \gamma''|}{|\gamma'|^3} \qquad \tau = \frac{\langle \gamma''', \gamma' \times \gamma'' \rangle}{|\gamma' \times \gamma''|^2}$

Plugging the values of $\gamma'(0), \gamma'''(0), \gamma'''(0)$ in these formulas we get $\gamma'(0) \times \gamma''(0) = (1, -2, -1), |\gamma'(0) \times \gamma''(0)| = \sqrt{6}, |\gamma'(0)| = \sqrt{3}.$ hence

$$k(0) = \frac{\sqrt{6}}{(\sqrt{3})^3} = \frac{\sqrt{2}}{3}$$
 $\tau(0) = \frac{2}{6} = \frac{1}{3}$

(5) (8 pts) Give the following definitions:

- (a) Signed curvature of a regular curve in \mathbb{R}^2 .
- (b) An open subset of a surface in \mathbb{R}^3 .
- (c) Tangent space at a point on a smooth surface in \mathbb{R}^3 .

Solution

- (a) Let $\gamma(s)$ be arc length parameterization of γ . Let $\vec{\tau} = \gamma'$ be the unit tangent. Then the unit normal \vec{n} is defined by rotating $\vec{\tau}$ by $\pi/2$ counterclockwise. Then the signed curvature k_s is determined by the formula $\gamma'' = k_s \vec{n}$.
- (b) An open subset of a surface S in \mathbb{R}^3 is an intersection of an open subset of \mathbb{R}^3 with S.
- (c) Let S be surface in \mathbb{R}^3 . Let $p \in S$ be a point. let $f: U \to V$ be a smooth surface patch where U is an open subset of \mathbb{R}^2 , V is an open subset of S and

p = f(q) for some $q \in U$. Since S is a subset of \mathbb{R}^3 we can view f as a map $f: U \to \mathbb{R}^3$. Then the tangent space to S at p is defined by the formula

$$T_p S := df_q(\mathbb{R}^2)$$

- (6) (12 pts) Let $S = \{(x, y, z) \in \mathbb{R}^3 | \text{ such that } x^2 + 2y^2 3z^2 = 0 \text{ and } z \ge 0 \}.$
 - (a) Prove that S is a not smooth surface in \mathbb{R}^3 .
 - (b) Prove that $S_1 = S \setminus \{(0, 0, 0)\}$ is a smooth surface in \mathbb{R}^3 .
 - (c) Let p = (1, 1, 1). Find $T_p S_1$.

Solution

(7) Recall a theorem from class that a subset $S \subset \mathbb{R}^3$ is a smooth surface if an only if it is locally given by either a graph of a smooth function z = z(x, y) or y = y(x, z)or x = x(y, z).

Let $p = (0, 0, 0) \in S$. We claim that near p neither of these 3 possibilities hold. Note that if $(x_0, y_0, z_0) \in S$ then $(-x_0, y_0, z_0) \in S$ also, therefore S is not a graph of x = x(y, z) near 0 since in any small ball around zero we can find $(\pm x_0, y_0, z_0) \in S$ with $x_0 \neq 0$. Likewise, if $(x_0, y_0, z_0) \in S$ then $(x_0, -y_0, z_0) \in S$ too and hence S is not a graph of y = y(x, z) near 0. The restriction $z \geq 0$ means that S IS a graph of z = z(x, y) near 0 (and, in fact, globally). Namely, it's a graph of $z = +\sqrt{\frac{x^2+2y^2}{3}}$. However, this function is not smooth at zero. Therefore, S is not a smooth surface.

- (8) let $U = \mathbb{R}^3 \setminus \{(0,0,0)\}$. Then U is an open subset of \mathbb{R}^3 . Let $f: U \to \mathbb{R}$ be given by $f(x,y,z) = x^2 + 2y^2 3z^2$. Then $S_1 = \{f = 0\}$. We compute $\nabla f = (2x, 4y, -6z) \neq 0$ on U. hence 0 is a regular value of f and $S_1 = \{f = 0\}$ is a smooth surface.
- (9) By part (b) we have that $S_1 = \{f = 0\}$. By the general formula, $T_p S_1 = \nabla f_p^{\perp} = (2, 4, -6)^{\perp} = \{2x + 4y 6z = 0\}.$