- (1) Recall that a series $\sum_{n=0}^{\infty} a_n(t)$ is said to converge uniformly on [a, b] if for any $\epsilon > 0$ there exists N > 0 such that $|\sum_{n=N}^{\infty} a_n(t)| \leq \epsilon$ for any $t \in [a, b]$.
 - (a) Show that the power series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges uniformly on [-R, R] for any finite R > 0.
 - (b) Show that for any $n \times n$ matrices A, B the series $\sum_{n=0}^{\infty} \frac{(tA+B)^n}{n!}$ converges uniformly on [-R, R] for any positive R. Hint: Use a).