- (1) Suppose an $n \times n$ real matrix A has a complex eigenvalue $\lambda = \alpha + i\beta$. Let v be an eigenvector for λ . Write v as v = u + iw where both u and w are real vectors.
 - (a) Show that $\bar{v} = u iw$ is also an eigenvector of A.
 - (b) Prove that u, w are linearly independent.
 - (c) If A is 2×2 show that it's similar to its "canonical form" $\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$
- (2) Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a 2 × 2 real matrix with complex eigenvalues. (a) Prove that bc < 0.
 - (b) In terms of a, b, c, d determine if A produces clockwise or counterclockwise spirals when plotting solutions of y' = Ay. (The answer will depend on the sign of a certain expression in a, b, c, d).
- (3) Let A be a real $n \times n$ matrix. For a real t and positive δ , let t_n be a sequence of numbers in $[t - \delta, t + \delta]$. Let $E_{\delta} = \sum_{n=0}^{\infty} \frac{t_n^n A^n}{n!}$. Show that $E_{\delta} \to e^{tA}$ as $\delta \to 0$.