CHAPTER

2

First Order
Differential
Equations

This chapter deals with differential equations of first order,

d
2= ey, (1)

dt

where f is a given function of two variables. Any differentiable function y = ¢ (¢) that
satisfies this equation for all £ in some interval is called a solution, and our object is to
determine whether such functions exist and, if so, to develop methods for finding them.
Unfortunately, for an arbitrary function f, there is no general method for solving the
equation in terms of elementary functions. Instead, we will describe several methods,
each of which is applicable to a certain subclass of first order equations. The most
important of these are linear equations (Section 2.1), separable equations (Section 2.2),
and exact equations (Section 2.6). Other sections of this chapter describe some of
the important applications of first order differential equations, introduce the idea of
approximating a solution by numerical computation, and discuss some theoretical
questions related to existence and uniqueness of solutions. The final section deals with
first order difference equations, which have some important points of similarity with
differential equations and are in some respects simpler to investigate.

.1 Linear Equations with Variable Coefficients

If the function f in Eq. (1) depends linearly on the dependent variable y, then Eq. (1)
is called a first order linear equation. In Sections 1.1 and 1.2 we discussed a restricted
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1

type of first order linear equation in which the coefficients are constants. A typical
example is
dy

L P 2
= ay + b, 2

where a and b are given constants. Recall that an equation of this form describes the
motion of an object falling in the atmosphere. Now we want to consider the most
general first order linear equation, which is obtained by replacing the coefficients a
and b in Eq. (2) by arbitrary functions of . We will usually write the general first
order linear equation in the form

dy
dt
where p and g are given functions of the independent variable t.
Equation (2) can be solved by the straightforward integration method introduced in
Section 1.2. That is, we rewrite the equation as
dy/dt
y = (b/a)

+p)y =g(@), 3)

—a. (4)

Then, by integration we obtain
Inly — (b/a)| = —at + C,
from which it follows that the general solution of Eq. (2) is
y = (b/a) +ce™™, (5)

where ¢ is an arbitrary constant. For example, if @ = 2 and b = 3, then Eq. (2) becomes

— 42y =3, 6
d{%y (6)

and its general solution is
y=132+4ce™. (7

Unfortunately, this direct method of solution cannot be used to solve the general
equation (3), so we need to use a different method of solution for it. The method is due
to Leibniz; it involves multiplying the differential equation (3) by a certain function
(1), chosen so that the resulting equation is readily integrable. The function i(¢) is
called an integrating factor and the main difficulty is to determine how to find it. To
make the initial presentation as simple as possible, we will first use this method to solve
Eq. (6), later showing how to extend it to other first order linear equations, including
the general equation (3).

Solve Eq. (6),

dy
— 4+ 2y =3,
a T
by finding an integrating factor for this equation.
The first step is to multiply Eq. (6) by a function z(), as yet undetermined; thus
dy

Q
i i fANEJ Y — LSpo\E ) prapapr

The question now is whether we can choose p(r) so that the left side of Eq. (8)
is recognizable as the derivative of some particular expression. If so, then we can
integrate Eq. (8), even though we do not know the function y. To guide our choice
of the integrating factor 14(r), observe that the left side of Eq. (8) contains two terms
and that the first term is part of the result of differentiating the product (¢)y. Thus,
let us try to determine g () so that the left side of Eq. (8) becomes the derivative of
the expression j(7)y. If we compare the left side of Eq. (8) with the differentiation
formula

dp(r)
dr

we note that the first terms are identical and that the second terms also agree, provided
we choose p () to satisfy

&)

d B dy
Z[u(r)y] = 'u(t)c_i? +

du(r)
dt

Therefore our search for an integrating factor will be successful if we can find a
solution of Eq. (10). Perhaps you can readily identify a function that satisfies Eq. (10):
What function has a derivative that is equal to two times the original function? More
systematically, rewrite Eq. (10) as

= 2u(t). (10)

d dt
M_ =2, (11)
wu(t)
which is equivalent to
d
—1 1| =2 12
7 ()] (12)
Then it follows that
In|u(t)| =2t + C, (13)
or
w(t) = ce”. (14)

The function p(¢) given by Eq. (14) is the integrating factor for Eq. (6). Since we do
not need the most general integrating factor, we will choose ¢ to be one in Eq. (14) and
use (1) = e”.

Now we return to Eq. (6), multiply it by the integrating factor e*', and obtain

d
ez"d—): +2e%y = 3e™. (15)

By the choice we have made of the integrating factor, the left side of Eq. (15) is the
derivative of ¢*' y, so that Eq. (15) becomes

d
Eﬂﬁﬁ)=3éh (16)

By integrating both sides of Eq. (16) we obtain

R o . WER. Wy | 177
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where c is an arbitrary constant. Finally, on solving Eq. (17) for y, we have the general
solution of Eq. (6), namely,

y=3+ce, (18)

Of course, the solution (18) is the same as the solution (7) found earlier. Figure 2.1.1
shows the graph of Eq. (18) for several values of ¢. The solutions converge to the
equilibrium solution y = 3/2, which corresponds to ¢ = 0.

| 1 i e b
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FIGURE 2.1.1 Integral curves of y + 2y = 3.

Now that we have shown how the method of integrating factors works in this simple
example, let us extend it to other classes of equations. We will do this in three stages.
First, consider again Eq. (2), which we now write in the form

Y | ay=b. (19)
dt ’
The derivation in Example 1 can now be repeated line for line, the only changes being
that the coefficients 2 and 3 in Eq. (6) are replaced by a and b, respectively. The
integrating factor is p(f) = ¢ and the solution is given by Eq. (5), which is the same
as Eq. (18) with 2 replaced by a and 3 replaced by b.

The next stage is to replace the constant b by a given function g(r), so that the
differential equation becomes

dy
—= =g(1). 20
T +ay = g(t) (20)
The integrating factor depends only on the coefficient of y so for Eq. (20) the integrating
factor is again u(z) = . Multiplying Eq. (20) by w(¢), we obtain
d

eard_f +aeafy = em‘g(t)‘

or

d
E(e""y) =e"g(1). 21
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By integrating both sides of Eq. (21) we find that
&y = fe“g(s)ds +c, (22)

where ¢ is an arbitrary constant. Note that we have used s to denote the integration
variable to distinguish it from the independent variable . By solving Eq. (22) for y we
obtain the general solution

y=e¢* f e“g(s)ds +ce . (23)

For many simple functions g (s) the integral in Eq. (23) can be evaluated and the solution
y expressed in terms of elementary functions, as in the following examples. However,
for more complicated functions g(s), it may be necessary to leave the solution in the
integral form given by Eq. (23).

Solve the differential equation

dy
dt
Sketch several solutions and find the particular solution whose graph contains the point

(0, 2).
In this case @ = 1/2, so the integrating factor is (1) = ¢'/>. Multiplying Eq. (24)

+3y=2+0. (24)

- by this factor leads to the equation

d
E(e'/zy) =2¢'? 4 1e'2, (25)

By integrating both sides of Eq. (25), using integration by parts on the second term on
the right side, we obtain

ey = de'? £ 2te'? — 4¢'? 4 ¢,
where c is an arbitrary constant. Thus
y =2 +ce 12 (26)

To find the solution that passes through the initial point (0, 2), we set + = 0 and
y =2 in Eq. (26), with the result that 2 = 0 + ¢, so that ¢ = 2. Hence the desired
solution is

y =2t 422, (27)

Graphs of the solution (26) for several values of ¢ are shown in Figure 2.1.2. Ob-
serve that the solutions converge, not to a constant solution as in Example 1 and
in the examples in Chapter 1, but to the solution y = 2, which corresponds to
=10
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FIGURE 2.1.2 Integral curves of y' + Jy =2+1.

Solve the differential equation
— —2y=4-—t (28)

and sketch the graphs of several solutions. Find the initial point on the y-a?ais that
separates solutions that grow large positively from those that grow large negatively as
t — 00.

Since the coefficient of y is —2, the integrating factor for Eq. (28) is p(t) = e,
Multiplying the differential equation by j(¢), we obtain

di(e_hy) =de Y — e, (29)
¢

Then, by integrating both sides of this equation, we have
e—2ry — 428_2' + %l‘egzl 4 %e_m &,

where we have used integration by parts on the last term in Eq. (29). Thus the general
solution of Eq. (28) is

y=—1+ L +ce?. (30)

Graphs of the solution (30) for several values of ¢ are shown in Figure 2.1.3. The
behavior of the solution for large values of 7 is determined by the term ce”. If e 0,
then the solution grows exponentially large in magnitude, with the same sign as ¢
itself. Thus the solutions diverge as ¢ becomes large. The boundary between solu-
tions that ultimately grow positively from those that ultimately grow negatively oc-
curs when ¢ = 0. If we substitute ¢ = 0 into Eq. (30) and then set r = 0, we find
that y = —7/4. This is the separation point on the y-axis that was requested. Note
that, for this initial value, the solution is y = —% + 3¢; it grows positively (but not
exponentially).

ear Equations with Variable Coefficients
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FIGURE 2.1.3 Integral curves of y' — 2y =4 — 1,

Examples 2 and 3 are special cases of Eq. (20),

dy
dt
whose solutions are given by Eq. (23),

+ay = g(1),

y=e f e“g(s)ds +ce™™.

The solutions converge if a > 0, as in Example 2, and diverge if a < 0, as in Example
3. In contrast to the equations considered in Sections 1.1 and 1.2, however, Eq. (20)
does not have an equilibrium solution.

The final stage in extending the method of integrating factors is to the general first
order linear equation (3),

d—y+ Ny = g(r)

where p and g are given functions. If we multiply Eq. (3) by an as yet undetermined
function p(t), we obtain

d
umd—’t’ + Oy = u()g(). 31)

Following the same line of development as in Example 1, we see that the left side of
Eq. (31) is the derivative of the product s (1)y, provided that 1 (¢) satisfies the equation

du(r)
dt
If we assume temporarily that (2) is positive, then we have
dp()/dr _
p@)

= p()u(t). (32)

p(t),
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and consequently

Inp(t) = fp(t)dt+k.

By choosing the arbitrary constant k to be zero, we obtain the simplest possible function
for p, namely,

) = exp f @) dt. (33)

Note that u(¢) is positive for all 7, as we assumed. Returning to'Eq. (31), we have

d
E[u(t)y] = wu(n)g(r). (34)
Hence
uit)y = f u(s)g(s)ds + c,

so the general solution of Eq. (3) is

_ [uG)g(s)ds +c
()

Observe that, to find the solution given by Eq. (35), two integrations are required: one
to obtain () from Eq. (33) and the other to obtain y from Eq. (35).

(35)

Solve the initial value problem

ty' +2y = 4t (36)
y(1) =2 (37)

Rewriting Eq. (36) in the standard form (3), we have
Y+Q/y =4, (38)

so p(t) = 2/t and g(r) = 4. To solve Eq. (38) we first compute the integrating factor
p(t):

2
u(t) = exp] g dr = 2l — 42 a9

On multiplying Eq. (38) by (1) = 12, we obtain
£y 4 2ty = (t%y) = 47,
and therefore
P y= 4
where ¢ is an arbitrary constant. It follows that

2 €
y=t +;§ (40)

is the general solution of Eq. (36). Integral curves of Eq. (36) for several values of ¢
are shown in Figure 2.1.4. To satisfy the initial condition (37) it is necessary to choose
¢ = 1; thus

1
2
y=[+t—2, t>0 (41)

is the solution of the initial value problem (36), (37). This solution is shown by the
heavy curve in Figure 2.1.4. Note that it becomes unbounded and is asymptotic to the
positive y-axis as t — 0 from the right. This is the effect of the infinite discontinuity
in the coefficient p(t) at the origin. The function y = t* 4+ (1/¢°) for r < 0 is not part
of the solution of this initial value problem.

This is the first example in which the solution fails to exist for some values of 7.
Again, this is due to the infinite discontinuity in p(s) at + = 0, which restricts the
solution to the interval 0 < r < oo.

FIGURE 2.1.4 Integral curves of ry’ + 2y = 4¢°.

Looking again at Figure 2.1.4, we see that some solutions (those for which ¢ > 0)
are asymptotic to the positive y-axis as t — 0 from the right, while other solutions
(for which ¢ < 0) are asymptotic to the negative y-axis. The solution for which ¢ = 0,
namely, y = ¢2, remains bounded and differentiable even at t = 0. If we generalize the
initial condition (37) to

then ¢ = y, — 1 and the solution (41) becomes
-1
y=t2+y°r—2, t>0. 43)

As in Example 3, this is another instance where there is a critical initial value, namely,
Yo = 1, that separates solutions that behave in two quite different ways.



38

Chapter 2. First Order Differential Equations

_———_—_—____________————__—_______

PROBLEMS

In each of Problems 1 through 12:
(a) Draw a direction field for the given differential equation.
(b) Based on an inspection of the direction field, describe how solutions behave for large ¢.

(c) Eind the general solution of the given differential equation and use it to determine how
solutions behave as r — oc.

. Y +3y=t+e™ > 2y -2y =12

Y +y=te+1 » 4 Yy 4+(1/)y=3cos2t, >0
3. ¥ -2y=3¢ i > 6. 1y +2y=sint, t>0

7. ¥y +2ty =2te”! > 8 (1+1)y +4ry= (14132

9 2y+y=3t 10 1y —y =1t

11. v+ y=35sin2t 12, 2y 4y =342

In each of Problems 13 through 20 find the solution of the given initial value problem.
13, Y —y=2e¥, y(0) =1

14, y'4+2y=1e,  y1)=0

15. iy +2y =12 -1 41, y(]):%, t>0

16. ¥+ (2/0)y = (cost)/t>  y(m) =0, >0

17. y3'—2y=e2’, v(0) =2 18. 1ty + 2y = sint,
19. £y +4’y =, y(=1)=0 20. ty'+(t+Dy=t,

In each of Problems 21 and 22;
(a) Draw a direction field for the given differential equation. How do solutions appear to
behave as ¢ becomes large? Does the behavior depend on the choice of the initial value
a? Let a, be the value of a for which the transition from one type of behavior to another
occurs. Estimate the value of a;,.
(b) Solve the initial value problem and find the critical value a exactly.
(¢) Describe the behavior of the solution corresponding to the (i)nitial value a;.

> 22, 2y —y=¢" y(0) =a

y(r/2) =1
y(In2) =1

21. y’—%y=2cost, y(0)=a

In each of Problems 23 and 24:
(a) Draw a direction field for the given differential equation. How do solutions appear to
behave as 1 — 07 Does the behavior depend on the choice of the initial value a? Let a,

be ‘the value of a for which the transition from one type of behavior to another occurs.
Estimate the value of a,,.

(b) Solve 'the initial value problem and find the critical value a, exactly.

(c) Describe the behavior of the solution corresponding to the initial value a,.
2. 0y +@+Ny=2e", yl)=a P 24. ty+ 2y = (sint)/t, y(-m/2)=ua
25. Consider the initial value problem

¥ + 1y =2cos1, y(0) = —1.

Find the coordinates of the first local maximum point of the solution for 1 > 0.
26. Consider the initial value problem

Y+iy=1-4 30 =y,

Find the value of Y, for which the solution touches, but does not cross, the ¢-axis.
27. Consider the initial value problem

y'+31y=3+2cos?.t. y(0) = 0.

(a) Find the solution of this initial value problem and describe its behavior for 1
(b) Determine the value of 7 for whi 1 s Jine. ge 4

. Linear Equations with Variable Coefficients
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28. Find the value of y, for which the solution of the initial value problem

y' —y =1+ 3sint, ¥(0) =y,
remains finite as 1 — oo.
29. Consider the initial value problem
‘= 3y =3t+2¢, y(0) = y,-

Find the value of y, that separates solutions that grow positively as t — o0 from those that
grow negatively. How does the solution that corresponds to this critical value of y, behave

ast — oo?
30. Show that if @ and A are positive constants, and b is any real number, then every solution

of the equation

yl +ay — be‘-)s.f

has the property that y — 0 asr — oo.
Hint: Consider the cases ¢ = A and a # ) separately.

In each of Problems 31 through 34 construct a first order linear differential equation whose
solutions have the required behavior as t — co. Then solve your equation and confirm that the

solutions do indeed have the specified property.

31. All solutions have the limit 3 as r — oc.

32. All solutions are asymptotic to the line y = 3 — as t — o0.
33. All solutions are asymptotic to the line y = 2 — 5 as f — 0.
34. All solutions approach the curve y = 4 — 1% as t — oo.

35. Variation of Parameters. Consider the following method of solving the general linear
equation of first order:
¥+ pt)y = g). (i

(a) If g(t) is identically zero, show that the solution is
y=Aexp [— f p(t)dt] . (ii)

where A is a constant.
(b) If g(¢) is not identically zero, assume that the solution is of the form

y = A(t)exp |:— f p(t) dt] , (1)

where A is now a function of ¢. By substituting for y in the given differential equation,
show that A (1) must satisfy the condition

A'(t) = g(t) exp U p(t) dt} . (iv)

(c) Find A(t) from Eq. (iv). Then substitute for A(r) in Eq. (iii) and determine y. Verify
that the solution obtained in this manner agrees with that of Eq. (35) in the text. This
technique is known as the method of variation of parameters; it is discussed in detail in
Section 3.7 in connection with second order linear equations.

In each of Problems 36 and 37 use the method of Problem 35 to solve the given differential
equation.

36. y —2y = 12e* 37. y' 4 (1/t)y =3cos2t, t>0
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2.2 Separable Equations

EXAMPLE

1

In Sections 1.2 and 2.1 we used a process of direct integration to solve first order linear
equations of the form
dy

= == 1
5 ay + b, (1)

where a and b are constants. We will now show that this process is actually applicable
to a much larger class of equations.

We will use x to denote the independent variable in this section rather than ¢ for two
reasons. In the first place, different letters are frequently used for the variables in a
differential equation, and you should not become too accustomed to using a single pair.
In particular, x often occurs as the independent variable. Further, we want to reserve ¢
for another purpose later in the section.

The general first order equation is

dy B
E_f(x!y)- (2)

Linear equations were considered in the preceding section, but if Eq. (2) is nonlinear,
then there is no universally applicable method for solving the equation. Here, we
consider a subclass of first order equations for which a direct integration process can
be used.

To identify this class of equations we first rewrite Eq. (2) in the form

d
M(x,,v)+N(x,y)—y = 0, (3)
dx

It is always possible to do this by setting M (x, y) = — f(x, y) and N(x, y) =1, but
there may be other ways as well. In the event that M is a function of x only and N is a
function of y only, then Eq. (3) becomes

_ d
M) +NHZ =0 )
dx
Such an equation is said to be separable, because if it is written in the differential form

M(x)dx + N(y)dy =0, (5)

then, if you wish, terms involving each variable may be separated by the equals sign.
The differential form (5) is also more symmetric and tends to diminish the distinction
between independent and dependent variables.

Show that the equation

dy b

— 6
i k. (6)
is separable, and then find an equation for its integral curves.
If we write Eq. (6) as
d
—x*+(1-y}) 2 =0, (7)

. Separable Equations 41

then it has the form (4) and is therefore separable. Next, observe that the first term in
Eq. (7) is the derivative of —x* /3 and that the second term, by means of the chain rule,
is the derivative with respect to x of y — y*/3. Thus Eq. (7) can be written as

d x3 d y‘1‘
— e il g2 ) =
dx( 3)+4x(“" 3)

or

Therefore
—+3y -y =g, (8)

where ¢ is an arbitrary constant, is an equation for the integral curves of Eq. (6). A
direction field and several integral curves are shown in Figure 2.2.1. An equation of the
integral curve passing through a particular point (¥, ¥y) can be found by substituting
X, and y, for x and y, respectively, in Eq. (8) and determining the corresponding value
of c. Any differentiable function y = ¢ (x) that satisfies Eq. (8) is a solution of Eq. (6).

) e L
= TR

FIGURE 2.2.1 Direction field and integral curves of y' = x?/(1 — y?).

Essentially the same procedure can be followed for any separable equation. Returning
to Eq. (4), let H, and H, be any functions such that

I R R
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2

then Eq. (4) becomes

! /! d
H(x) + Hz()’)ﬁ =0. (10)

According to the chain rule,

4y d
Hz()’)a = a‘;Hg(}’)- (11)

Consequently, Eq. (10) becomes

d
;{-;[Hl (x) + H,y(y)] = 0. (12)
By integrating Eq. (12) we obtain
H(x)+ H ¥} =, (13)

where ¢ is an arbitrary constant. Any differentiable function y = i
Eq. (13) is a solution of Eq. (4); in other words, Eq. (13) deﬁnesy the :50(13:121:)1:13:“:;{:23‘]3;
rather t.han explicitly. The functions H, and H, are any antiderivatives of M and N
respectwely_. In practice, Eq. (13) is usually obtained from Egq. (5) by integrating the:
first term with respect to x and the second term with respect to y.

If, in addition to the differential equation, an initial condition

Y(x) = ¥, (14)
is prescribed, then the solution of Eq. (4) satisfying this condition is obtai i
: . tained by setti
x = xyand y = y, in Eq. (13). This gives YR
c=H1(x0)+H2(y0). (15)
Substituting this value of ¢ in Eq. (13) and noting that

Hiw) — By = [ MGY s, Hy() = Hyly) = [ noas
Xy ¥
we obtain 0

f M(s) ds + f N(s) ds = 0. (16)
*a Yo
Equation (16) is an implicit representation of the solution of the differential equation
4) tha_t a1§0 satisfies thf: initial condition (14). You should bear in mind that the
determination of an explicit formula for the solution requires that Eq. (16) be solved
for y ;s a function of x. Unfortunately, it is often impossible to do this analytically;
1n such cases one can resort to numerical methods to find i ,
oy approximate values of y for

Solve the initial value problem

dy 3x*+4x+2

y(©0) = -1, an

Separable Equations

The differential equation can be written as
2y — 1) dy = 3x* + 4x +2) dx.

Integrating the left side with respect to y and the right side with respect to x gives

y2~—2y=x3+212+2x+c, (18)
where ¢ is an arbitrary constant. To determine the solution satisfying the prescribed
initial condition, we substitute x = 0 and y = —1 in Eq. (18), obtaining ¢ = 3. Hence
the solution of the initial value problem is given implicitly by

=2y =x>+2x"+2x +3. (19)

To obtain the solution explicitly we must solve Eq. (19) for y in terms of x. This is a
simple matter in this case, since Eq. (19) is quadratic in y, and we obtain

y=12vVx+2x> +2x +4. (20)

Equation (20) gives two solutions of the differential equation, only one of which,
however, satisfies the given initial condition. This is the solution corresponding to the

minus sign in Eq. (20), so that we finally obtain
y=¢@) =1— vVl +2x3 +2x +4 Q1)

as the solution of the initial value problem (17). Note that if the plus sign is chosen by
mistake in Eq. (20), then we obtain the solution of the same differential equation that
satisfies the initial condition y(0) = 3. Finally, to determine the interval in which the
solution (21) is valid, we must find the interval in which the quantity under the radical
is positive. The only real zero of this expression is x = —2, so the desired interval is
¥ > —2. The solution of the initial value problem and some other integral curves of
the differential equation are shown in Figure 2.2.2. Observe that the boundary of the
interval of validity of the solution (20) is determined by the point (—2, 1) at which the
tangent line is vertical.

FIGURE 2.2.2 Integral curves of y' = Gx2 +4x +2)/2(y — 1.
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Find the solution of the initial value problem
dy  ycosx
dx ~ 1+ 2y2'

Observe that y = 0 is a solution of the given differential equation. To find other
solutions, assume that y 0 and write the differential equation in the form

1+ 2y?

y(0) =1 (22)

dy = cosxdx. (23)

Then, integrating the left side with respect to y and the right side with respect to x, we
obtain

In|y| + y* =sinx +c. (24)

To satisfy the initial condition we substitute x = 0 and y = 1 in Eq. (24); this gives
¢ = 1. Hence the solution of the initial value problem (22) is given implicitly by

In|y| + y* = sinx + 1. (25)

Since Eq. (25) is not readily solved for y as a function of x, further analysis of this
problem becomes more delicate. One fairly evident fact is that no solution crosses the
x-axis. To see this, observe that the left side of Eq. (25) becomes infinite if y=0;
however, the right side never becomes unbounded, so no point on the x-axis satisfies
Eq. (25). Thus, for the solution of Egs. (22) it follows that y > 0 always. Consequently,
the absolute value bars in Eq. (25) can be dropped. It can also be shown that the interval
of definition of the solution of the initial value problem (22) is the entire x-axis. Some
integral curves of the given differential equation, including the solution of the initial
value problem (22), are shown in Figure 2.2.3.

FIGURE 2.2.3 Integral curves of y' = (ycos x)/(1 + 2y%).

The investigation of a first order nonlinear equation can sometimes be facilitated by
regarding both x and y as functions of a third variable 7. Then

dy _ dy/dt

e b (260

YYVVYVVYYVYY
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If the differential equation is
dy _ F(x.y)
dx  G(x,y)’

then, by comparing numerators and denominators in Egs. (26) and (27), we obtain the
system

27

dx/dt = G(x, ), dy/dt = F(x.y). (28)

At first sight it may seem unlikely that a problem will be simplified by replacing a single
equation by a pair of equations, but, in fact, the system (28) may well be more amenable
to investigation than the single equation (27). Chapter 9 is devoted to nonlinear systems
of the form (28).

Note: In Example 2 it was not difficult to solve explicitly for y as a function of x
and to determine the exact interval in which the solution exists. However, this situation
is exceptional, and often it will be better to leave the solution in implicit form, as in
Examples 1 and 3. Thus, in the problems below and in other sections where nonlinear
equations appear, the terminology “solve the following differential equation™ means to
find the solution explicitly if it is convenient to do so, but otherwise to find an implicit
formula for the solution.

In each of Problems 1 through 8 solve the given differential equation.
Ly =xy 2y =y +x7)

3 y’+y25inx=0 4. y’=(3x2—1)/(3+2)’)
5. Y= (cos® x)(cos® 2y) 6. xy'=(1- yH'?

dy x—e* dy K
g o g -2

dx  y+& dx 14y

In each of Problems 9 through 20:

(a) Find the solution of the given initial value problem in explicit form.
(b) Plot the graph of the solution.
(¢) Determine (at least approximately) the interval in which the solution is defined.

9. y=(1-2x)y}, yO)=-1/6 » 10. y=(1-2x)/y, y()=-2

11. xdx + ye *dy =0, y0)y=1 W 12. dr/d8 =r*/0, r(l)y=2

13. y =2/ +x%),  y0O=-2 P 14 y=xy’0+H7"%  y0) =1
15. y =2x/(14+2y), y@=0 B 16, v =x(x2+ D/4y’,  y(0)=-1/v2

17. ¥ =03 —e)/Qy-5). yO) =1

18. y = (e —e")/(3+4y), y() =1

19. sin2xdx +cos3ydy =0, y(m/2) =m/3
20. y*(1 —x*)'2dy = arcsinx dx, y(0) =0

Some of the results requested in Problems 21 through 28 can be obtained either by solving
the given equations analytically, or by plotting numerically generated approximations to the
solutions. Try to form an opinion as to the advantages and disadvantages of each approach.

21. Solve the initial value problem
Y = (1+3x)/3y* ~ 6y),

and determine the interval in which the solution is valid.
int: i ition, look for points where the integral curve has a vertical

yO)=1

Iy
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22.

23.

24.

25.

26.

27.

28.

29.

Solve the initial value problem
Y =323y -4), y(1)=0

and determine the interval in which the solution is valid.

Hint: To find the interval of definition, look for points where the integral curve has a vertical
tangent.

Solve the initial value problem

y=2"+xy, oy =1

and determine where the solution attains its minimum value.
Solve the initial value problem

y=02-¢€/3+2y), y(©0) =0

and determine where the solution attains its maximum value.
Solve the initial value problem

vy =2cos2x/(3 4+ 2y), y(0) = —1

and determine where the solution attains its maximum value.
Solve the initial value problem

y=2014+x)(1+y),  y0)=0

and determine where the solution attains its minimum value.
Consider the initial value problem

y=ty@d-y)/3,  y0) =y,

(a) Determine how the behavior of the solution as ¢ increases depends on the initial
value y,,.

(b) Suppose that y, = 0.5. Find the time 7 at which the solution first reaches the value
3.98.

Consider the initial value problem

y=ty@d-y/1+0, y0) =y,>0.

(a) Determine how the solution behaves as 1 — ©0.

(b) If y, =2, find the time T at which the solution first reaches the value 3.99.

(¢) Find the range of initial values for which the solution lies in the interval 3.99 < y <
4.01 by the time t = 2.

Solve the equation

dy ay+b
dx ~ cy+d’

where a, b, ¢, and d are constants.

Homogeneous Equations. If the right side of the equation dy/dx = f(x, y) can be expressed
as a function of the ratio y/x only, then the equation is said to be homogeneous. Such equations
can always be transformed into separable equations by a change of the dependent variable.
Problem 30 illustrates how to solve first order homogeneous equations.

30.

Consider the equation

Modeling with First Order Equations 47

> 37.

(a) Show that Eq. (i) can be rewritten as

dy _ (y/x)—4 .
—_— = (ii)
dx 1—(y/x)
thus Eq. (i) is homogeneous.
(b) Introduce a new dependent variable v so that v = y/x, or y = xv(x). Express dy/dx
in terms of x, v, and dv/dx.
(¢) Replace y and dy/dx in Eq. (ii) by the expressions from part (b) that involve v and
dv/dx. Show that the resulting differential equation is

dv v—4

U’”E: 1—v'

or
d 2 _4
e (iii)

T 1-v

Observe that Eq. (iii) is separable.

(d) Solve Eq. (iii) for v in terms of x.

(e) Find the solution of Eq. (i) by replacing v by y/x in the solution in part (d).

(f) Draw a direction field and some integral curves for Eq. (i). Recall that the right side
of Eq. (1) actually depends only on the ratio y/x. This means that integral curves have the
same slope at all points on any given straight line through the origin, although the slope
changes from one line to another. Therefore the direction field and the integral curves are
symmetric with respect to the origin. Is this symmetry property evident from your plot?

The method outlined in Problem 30 can be used for any homogeneous equation. That is, the
substitution y = xv(x) transforms a homogeneous equation into a separable equation. The latter
equation can be solved by direct integration, and then replacing v by y/x gives the solution to
the original equation. In each of Problems 31 through 38:

(a) Show that the given equation is homogeneous.

(b) Solve the differential equation.

(c) Draw a direction field and some integral curves. Are they symmetric with respect to
the origin?

d 2 2 d 2 4 3y2
i oy 5 g DT Y
dx % dx 2y
dy 4y—3

dy _4y—3x > 34 d_y=_4x+3y
dx 2x —y dx 2x+y
d 3

dy' _x+3y > 36 (x2+3xy+)yH)dx —x*dy=0
dx xX—y

P 222 R
dy _x'-3 oo B LB =
dx 2xy dx Zxy
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Differential equations are of interest to nonmathematicians primarily because of the
possibility of using them to investigate a wide variety of problems in the physical,



