(1) Suppose x(t) satisfies

$$\begin{cases} x' \le a(t)x(t) \\ x(0) = 0 \end{cases}$$

where a(t) is C^1 on R and $a(t) \ge 0$. Prove that $x(t) \le 0$ for $t \ge 0$.

Hint: Use the appropriate integrating factor $\mu(t) > 0$ to show that $\mu(t)x(t)$ is nonincreasing (think of the linear equation x' = a(t)x to find $\mu(t)$.)

(2) Let $t \mapsto A(t)$ be a C^1 matrix valued function on R.

Show that $f(t) = e^{A(t)}$ is continuous in t.

Hint: Use continuous dependance of solutions of IVPs on parameters.

(3) Consider the following system of ODEs

$$\begin{cases} x' = -x + y^3 \\ y' = -y + x^3 \end{cases}$$

- (a) Find all equilibrium points of this system and describe the behavior of the associated linearized systems.
- (b) Show that any solution of the system with the initial conditions satisfying $x^2(0) + y^2(0) < 1$ exists for all $t \ge 0$.

Hint: Use the phase portrait to show that any such solution remains bounded for all t. Then apply the theorem on extending solutions of ODEs.