MAT 363S Solutions to the Term Test Winter 2014

(1) (10 pts)
Let v(t) = (t —sint, 1 — cost) be the cycloid obtained by tracing a point on a
circle of radius 1 rolling along the z-axis.

FiGURE 1. Cycloid

(a) Is v regular?
Solution

We compute 7/(t) = (1—cost,sint). We see that v'(2nk) = (1—cos 2rk, sin 27k) =

(0,0) which means that 7 is not regular.
(b) Find the length of one arch of ~.
Solution
The cycloid touches the x-axes when 1 — cost = 0 i.e. for ¢ = 27k where
k € Z. Therefore we need to compute the length of v on the interval
[0,27]. We have L(~y fo 1y (¢ \dt 2” V(1 —cost)? +sin’tdt =

fo%\/1+c082t—2cost+sm tdt = 0 "2 l—cost)dtz OQW\/4sin2(t/2)dt=

= fo 12sin(t/2)|dt = fo 2sin(t/2)dt = —4cos(t/2)[3" = 8.
Answer: L = 8.

(2) (10 pts) Let v(t) be a regular cure in R? such that its tangent line at y(¢) (i.e.
the line passing through ~(¢) and parallel to +/(t)) passes through 0 for all t.
Prove that there is a line [ in R? such that ~(¢) € [ for all ¢.
Hint: Differentiate ~y(t) x +/(t).
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Solution

By the assumption ~y(¢) and +/(t) are proportional which implies that ~(t) x
7' (t) = 0 for all t. Differentiating this equality we get

0.=1/(t) x7'(t) +9(t) x 7"(t) = 7(t) x 7"(¢) since ¥'(t) x 7'(t) = 0.

Thus v(t) x v"(t) = 0 for all t.

Fix some to. If v(tg) # 0 then ~(ty) = AY/(tp) for some X\ # 0 and hence
0 = ~(t) x v"(t) = M (ty) x v"(tg). Therefore +'(tg) x v"(ty) = 0. Hence
k(to) o (t|0)><73(ﬁ0)\ —

7V (tol

Thus the curvature of v is zero for all points ¢ such that v(t) # 0. Suppose

v(to) = 0. Since + is regular +/(¢y) # 0 and hence () # 0 for all ¢t # ty near t.
By above, for all such ¢ we have that k(t) = 0. By continuity of k(t) this implies
that k(ty9) = 0 as well.
Thus, k(t) = 0 for all £ which implies that ~ is contained in a line by a theorem
from class.
(3) (10 pts) Let () be a regular curve in R2.
Let A(t) be the 2 x 2 matrix with columns ~/(t),~v" ().
Prove that the signed curvature k; of v is positive if and only if det A(¢) > 0
Hint: Reduce to the case when -y is unit speed.

Solution

Let s be the arc length parameter of v then we have the general formulas

d’y S AR e U ' o 0 A0 0 0 M AR 0 0 0 0’4
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Therefore det( L, £3) = det(Z, i DI = det( 2y, 2m) = o det(,7")-
Since || > 0 we have that det(fiz, ZSZ) and det(y’,7”) have the same sign. Thus
it’s enough to show that for a unit speed curve 7(s), the curvature has the same
sign as det(i—z, %).

From now on we will assume that v is unit speed. To finish the proof it’s
enough to establish the following

Claim. Let v(s) be a unit speed curve in R?. Then its signed curvature kg is
equal to det(v',~")

Indeed, recall that the signed curvature k, is defined as follows. Let 7 = +/
be the unit tangent. Then the unit normal 77 is defined by rotating 7 by /2
counterclockwise. Then k, is determined by the formula v = k7. Observe
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that counterclockwise rotation R, in R? sends v = (z,y) to (—y,z). There-
fore det(v, R, /o(v)) = det <§ _xy) = 2% + % In particular, if [v] = 1 then
det(v, Ry /o(v)) = 1.
Applying this to v = 7 we get det(y/,~") = det(7, ki) = ksdet(7,1) =
ks det(7, Ry/2(7)) = ks - 1 = k,. This proves the Claim. [
(4) (10 pts) Let v(t) = (', t,e7?).
Find the curvature and the torsion of v at ¢ = 0.

Solution
We compute 7'(f) = (¢',1,—™),7"(t) = (€',0,e7),7"(t) = (¢',0,~e™)
Plugging in ¢ = 0 this gives 7/(0) = (1,1, —1),~"(0) = (1,0, 1),~4"(0) = (1,0, —1).

We have the general formulas

//‘ "

P 0! _ 0" <)
v'[? [y x|
Plugging the values of 7/(0),~"”(0),+"(0) in these formulas we get ~/(0) x

7"(0) = (1,=2,=1), ['(0) x v"(0)] = V6, [Y'(0)] = V3.

hence
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O = — = —
T(0)=¢=3
(5) (8 pts) Give the following definitions:
(a) Signed curvature of a regular curve in R2,
(b) An open subset of a surface in R3.
(c) Tangent space at a point on a smooth surface in R?.

Solution

(a) Let v(s) be arc length parameterization of 7. Let 7 = 4 be the unit tangent.
Then the unit normal 77 is defined by rotating 7 by /2 counterclockwise.
Then the signed curvature k;, is determined by the formula v = k7.

(b) An open subset of a surface S in R? is an intersection of an open subset of
R3 with S.

(c) Let S be surface in R?. Let p € S be a point. let f: U — V be a smooth
surface patch where U is an open subset of R?, V is an open subset of S and



p = f(q) for some q € U. Since S is a subset of R? we can view f as a map
f: U — R3. Then the tangent space to S at p is defined by the formula

T,S = df,(R?)

(6) (12 pts) Let S = {(x,y, 2) € R3| such that 2? + 2y*> — 32> = 0 and 2z > 0}.

(
(a) Prove that S is a not smooth surface in R?.

(b) Prove that S5 = S\{(0,0,0)} is a smooth surface in R?.
(c) Let p=(1,1,1). Find 7,5.

Solution

(7) Recall a theorem from class that a subset S C R? is a smooth surface if an only if

it is locally given by either a graph of a smooth function z = z(x, y) or y = y(x, 2)
or x = x(y, z).

Let p = (0,0,0) € S. We claim that near p neither of these 3 possibilities hold.

Note that if (xg, v, 20) € S then (—xg, 0, 20) € S also, therefore S is not a
graph of z = x(y,2) near 0 since in any small ball around zero we can find
(+x0, Y0, 20) € S with zy # 0 . Likewise, if (x, v, 20) € S then (zg, —yo, 20) € S
too and hence S is not a graph of y = y(z, z) near 0. The restriction z > 0 means
that S IS a graph of z = z(z,y) near 0 (and, in fact, globally). Namely, it’s a

graph of z = +4/ % However, this function is not smooth at zero. Therefore,

S is not a smooth surface.

(8) let U = R3*\{(0,0,0)}. Then U is an open subset of R3. Let f: U — R be

given by f(z,y,2) = 22+ 2y?> — 322 Then S; = {f = 0}. We compute Vf =
(2x,4y,—62) # 0 on U. hence 0 is a regular value of f and S; = {f =0} is a
smooth surface.

(9) By part (b) we have that Sy = {f = 0}. By the general formula, T,S) = V f," =

(2,4, —6)* = {2z + 4y — 62 = 0}



