
MAT 363S Solutions to the Term Test Winter 2014

(1) (10 pts)
Let γ(t) = (t− sin t, 1− cos t) be the cycloid obtained by tracing a point on a

circle of radius 1 rolling along the x-axis.

Figure 1. Cycloid

(a) Is γ regular?
Solution

We compute γ′(t) = (1−cos t, sin t). We see that γ′(2πk) = (1−cos 2πk, sin 2πk) =
(0, 0) which means that γ is not regular.

(b) Find the length of one arch of γ.
Solution

The cycloid touches the x-axes when 1 − cos t = 0 i.e. for t = 2πk where
k ∈ Z. Therefore we need to compute the length of γ on the interval
[0, 2π]. We have L(γ|[0,2π]) =

∫ 2π

0 |γ
′(t)|dt =

∫ 2π

0

√
(1− cos t)2 + sin2 tdt =∫ 2π

0

√
1 + cos2 t− 2 cos t+ sin2 tdt =

∫ 2π

0

√
2(1− cos t)dt =

∫ 2π

0

√
4 sin2(t/2)dt =

=
∫ 2π

0 |2 sin(t/2)|dt =
∫ 2π

0 2 sin(t/2)dt = −4 cos(t/2)|2π0 = 8.
Answer: L = 8.

(2) (10 pts) Let γ(t) be a regular cure in R3 such that its tangent line at γ(t) (i.e.
the line passing through γ(t) and parallel to γ′(t)) passes through 0 for all t.

Prove that there is a line l in R3 such that γ(t) ∈ l for all t.
Hint: Differentiate γ(t)× γ′(t).
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Solution

By the assumption γ(t) and γ′(t) are proportional which implies that γ(t) ×
γ′(t) = 0 for all t. Differentiating this equality we get

0 = γ′(t)× γ′(t) + γ(t)× γ′′(t) = γ(t)× γ′′(t) since γ′(t)× γ′(t) = 0.
Thus γ(t)× γ′′(t) = 0 for all t.
Fix some t0. If γ(t0) 6= 0 then γ(t0) = λγ′(t0) for some λ 6= 0 and hence

0 = γ(t) × γ′′(t) = λγ′(t0) × γ′′(t0). Therefore γ′(t0) × γ′′(t0) = 0. Hence

k(t0) = |γ′(t0)×γ′′(t0)|
|γ′(t0|3 = 0.

Thus the curvature of γ is zero for all points t such that γ(t) 6= 0. Suppose
γ(t0) = 0. Since γ is regular γ′(t0) 6= 0 and hence γ(t) 6= 0 for all t 6= t0 near t0.
By above, for all such t we have that k(t) = 0. By continuity of k(t) this implies
that k(t0) = 0 as well.

Thus, k(t) = 0 for all t which implies that γ is contained in a line by a theorem
from class.

(3) (10 pts) Let γ(t) be a regular curve in R2.
Let A(t) be the 2× 2 matrix with columns γ′(t), γ′′(t).
Prove that the signed curvature kt of γ is positive if and only if detA(t) > 0.
Hint: Reduce to the case when γ is unit speed.

Solution

Let s be the arc length parameter of γ then we have the general formulas
dγ
ds = γ′

|γ′| ,
d2γ
ds2 = |γ′|2γ′′−〈γ′,γ′′〉γ′

|γ′|4 = γ′′

|γ′|2 −
〈γ′,γ′′〉γ′
|γ′|4 .

Therefore, det(dγds ,
d2γ
ds2 ) = det( γ′

|γ′| ,
γ′′

|γ′|2−
〈γ′,γ′′〉γ′
|γ′|4 ) = det( γ′

|γ′| ,
γ′′

|γ′|2 ) = 1
|γ′|3 det(γ′, γ′′).

Since |γ′| > 0 we have that det(dγds ,
d2γ
ds2 ) and det(γ′, γ′′) have the same sign. Thus

it’s enough to show that for a unit speed curve γ(s), the curvature has the same

sign as det(dγds ,
d2γ
ds2 ).

From now on we will assume that γ is unit speed. To finish the proof it’s
enough to establish the following
Claim. Let γ(s) be a unit speed curve in R2. Then its signed curvature ks is

equal to det(γ′, γ′′)
Indeed, recall that the signed curvature ks is defined as follows. Let ~τ = γ′

be the unit tangent. Then the unit normal ~n is defined by rotating ~τ by π/2
counterclockwise. Then ks is determined by the formula γ′′ = ks~n. Observe
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that counterclockwise rotation Rπ/2 in R2 sends v = (x, y) to (−y, x). There-

fore det(v,Rπ/2(v)) = det

(
x −y
y x

)
= x2 + y2. In particular, if |v| = 1 then

det(v,Rπ/2(v)) = 1.
Applying this to v = ~τ we get det(γ′, γ′′) = det(~τ , ks~n) = ks det(~τ , ~n) =

ks det(~τ , Rπ/2(~τ)) = ks · 1 = ks. This proves the Claim. �.
(4) (10 pts) Let γ(t) = (et, t, e−t).

Find the curvature and the torsion of γ at t = 0.

Solution

We compute γ′(t) = (et, 1,−e−t), γ′′(t) = (et, 0, e−t), γ′′′(t) = (et, 0,−e−t).
Plugging in t = 0 this gives γ′(0) = (1, 1,−1), γ′′(0) = (1, 0, 1), γ′′′(0) = (1, 0,−1).

We have the general formulas

k =
|γ′ × γ′′|
|γ′|3

τ =
〈γ′′′, γ′ × γ′′〉
|γ′ × γ′′|2

Plugging the values of γ′(0), γ′′′(0), γ′′′(0) in these formulas we get γ′(0) ×
γ′′(0) = (1,−2,−1), |γ′(0)× γ′′(0)| =

√
6, |γ′(0)| =

√
3.

hence

k(0) =

√
6

(
√

3)3
=

√
2

3
τ(0) =

2

6
=

1

3

(5) (8 pts) Give the following definitions:
(a) Signed curvature of a regular curve in R2.
(b) An open subset of a surface in R3.
(c) Tangent space at a point on a smooth surface in R3.

Solution

(a) Let γ(s) be arc length parameterization of γ. Let ~τ = γ′ be the unit tangent.
Then the unit normal ~n is defined by rotating ~τ by π/2 counterclockwise.
Then the signed curvature ks is determined by the formula γ′′ = ks~n.

(b) An open subset of a surface S in R3 is an intersection of an open subset of
R3 with S.

(c) Let S be surface in R3. Let p ∈ S be a point. let f : U → V be a smooth
surface patch where U is an open subset of R2, V is an open subset of S and



4

p = f(q) for some q ∈ U . Since S is a subset of R3 we can view f as a map
f : U → R3. Then the tangent space to S at p is defined by the formula

TpS := dfq(R2)

(6) (12 pts) Let S = {(x, y, z) ∈ R3| such that x2 + 2y2 − 3z2 = 0 and z ≥ 0}.
(a) Prove that S is a not smooth surface in R3.
(b) Prove that S1 = S\{(0, 0, 0)} is a smooth surface in R3.
(c) Let p = (1, 1, 1). Find TpS1.

Solution

(7) Recall a theorem from class that a subset S ⊂ R3 is a smooth surface if an only if
it is locally given by either a graph of a smooth function z = z(x, y) or y = y(x, z)
or x = x(y, z).

Let p = (0, 0, 0) ∈ S. We claim that near p neither of these 3 possibilities hold.
Note that if (x0, y0, z0) ∈ S then (−x0, y0, z0) ∈ S also, therefore S is not a

graph of x = x(y, z) near 0 since in any small ball around zero we can find
(±x0, y0, z0) ∈ S with x0 6= 0 . Likewise, if (x0, y0, z0) ∈ S then (x0,−y0, z0) ∈ S
too and hence S is not a graph of y = y(x, z) near 0. The restriction z ≥ 0 means
that S IS a graph of z = z(x, y) near 0 (and, in fact, globally). Namely, it’s a

graph of z = +
√

x2+2y2

3 . However, this function is not smooth at zero. Therefore,

S is not a smooth surface.
(8) let U = R3\{(0, 0, 0)}. Then U is an open subset of R3. Let f : U → R be

given by f(x, y, z) = x2 + 2y2 − 3z2. Then S1 = {f = 0}. We compute ∇f =
(2x, 4y,−6z) 6= 0 on U . hence 0 is a regular value of f and S1 = {f = 0} is a
smooth surface.

(9) By part (b) we have that S1 = {f = 0}. By the general formula, TpS1 = ∇f⊥p =

(2, 4,−6)⊥ = {2x+ 4y − 6z = 0}.


