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Fhe p‘roportinn of susceptibles and carriers in the population. Suppose that carriers
identified and removed from the population at a rate g, so .

dy/dt = —By. (i)
Suppose also that the disease spreads at a rate proportional to the product of x and y: thyg
dx/dt = axy. (ii)

((g) Betergnine Y atany time 7 by solving Eq. (i) subject to the initial condition y(0) =
co;anfs nt xe( (;?Si]tx {;f part (a) to find x at any time ¢ by solving Eq. (ii) subject to the initia]
5(3u ft)nfdxt!;z grifocrson of the population that escapes the epidemic by finding the limiting
DaniellBe.rnoulli’s work in 1760 had the goal of appraising the effectiveness of a cop
trov:;rsra] inoculation program against smallpox, which at that time was a major threat t-
publ}c health. His model applies equally well to any other disease that, once contracted ancoi
survived, confers a lifetime immunity.

Consider the cohort of individuals born in a given year (t = 0), and let n(r) be th
nqmber of these individuals surviving ¢ years later. Let x(t) be the number of members o‘;’
this cohort who have not had smallpox by year 7, and who are therefore still susceptible.
Let f8 be the rate at which susceptibles contract smallpox, and let v be the rate at whichl
people who contract smallpox die from the disease. Finally, let 4(¢) be the death rate from
all causes other than smallpox. Then dx /dt, the rate at which the number of susceptibles
declines, is given by ‘ '

dx/dt = —[f + pu(r)]x; (i)

the_ﬁrst term on the rig_ht side of Eq. (i) is the rate at which susceptibles contract smallpox,
while the second term is the rate at which they die from all other causes. Also

dn/dt = —vBx — u(t)n, (ii)

where dn /dt is the death rate of the entire cohort, and the two terms on the right side are
the death rates due to smallpox and to all other causes, respectively.
(a) Letz = x/n and show that 7 satisfies the initial value problem

dz/dt = —Bz(1 — vz), zZ(0) = 1. (iif)

Obserye that the initial value problem (iii) does not depend on yu(t).

(b) Find z(1) by solving Eq. (iii).

(¢) Bernoulli estimated that v = g = é Using these values, determine the proportion of
20-year-olds who have not had smallpox.

Nt_)re: Based on_the model just described and using the best mortality data available at
the time, Bernoulli calculated that if deaths due to smallpox could be eliminated (v = 0),
then approximately 3 years could be added to the average life expectancy (in 1760) of 26
years 7 months. He therefore supported the inoculation program.

Bifurpation Points. In many physical problems some observable quantity, such as a
velocity, waveform, or chemical reaction, depends on a parameter describing the physical
state. As this parameter is increased, a critical value is reached at which the velocity, or
waveform, or reaction suddenly changes its character. For example, as the amount of one
of the chemicals in a certain mixture is increased, spiral wave patterns of varying color

ations and Integrating Factors

suddenly emerge in an originally quiescent fluid. In many such cases the mathematical
analysis ultimately leads to an equation”J of the form

dx/dt = (R — R )x —ax’. (i)

Here a and R_ are positive constants, and R is a parameter that may take on various values.
For example, R may measure the amount of a certain chemical and x may measure a

chemical reaction.
(a) If R < R_, show that there is only one equilibrium solution x = 0 and that it is

asymptotically stable.
(b) If R> R_, show that there are three equilibrium solutions, x =0 and x =

+./(R—R,)/a, and that the first solution is unstable while the other two are asymp-
totically stable.

(c) Draw a graph in the Rx-plane showing all equilibrium solutions and label each one as
asymptotically stable or unstable.

The point R = R_is called a bifurcation point. For R < R_one observes the asymp-
totically stable equilibrium solution x = 0. However, this solution loses its stability as R
passes through the value R, and for R > R the asymptotically stable (and hence the
observable) solutions are x = /(R — R)/a and x = —, /(R — R)/a. Because of the way
in which the solutions branch at R, this type of bifurcation is called a pitchfork bifurcation;
your sketch should suggest that this name is appropriate.

26. Chemical Reactions. A second order chemical reaction involves the interaction (colli-
sion) of one molecule of a substance P with one molecule of a substance Q to produce one
molecule of a new substance X; this is denoted by P + @ — X. Suppose that p and g,
where p # g, are the initial concentrations of P and Q, respectively, and let x(r) be the
concentration of X attime r. Then p — x(f) and g — x(1) are the concentrations of P and Q
at time 7, and the rate at which the reaction occurs is given by the equation

dx/dt = a(p —x)(g — x), (i)

where « is a positive constant.

(a) If x(0) =0, determine the limiting value of x(r) as 1 — oo without solving the
differential equation. Then solve the initial value problem and find x (1) for any 7.

(b) If the substances P and Q are the same, then p = ¢ and Eq. (i) is replaced by

dx/dt :a(p—x)z. (ii)

If x(0) = 0, determine the limiting value of x(7) as t — oo without solving the differential
equation. Then solve the initial value problem and determine x(¢) for any 7.

. Equations and Integrating Factors

For first order equations there are a number of integration methods that are applicable
to various classes of problems. The most important of these are linear equations and
separable equations, which we have discussed previously. Here, we consider a class of

tn fluid mechanics Eq. (i) arises in the study of the transition from laminar to turbulent flow; there it is often
called the Landau equation. L. D. Landau (1908—-1968) was a Russian physicist who received the Nobel prize in
1962 for his contributions to the understanding of condensed states, particularly liquid helium. He was also the
coauthor, with E. M. Lifschitz, of a well-known series of physics textbooks.
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EXAMPLE
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In Example | 1t was relatively easy to see that the ditferential equation wds tadct
and, in fact, easy to find its solution, by recognizing the required function /. For more
complicated equations it may not be possible to do this so easily. A systematic way of
determining whether a given differential equation is exact is provided by the following

theorem.

equat'ions known as exact equations for which there is also a well-defined method of
solution. Ke.ep in mind, however, that those first order equations that can be solved by
elementary integration methods are rather special; most first order equations cannot be
solved in this way.

Solve the differential equation
the functions M, N, M, and N, where subscripts denote partial derivatives, be
continuous in the rectangular“ region R:e < x < B,y <y < é. Then Eq. (6),

M(x,y) + N(x,y)y =0,

2x +y2 + 2xyy = 0. (1)

The eguation is neither linear nor separable, so the methods suitable for those types
012" equations are not applicable here. However, observe that the function v (x, y) =
x* 4 xy? has the property that '
exact differential equation in R if and only if

2x+y2=2—w, 2xy = % 2)
Therefore the differential equation can ;e written as N i b A e
Ay dy eac.h point of R. That is, there exists a function ¥ satisfying Egs. €T
Be F Byde ) Py =My, ¥ = NE ),

Assuming that y is a function of x and calling upon the chain rule, we can write Eq. (3) only if M and N satisty Eq. (10).

in the equivalent form

dy d
e E(xz +xy) =0. (4) The proof of this theorem has two parts. First, we show that if there is a function ¥
Therefore such that Egs. (7) are true, then it follows that Eq. (10) is satisfied. Computing M and
N, from Egs. (7), we obtain
¢(X, y)=x2+x};2=c’ (5) X q ( )

where ¢ is an arbitrary constant, is an equation that defines solutions of Eq. (1) implicitly. M, (%, ) = ¥y (%2 3)s N (x,3) = ¥y, x. 7). 1y
Since M and N_are continuous, it follows that ¢ and 1[}},_( are also continuous. This

guarantees their equality, and Eq. (10) follows.
We now show that if M and N satisfy Eq. (10), then Eq. (6) is exact. The proof
involves the construction of a function v satisfying Egs. (7),

Y () =Mx,y),  ¥,xy)=Nxy).

Integrating the first of Egs. (7) with respect to x, holding y constant, we find that

I'n solving Eq. (1) the key step was the recognition that there is a function v/ that
satisfies Eq. (2). More generally, let the differential equation

Mx,y)+ N(x,y)y =0 (6)
be given. Suppose that we can identify a function ¥ such that

vy ]
o )= Mx, y), %(x. y) = N(x,y), ()
and such that ¥ (x, y) = c defines y = ¢ (x) implicitly as a differentiable function of e f M .

x. Then
The function 4 is an arbitrary function of y, playing the role of the arbitrary constant.

Now we must show that it is always possible to choose A(y) so that Yy = N. From

Eq. (12)

a a
M(x,y)+ N(x, y)y = g— + % % = %W[x,(b(x)]

and the differential equation (6) becomes d
0 = = [ M e H )

d
d—t}fix, o (x)] =0. (8)
X

In this case Eq. (6) is said to be an exact differential equation. Solutions of Eq. (6), o
the equivalent Eq. (8), are given implicitly by

Yx,y)=c, 9

=f%mwM+mw

"t is not essential that the region be rectangular, only that it be simply connected. In two dimensions this means
that the region has no holes in its interior. Thus, for example, rectangular or circular regions are simply connected,

h ’ :
where c¢ is an arbitrary constant. but an annular region is not. More details can be found in most books on advanced calculus.
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Setting ¥, = N and solving for h'(y), we obtain

K(y)=N(x,y) — f M (x,y) dx. (13)

To determine h(y) from Eq. (13), it is essential that, despite its appearance, the righg
side of Eq. (13) be a function of y only. To establish this fact, we can differentiate the
quantity in question with respect to x, obtaining

N (x,y) — My(x, y),

which is zero on account of Eq. (10). Hence, despite its apparent form, the right side
of Eq. (13) does not, in fact, depend on x, and a single integration then gives h(y).
Substituting for A (y) in Eq. (12), we obtain as the solution of Egs. (7)

¥(x,y) =fM(x,y)dx+f[N(x,y)—fMy(x,y)dx] dy. (14)

It should be noted that this proof contains a method for the computation of ¥ (x, y)
and thus for solving the original differential equation (6). It is usually better to 20
through this process each time it is needed rather than to try to remember the result
given in Eq. (14). Note also that the solution is obtained in implicit form; it may or
may not be feasible to find the solution explicitly.

Solve the differential equation
(vcosx + 2xe’) + (sinx + x%e¥ — 1)y’ =0. (15)
It is easy to see that '
My(x, y) =cosx + 2xe’ = N_(x, y),
so the given equation is exact. Thus there is a ¥ (x, y) such that
¥ (x,y) = ycosx + 2xe”,
v, (x,y) = sinx + x%e” — 1.

Integrating the first of these equations, we obtain

Y(x,y) = ysinx + x%e” + h(y). (16)

Setting ¢, = N gives
v, (x,y) = sinx + x2e” + h'(y) = sinx fgte? — 1.

Thus h'(y) = —1 and h(y) = —y. The constant of integration can be omitted since
any solution of the preceding differential equation is satisfactory; we do not require t
most general one. Substituting for A(y) in Eq. (16) gives

Y(x,y) = ysinx +x2e” — y.

Hence solutions of Eq. (15) are given implicitly by

ysinx +x%’ —y=c. a7

Solve the differential equation
Gxy + ) + (& + )y =0. (18)
Here,
M (x,y) =3x +2y, N _(x,y) =2x +;

since M # N, the given equation is not exact. To see that it cannot be solved by the
procedure described previously, let us seek a function ¥ such that

Yooy =3xy+y% ¥y =2y (19)
Integrating the first of Eqs. (19) gives
Y(x,y) = 2x%y 4+ xy7 + h(y), (20)

where h is an arbitrary function of y only. To try to satisfy the second of Egs. (19) we
compute ¥, from Eq. (20) and set it equal to N, obtaining

Ity +H ()= x2 +xy
or
n(y) = *%xz — Xy. (21)

Since the right side of Eq. (21) depends on x as well as v, it is impossible to solve
Eq. (21) for h(y). Thus there is no ¥ (x, y) satisfying both of Egs. (19).

Integrating Factors. It is sometimes possible to convert a differential equation that is
not exact into an exact equation by multiplying the equation by a suitable integrating
factor. Recall that this is the procedure that we used in solving linear equations in
Section 2.1. To investigate the possibility of implementing this idea more generally, let
us multiply the equation

M(x,y)dx + N(x,y)dy =0 (22)
by a function p and then try to choose p so that the resulting equation
pu(x, YYM(x,y)dx + pu(x, y)N(x,y)dy =0 (23)
is exact. By Theorem 2.6.1 Eq. (23) is exact if and only if
(M), = (uN),. (24)

Since M and N are given functions, Eq. (24) states that the integrating factor o must
satisfy the first order partial differential equation

Mup,—Np, + (M, — N =0. (25)

If a function s satisfying Eq. (25) can be found, then Eq. (23) will be exact. The
solution of Eq. (23) can then be obtained by the method described in the first part of
this section. The solution found in this way also satisfies Eq. (22), since the integrating
factor p can be canceled out of Eq. (23).

A partial differential equation of the form (25) may have more than one solution; if
this is the case, any such solution may be used as an integrating factor of Eq. (22). This
possible nonuaiqueness of the integrating factor is illustrated in Example 4.
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Unfortunately, Eq. (25), which determines the integrating factor (i, _is ()'rdingrily at
Jeast as difficult to solve as the original equation (22). Therefon_a, wh_lle in principle
integrating factors are powerful tools for solving differential equations, in practice they
can be found only in special cases. The most imponqnt situations in which simple
integrating factors can be found occur when pisa functlon-o‘f only one of the variableg
x or y, instead of both. Let us determine necessary conditions on M 'and N so Fhat
Eq. (22) has an integrating factor p that depends on x only. Assuming that 1 is a
function of x only, we have

e~ - | - o~ WP - o - - - o= oeeom - T

You may also verify that a second integrating factor of Eq. (18) is
1
xy2x +y)’

and that the same solution is obtained, though with much greater difficulty, if this
integrating factor is used (see Problem 32).

mix, y) =

du ; s ; ;o
T N) =uN +N—. Determine whether or not each of the equations in Problems 1 through 12 is exact. If it is exact,
(uM), = uM,, W)y = Ny dx find the solution.
Thus, if (M), is to equal (1uN),, it is necessary that . 2x+3)+Q2y—-2y =0 2. (2x +4y)+ 2x —2y)y' =0
d M —N . Bx?—2xy+2)dx+ 6y —x*+3)dy =0
E& = —N__" (26) L (@ +2y) + 227y +20)y =0
X

If (M. — N_)/N is a function of x only, then there is an integrating fgctqr 7 that‘ also
deperi‘ds onfy on x; further, ;£ (x) can be found by solving Eq. (26), which is both linear

and separable. - . _
A sirr)nila: procedure can be used to determine a condition under which Eq. (22) has

an integrating factor depending only on y; see Problem 23.

Find an integrating factor for the equation
Bxy +yH) + @ +x)y =0 (18)

and then solve the equation. o _ ol
In Example 3 we showed that this equation is not exact. Let us determine whether

it has an integrating factor that depends on x only. On computing the quantity (M, =%
N.)/N,we find that
M (x,y) = N,(x,y)  3x+2y—Q2x+y) _ 1
. N(x,y) - x2 4+ xy %
Thus there is an integrating factor u that is a function of x only, and it satisfies the
differential equation

@7

dx

dp | (28)
~

Hence

dy  ax+by dy  ax—by

1
3
4
D — = — s

dx bx +cy dx bx —cy
7. (e*siny —2ysinx)dx + (¢*cosy +2cosx)dy =0
8
9
10

. (e*siny+3y)dx — (3x —e*siny)dy =0

. (ye™ cos2x —2¢™ sin2x + 2x) dx + (xe cos2x —3) dy =0

. (v/x+6x)dx+ (Inx —2)dy =0, x>0
11. (xIny+xy)dx + (yInx + xy) dy =0; x>0, y>0

xdx vdy

12 1 T =
In each of Problems 13 and 14 solve the given initial value problem and determine at least
approximately where the solution is valid.

13, 2x—y)dx+ 2y—x)dy=0, y(l)=3
14, Ox*+y—1)dx — (4y —x)dy =0, y(1)=0

- In each of Problems 15 and 16 find the value of b for which the given equation is exact and then

solve it using that value of b.
15. (xy*+bx*y)dx+ (x +y)x>dy =0 16. (ye™ +x)dx + bxe*™ dy =0
17. Consider the exact differential equation

M(x,y)dx+ N(x,y)dy =0.

Find an implicit formula ¥ (x, y) = ¢ for the solution analogous to Eq. (14) by first
integrating the equation y/, = N, rather than ¥ = M, as in the text.
18. Show that any separable equation,

M(x)+ N(y)y' =0,

p(x) = x. 2

Multiplying Eq. (18) by this integrating factor, we obtain
Gxly +xy%) + (x* +x%y)y =0.

The latter equation is exact and it is easy to show that its solutions are given implicitly
by

is also exact.

- Show that the equations in Problems 19 through 22 are not exact, but become exact when
(30) ~ multiplied by the given integrating factor. Then solve the equations.
B0 2P L Dy =0, ) = 1y

v —-X

20. (%{ — 2% sinx) dx + (m) dy - 0,‘ }L(I, y) = yex
Yy

21. ydx+ (2x —ye’) dy =0, plx,y) =y

22. (x+2)sinydx+xcosydy =0, pwix, y) = xe*

Py +iy =c €

Solutions may also be readily found in explicit form since Eq. (31) is quadratic in y.




23. Show thatit (N, — M )/M = @Q, where Q) is a function of y only, then the differengy

equation
M+ Ny =0

has an integrating factor of the form

n(y) =BXP] Q(y) dy.

24. Show thatif (N, — M )/(xM — yN) = R, where R depends on the quantity xy only, then
the differential equation
M+ Ny =0
has an integrating factor of the form w(xy). Find a general formula for this integrating
factor. |
In each of Problems 25 through 31 find an integrating factor and solve the given equation,
25. Bxfy+2xy+yH)dx+ (x*+yHdy=0
26, y=e*4+y—1
27. dx+(x/y —siny)dy =0
28. ydx+ (2xy—e?)dy=0
29. e" dx+ (e*coty +2ycescy)dy =0
. 2
30. [40°/y) + B/l dx + [B(x/y?) +4yldy =0

31. (3x+9)+(x—-+31)d”=0
¥ y x | dx

Hint: See Problem 24,
32. Solve the differential equation

Bxy +yH) + (24 xy)y' =0

using the integrating factor p(x, y) = [xy(2x 4+ y)]~'. Verify that the solution is the same
as that obtained in Example 4 with a different integrating factor.

2.7 Numerical Approximations: Euler’s Method

Recall two important facts about the first order initial value problem

d
d—f = ft.y), Yty =, (1)

First, if f and df/dy are continuous, then the initial value problem (1) has a unig
solution y = ¢(7) in some interval surrounding the initial point 1 = . Second, it 1§
usually not possible to find the solution ¢ by symbolic manipulations of the differential
equation. Up to now we have considered the main exceptions to this statement, namelys
differential equations that are linear, separable, or exact, or that can be transformed
into one of these types. Nevertheless, it remains true that solutions of the vast majority
of first order initial value problems cannot be found by analytical means such as those

considered in the first part of this chapter.

1 ICICIOLT 1L 1S HNPOUTdLL LU U aUlv LU APl Udull UL PLHUDTBLHT HTURHEL Wa )y o. As Wi Ld ¥
already seen, one of these ways is to draw a direction field for the differential equation
(which does not involve solving the equation) and then to visualize the behavior of
solutions from the direction field. This has the advantage of being a relatively simple
process, even for complicated differential equations. However, it does not lend itself to
quantitative computations or comparisons, and this is often a critical shortcoming.

Another alternative is to compute approximate values of the solution y = ¢(¢) of
the initial value problem (1) at a selected set of t-values. Ideally, the approximate
solution values will be accompanied by error bounds that assure the level of accuracy
of the approximations. Today there are numerous methods that produce numerical
approximations to solutions of differential equations, and Chapter 8 is devoted to a
fuller discussion of some of them. Here, we introduce the oldest and simplest such
method, originated by Euler about 1768. It is called the tangent line method or the
Euler method.

Let us consider how we might approximate the solution y = ¢ (1) of Egs. (1) near
t = 1,. We know that the solution passes through the initial point (7, y,) and, from the
differential equation, we also know that its slope at this point is f(#,, y,). Thus we can
write down an equation for the line tangent to the solution curve at (¢,, y,), namely,

y=y¥-+ f(tow yo)(t . to)- (2)

The tangent line is a good approximation to the actual solution curve on an interval
short enough so that the slope of the solution does not change appreciably from its
value at the initial point; see Figure 2.7.1. Thus, if 7, is close enough to 7,, we can
approximate ¢(f,) by the value y, determined by substituting ¢ = 1, into the tangent
line approximation at ¢ = f;; thus

Y :y0+f(t()v y{))(t] _t())- (3)

To proceed further, we can try to repeat the process. Unfortunately, we do not know
the value ¢ (z,) of the solution at ¢,. The best we can do is to use the approximate value
¥, instead. Thus we construct the line through (¢, y,) with the slope f(z,, y,).

y=y]+f(t]yy])(t'—t1)- (4)
To approximate the value of ¢ (7) at a nearby point z,, we use Eq. (4) instead, obtaining
yz=)’;+f(11,y1)(1‘2—f])- (&)




Second Order
Linear Equations

Linear equations of second order are of crucial importance in the study of differential
equations for two main reasons. The first is that linear equations have a rich theoretical
structure that underlies a number of systematic methods of solution. Further, a substan-
tial portion of this structure and these methods are understandable at a fairly elementary
mathematical level. In order to present the key ideas in the simplest possible context,
we describe them in this chapter for second order equations. Another reason to study
second order linear equations is that they are vital to any serious investigation of the
classical areas of mathematical physics. One cannot go very far in the development of
fluid mechanics, heat conduction, wave motion, or electromagnetic phenomena without
finding it necessary to solve second order linear differential equations. As an example,
we discuss the oscillations of some basic mechanical and electrical systems at the end
of the chapter.

nogeneous Equations with Constant Coefficients

A second order ordinary differential equation has the form
d’y dy
S t’ 9 = ) 1
5 f ( (v ) (1)

where f is some given function. Usually, we will denote the independent variable by
since time is often the independent variable in physical problems, but sometimes we

— - £
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[ will use x instead. We will use y, or occasionally some other letter, to designate "

dependent variable. Equation (1) is said to be linear if the function f has the form, Later, in Sections 3.6 and 3.7, we will show that once the homogeneous equation

has been solved, it is always possible to solve the corresponding nonhomogeneous
equation (4), or at least to express the solution in terms of an integral. Thus the problem
of solving the homogeneous equation is the more fundamental one.

In this chapter we will concentrate our attention on equations in which the func-
tions P, O, and R are constants. In this case, Eq. (7) becomes

f(t i)— t -
Yo g —g()—p(r)z—q(t)y,

\‘ that is, if f is linear in y and y’. In Eq. (2) g, p, and ¢ are specified functions of t
| independent variable ¢ but do not depend on y. In this case we usually rewrite Eq. (
l as '

ay' +by +cy =0, (8)

where a, b, and ¢ are given constants. It turns out that Eq. (8) can always be solved
easily in terms of the elementary functions of calculus. On the other hand, it is usually
much more difficult to solve Eq. (7) if the coefficients are not constants, and a treatment

of that case is deferred until Chapter 5.
Before taking up Eq. (8), let us first gain some experience by looking at a simple,
but typical, example. Consider the equation

y'—y=0, )]

I Y+ p)y +q@)y =g),

‘! where the primes denote differentiation with respect to 7. Instead of Eq. (3), we g i
| see the equation "

fl P@)y" + Q)Y+ R(1)y = G(1). (
Ml Of course, if P(t) # 0, we can divide Eq. (4) by P () and thereby obtain Eq. Q) w

Q1) R(1) G(1)
p(t) PO)’ q(r) P0)’ gt) = PO)’
| In discussing Eq. (3) and in trying to solve it, we will restrict ourselves to intervals
‘ which p, ¢, and g are continuous functions.'
If Eq. (1) is not of the form (3) or (4), then it is called nonlinear. Analyti
| investigations of nonlinear equations are relatively difficult, so we will have little
it say about them in this book. Numerical or geometical approaches are often m
appropriate, and these are discussed in Chapters 8 and 9. In addition, there are #
‘ special types of second order nonlinear equations that can be solved by a chai
| of variables that reduces them to first order equations. This procedure is outlined
' Problems 28 through 43.
l An initial value problem consists of a differential equation such as Eq. (1), (3)
(4) together with a pair of initial conditions

which is just Eq. (8) witha = 1, 5 =0, and ¢ = —1. In words, Eq. (9) says that we
~ seek a function with the property that the second derivative of the function is the

“same as the function itself. A little thought will probably produce at least one well-
~ known function from calculus with this property, namely. y, (1) = ¢', the exponential
~ function. A little more thought may also produce a second function, y, () = ¢ ’. Some
further experimentation reveals that constant multiples of these two solutions are also
solutions. For example, the functions 2¢" and 5e™" also satisfy Eq. (9), as you can verify
by calculating their second derivatives. In the same way, the functions ¢, y, (1) = c,¢'
and ¢, y,(1) = cze“' satisfy the differential equation (9) for all values of the constants
¢, and ¢,. Next, it is of paramount importance to notice that any sum of solutions of
I IEq (9) is also a solution. In particular, since ¢, y, (1) and ¢, y, () are solutions of Eq. (9),

| =
! Yt =y Yt =¥ Y=oy () + 6y, =ce + e (10)

- for any values of ¢, and c,. Again, this can be verified by calculating the second
! dellvatlve y" from Eq. (10). We have y' = c,¢’ —c,e " and y" = ¢’ + c,e”"; thus
y is the same as y, and Eq. (9) is satisfied.
. Letus summanze what we have done so far in this example. Once we notice that the
functions y,(t) = €' and () =e " are solutions of Eq. (9), it follows that the general
Jlinear combination (10) of these functions is also a solution. Since the coefficients ¢,
~and ¢, in Eq. (10) are arbitrary, this expression represents a doubly infinite family of
~ solutions of the differential equation (9).

It is now possible to consider how to pick out a particular member of this infinite
family of solutions that also satisfies a given set of initial conditions. For example,
‘suppose that we want the solution of Eq. (9) that also satisfies the initial conditions

| where y, and y, are given numbers. Observe that the initial conditions for a secg
order equation prescribe not only a particular point (z,, y,) through which the grapk
the solution must pass, but also the slope y;, of the graph at that point. It is reasona
i to expect that two initial conditions are needed for a second order equation becal
roughly speaking, two integrations are required to find a solution and each integrat
introduces an arbitrary constant. Presumably, two initial conditions will suffice
determine values for these two constants.

A second order linear equation is said to be homogeneous if the term g(f)
Eq. (3), or the term G(z) in Eq. (4), is zero for all t. Otherwise, the equation
called nonhomogeneous. As a result, the term g(¢), or G(t), is sometimes calle *
nonhomogeneous term. We begin our discussion with homogeneous equations, Wil
we will write in the form

YO =2, YO =-1 (11)

P(0)y" + @)y + R(1)y = 0. _ : .
- In other words, we seek the solution that passes through the point (0, 2) and at that
————eaiks _ 85t has _1.F ol e Y ol ;
'"There is a corresponding treatment of higher order linear equations in Chapter 4. If you wish, you may rea¢ 4 the slope A, Hiroat, e i Oznd Y £ Eq “0)’ $his e W armne
appropriate parts of Chapter 4 in para]]el wn.h Chapler 3.

T T — - - . (12)
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Next, we differentiate Eq. (10) with the result that The guantity in each of the parentheses on the right side of Eq. (20) is zero because r,

and r, are roots of Eq. (16); therefore, y as given by Eq. (17) is indeed a solution of

Eq. (8), as we wished to verify.
Now suppose that we want to find the particular member of the family of solutions

(17) that satisfies the initial conditions (6),

y =c,e —ce.
Then, setting t = 0 and y’ = —1, we obtain

€, — ¢, =—1.
By solving Eqgs. (12) and (13) simultaneously for ¢, and ¢, we find that ylt) = Yor Y (i) = Yo
By substituting 7 = 7, and y = ¥, in Eq. (17), we obtain

1

Cl = 35 Cy, = 3.

, . - . 2= 2 c.efo ¢ el = y,. 2n
inally, inserting these values in Eq. (10), we obtain i 1 2 N

y =Lt 4 3~ Similarly, setting 1 = 1, and y’ = y; in Eq. (18) gives
gy 7 ’ |

: _— | " 4 ¢ r,e’2 = yg. 22

the solution of the initial value problem consisting of the differential equation (9); e et -

the initial conditions (11). )

" On solving Egs. (21) and (22) simultaneously for ¢, and ¢,, we find that
We now return to the more general equation (8), '

!
Yo't — Yo -
¢, = LD, (23)
n—n r—"r

_ V(,) — Yol2 i
ayu + byf + cy = 0’ Cl = =g 10,
Thus, no matter what initial conditions are assigned, that is, regardless of the values
-~ of t,, ¥, and vy in Egs. (6), it is always possible to determine ¢ and ¢, so that the
initial conditions are satisfied; moreover, there is only one possible choice of ¢, and ¢,
'~ for each set of initial conditions. With the values of ¢, and c, given by Eq. (23), the

expression (17) is the solution of the initial value problem
ay' +by +cy=0,  y(p) =yo ¥t = (24)

It is possible to show, on the basis of the fundamental theorem cited in the next
~ section, that all solutions of Eq. (8) are included in the expression (17), at least for the
se in which the roots of Eq. (16) are real and different. Therefore, we call Eq. (17) the
- general solution of Eq. (8). The fact that any possible initial conditions can be satisfied

by the proper choice of the constants in Eq. (17) makes more plausible the idea that
Iﬂus expression does include all solutions of Eq. (8).

which has arbitrary (real) constant coefficients. Based on our experience with Eq
let us also seek exponential solutions of Eq. (8). Thus we suppose that y = e
r is a parameter to be determined. Then it follows that y' = re’’" and Y = rz’e t
substituting these expressions for y, y', and y” in Eq. (8), we obtain _ |

(ar® +br +c)e”" =0,
or, since e # 0,
ar® +br+c=0.

Equgtiqn (16) is.called the characteristic equation for the differential equation;
Its 51grr:11_icance hels in the fact that if r is a root of the polynomial equation (16),
y=e'isa solution of the differential equation (8). Since Eq. (16) is a quads
equation with real coefficients, it has two roots, which may be real and differen ,
but repeated, or complex conjugates. We consider the first case here, and the latter
cases in Sections 3.4 and 3.5. iR

Assuming that the roots of the characteristic equation (16) are real and different ‘Fi“d the general solution of
them be (?enoted by r, and r,, where r, # r,. Then y, (1) = e and v,(1) = e ' " !
two solutions of Eq. (8). Just as in the preceding example, it now follows that . Y43y +6y=0. -

ol U B8 = clerl’ " cze’z’ “:1 :lsume that y = ¢, and it then follows that r must be a root of the characteristic

is also a solution of Eq. (8). To verify that this is so, we can differentiate the expre st "
in Eq. (17); hence SR RE TR SR

Thus the possible values of r are ry = —2 and r, = —3; the general solution of

BIZ5) 1S

yl — Ctrlerlr +C2r2€r2r
and
y 5 , y=ce ¥+ g, (26)
y' = c,rie" +c,rie. 5 Tt

Substituting these expressions for y, y’, and y” in Eq. (8) and rearranging terms,
obtain '

Find the solution of the initial value problem

UiAS

R e e b st 4 D
- TN rr——r’ el g s R (s gt D L Y (D)= 3. (27)
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EXAMPLE

3

The general solution of the differential equation was found in Example 1 and is gjyey
by Eq. (26). To satisfy the first initial condition we set 7 =0 and y = 2 in Eg, .1
thus ¢, and ¢, must satisfy

c|+c2=2.

To use the second initial condition we must first differentiate Eq. (26). This giyes
y = —2«3,(?2' — 3c‘2e‘3’. Then, setting 1 = 0 and y’ = 3, we obtain '

—2¢, — 3¢, =3 2

By solving Eqs. (28) and (29) we find that ¢; = 9 and ¢, = —7. Using these valucs'.
the expression (26), we obtain the solution i

y=9e 2 —Te™ (30

of the initial value problem (27). The graph of the solution is shown in Figure 3.1.1.

ya

i

FIGURE 3.1.1 Solution of y" + 5y + 6y =0, y(0) = 2, ¥'(0) = 3.

Find the solution of the initial value problem

4y" —8y +3y=0, yO)=2. yO)=j3.

If y = ¢, then the characteristic equation is
4> —8r+3=0
and it:s roots are r = 3/2and r = 1/2. Therefore the general solution of the different
equation is
Y= c']e3’/2 +c,e'’?. (3
Applying the initial conditions, we obtain the following two equations for ¢, and ¢5*
1

cl+c.'2=2, %c,-l—%cz:E.
1
The solution of these equations is ¢; = —3, ¢, = 2, and the solution of the initial VA&
problem (31) is
y= bt Setl2,

Figure 3.1.2 shows the graph of the solution.

R I G e e o =

LG UETERRRARES =

‘W‘

FIGURE 3.1.2 Solution of 4y” — 8y’ 43y = 0, y(0) = 2, y'(0) = 0.5.

The solution (30) of the initial value problem (27) initially increases (because its initial
slope is positive) but eventually approaches zero (because both terms involve negative
exponential functions). Therefore the solution must have a maximum point and the
graph in Figure 3.1.1 confirms this. Determine the location of this maximum point.
One can estimate the coordinates of the maximum point from the graph, but to find
them more precisely we seek the point where the solution has a horizontal tangent line.

By differentiating the solution (30), y = 9¢~2 — ¢~ with respect to 7 we obtain
y = —18¢72 4+ 217, (34)

Setting ¥ equal to zero and multiplying by ¢, we find that the critical value 7, satisfies
e' =7/6; hence

t, = In(7/6) = 0.15415. (35)
The corresponding maximum value y,, is given by
108
Yy =9 (36)

=2t -3
s _ F i = 22920408,
a 49

~ In this example the initial slope is 3, but the solution of the given differential equation
behaves in a similar way for any other positive initial slope. In Problem 26 you are
asked to determine how the coordinates of the maximum point depend on the initial
slope.

Returning to the equation ay” + by’ + cy = 0 with arbitrary coefficients, recall
that when r, # r,, its general solution (17) is the sum of two exponential functions.
Therefore the solution has a relatively simple geometrical behavior: as 7 increases,
the magnitude of the solution either tends to zero (when both exponents are negative)
or else grows rapidly (when at least one exponent is positive). These two cases are
illustrated by the solutions of Examples 2 and 3, which are shown in Figures 3.1.1
and 3.1.2, respectively. There is also a third case that occurs less often; the solution
approaches a constant when one exponent is zero and the other is negative.
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(b) Determine the coordinates ¢, and y, of the maximum point of the solution as functions

PROBLEMS In each of Problems 1 through 8 find the general solution of the given differential equatiop, of B

1. y' 42y —3y=0 2. v 43y 4+2y=0 (c) Determine the smallest value of B for which y > 4.

3. 'Gyu _ 'y; —y=0 4. ﬁyn . '3V, + ‘v -0 (d) Determine the behaviorof 7, and y, as f# — oo.

5. YV'+5y =0 6. 4y =9y =0 27. Find an equation of the form ay” + by’ + cy = 0 for which all solutions approach a
7. y" =9y +9y=0 8. y -2y —-2y=0 multiple of ¢ " as t — oc.

Equations with the Dependent Variable Missing. For a second order differential equation
of the form y" = f(t, y'), the substitution v = y', v" = y" leads to a first order equation of the
form v = f (¢, v). If this equation can be solved for v, then y can be obtained by integrating
dy/dt = v. Note that one arbitrary constant is obtained in solving the first order equation for v,
and a second is introduced in the integration for y. In each of Problems 28 through 33 use this
substitution to solve the given equation.

In each of Problems 9 through 16 find the solution of the given initial value problem. Sketcj
graph of the solution and describe its behavior as ¢ increases. :

9. y'+y -2y =0, y) =1, Y0 =1
10. y'+4y'+3y=0, y(0) =2, y(0)=-I
Il 6y =5y +y=0, y©) =4 (0)=0
12. y"43y'=0, y@=-2, y(©0) =3
13. y"+5y +3y=0, y0) =1, y(0) =0
14. 2y" +y —4y =0, y(0)=0, Y0 =1
15. y"+8y'=9y=0, y(I)=1, y(1)=0
16. 4y" —y =0, v(i=2)=1, y(=2)=-1
17. Find a differential equation whose general solution is y = ¢ e* +c,e ™.
18. Find a differential equation whose general solution is y = ¢ e™"/% + ¢,e ™

28. 2y +2ty' — 1 =0, t>0 20 1y +y =1, t>0

30. y' +t(y)* =0 31 202y + (v =21y, 1>0

32, y'+y=¢" 33. %y" = ()2, r>0

- Equations with the Independent Variable Missing. If a second order differential equation

~ has the form y” = f(y, y), then the independent variable t does not appear explicitly, but only

~ through the dependent variable y. If we let v = y’, then we obtain dv/dr = f(y, v). Since the
~ right side of this equation depends on y and v, rather than on ¢ and v, this equation is not

» 5 " " ~ of the form of the first order equations discussed in Chapter 2. However, if we think of y as

y —y=0, yO =3 yO)=-5 ~the independent variable, then by the chain rule dv/dt = (dv/dy)(dy/dt) = v(dv/dy). Hence

the original differential equation can be written as v(dv/dy) = f(y, v). Provided that this first

order equation can be solved, we obtain v as a function of y. A relation between y and ¢ results

from solving dy/dt = v(y). Again, there are two arbitrary constants in the final result. In each

of Problems 34 through 39 use this method to solve the given differential equation.

P 19. Find the solution of the initial value problem

Plot the solution for 0 < r < 2 and determine its minimum value.
20. Find the solution of the initial value problem

2y =3 +y=0, yO=2 yO=4}

Then determine the maximum value of the solution and also find the point where
solution is zero.
21. Solve the initial value problem y” — y' — 2y =0, y(0) =«, y'(0) = 2. Then finde
that the solution approaches zero as t — 0.
22. Solve the initial value problem 4y” — y =0, y(0) =2, y'(0) = f. Then find g sol
the solution approaches zero as t — 0<.

4. 3y + (/)P =0 35. Y +y=0
- 36. Y +y0)’ =0 37. 293" +2y(y) =1
3By () =0 39. Y+ () =27
~ Hint: In Problem 39 the transformed equation is a Bernoulli equation. See Problem 27 in
Section 2.4.
[ In each of Problems 40 through 43 solve the given initial value problem using the methods of
- Problems 28 through 39.
40, yy'=2,  yO)=1, yO0)=2
L y'=3y=0 y0=2 YO=4
42, A+ +2uy +372=0, yy=2, Yy =-1
B -t=0, y)=2 yd=1

In each of Problems 23 and 24 determine the values of «, if any, for which all solutions ten
zero as t — o0; also determine the values of e, if any, for which all (nonzero) solutions beca
unbounded as t — o0.

23, YV —QRa—=1)y +a@—1)y=0 24, Y 4+@B—-a)y —2(—-1)y=0
P 25. Consider the initial value problem

2y" +3y -2y =0, y(0) =1, »(0)= -8,

where g > 0.

(a) Solve the initial value problem. 3

(b) Plot the solution when g = 1. Find the coordinates (1,,y,,) of the minimum po ,‘

the solution in this case.

(¢) Find the smallest value of g for which the solution has no minimum point.
P 26. Consider the initial value problem (see Example 4) orm

Y +5y +6y=0, yO=2 y©0=8, ay" +by +cy =0,

where g > 0.

vk - wherea, b, and c are constants. Now we build on those results to provide a clearer picture
(a) Solve the initial value problem.

- of the structure of the solutions of all second order linear homogeneous equations. In
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(b) Determine the coordinates ¢, and y, of the maximum point of the solution as functions

PROBLEMS In each of Problems 1 through 8 find the general solution of the given differential equatiop, of B

1. y' 42y —3y=0 2. v 43y 4+2y=0 (c) Determine the smallest value of B for which y > 4.

3. 'Gyu _ 'y; —y=0 4. ﬁyn . '3V, + ‘v -0 (d) Determine the behaviorof 7, and y, as f# — oo.

5. YV'+5y =0 6. 4y =9y =0 27. Find an equation of the form ay” + by’ + cy = 0 for which all solutions approach a
7. y" =9y +9y=0 8. y -2y —-2y=0 multiple of ¢ " as t — oc.

Equations with the Dependent Variable Missing. For a second order differential equation
of the form y" = f(t, y'), the substitution v = y', v" = y" leads to a first order equation of the
form v = f (¢, v). If this equation can be solved for v, then y can be obtained by integrating
dy/dt = v. Note that one arbitrary constant is obtained in solving the first order equation for v,
and a second is introduced in the integration for y. In each of Problems 28 through 33 use this
substitution to solve the given equation.

In each of Problems 9 through 16 find the solution of the given initial value problem. Sketcj
graph of the solution and describe its behavior as ¢ increases. :

9. y'+y -2y =0, y) =1, Y0 =1
10. y'+4y'+3y=0, y(0) =2, y(0)=-I
Il 6y =5y +y=0, y©) =4 (0)=0
12. y"43y'=0, y@=-2, y(©0) =3
13. y"+5y +3y=0, y0) =1, y(0) =0
14. 2y" +y —4y =0, y(0)=0, Y0 =1
15. y"+8y'=9y=0, y(I)=1, y(1)=0
16. 4y" —y =0, v(i=2)=1, y(=2)=-1
17. Find a differential equation whose general solution is y = ¢ e* +c,e ™.
18. Find a differential equation whose general solution is y = ¢ e™"/% + ¢,e ™

28. 2y +2ty' — 1 =0, t>0 20 1y +y =1, t>0

30. y' +t(y)* =0 31 202y + (v =21y, 1>0

32, y'+y=¢" 33. %y" = ()2, r>0

- Equations with the Independent Variable Missing. If a second order differential equation

~ has the form y” = f(y, y), then the independent variable t does not appear explicitly, but only

~ through the dependent variable y. If we let v = y’, then we obtain dv/dr = f(y, v). Since the
~ right side of this equation depends on y and v, rather than on ¢ and v, this equation is not

» 5 " " ~ of the form of the first order equations discussed in Chapter 2. However, if we think of y as

y —y=0, yO =3 yO)=-5 ~the independent variable, then by the chain rule dv/dt = (dv/dy)(dy/dt) = v(dv/dy). Hence

the original differential equation can be written as v(dv/dy) = f(y, v). Provided that this first

order equation can be solved, we obtain v as a function of y. A relation between y and ¢ results

from solving dy/dt = v(y). Again, there are two arbitrary constants in the final result. In each

of Problems 34 through 39 use this method to solve the given differential equation.

P 19. Find the solution of the initial value problem

Plot the solution for 0 < r < 2 and determine its minimum value.
20. Find the solution of the initial value problem

2y =3 +y=0, yO=2 yO=4}

Then determine the maximum value of the solution and also find the point where
solution is zero.
21. Solve the initial value problem y” — y' — 2y =0, y(0) =«, y'(0) = 2. Then finde
that the solution approaches zero as t — 0.
22. Solve the initial value problem 4y” — y =0, y(0) =2, y'(0) = f. Then find g sol
the solution approaches zero as t — 0<.

4. 3y + (/)P =0 35. Y +y=0
- 36. Y +y0)’ =0 37. 293" +2y(y) =1
3By () =0 39. Y+ () =27
~ Hint: In Problem 39 the transformed equation is a Bernoulli equation. See Problem 27 in
Section 2.4.
[ In each of Problems 40 through 43 solve the given initial value problem using the methods of
- Problems 28 through 39.
40, yy'=2,  yO)=1, yO0)=2
L y'=3y=0 y0=2 YO=4
42, A+ +2uy +372=0, yy=2, Yy =-1
B -t=0, y)=2 yd=1

In each of Problems 23 and 24 determine the values of «, if any, for which all solutions ten
zero as t — o0; also determine the values of e, if any, for which all (nonzero) solutions beca
unbounded as t — o0.

23, YV —QRa—=1)y +a@—1)y=0 24, Y 4+@B—-a)y —2(—-1)y=0
P 25. Consider the initial value problem

2y" +3y -2y =0, y(0) =1, »(0)= -8,

where g > 0.

(a) Solve the initial value problem. 3

(b) Plot the solution when g = 1. Find the coordinates (1,,y,,) of the minimum po ,‘

the solution in this case.

(¢) Find the smallest value of g for which the solution has no minimum point.
P 26. Consider the initial value problem (see Example 4) orm

Y +5y +6y=0, yO=2 y©0=8, ay" +by +cy =0,

where g > 0.

vk - wherea, b, and c are constants. Now we build on those results to provide a clearer picture
(a) Solve the initial value problem.

- of the structure of the solutions of all second order linear homogeneous equations. In
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Chapter 3. Second Order Linear Equq

nth ine: . .
" a(r)lgd(:lr] lltnear homogenegus differential equation forms a vector space of dj
; at any set of n linearly independent solutions of the differentia] Imep,

forms ¢ i . .
s a basis for the space. This connection between differential equations ang 3
vegd

constitutes a good reason for the study of abstract linear algebra

I f I b]em. l hr pc n l
g 8
n eaCIl () l (0] S y throu ]1 (lEtEI mine W]letllﬁt the gl\den AT 0‘ iu ctions 1S |

ﬁr); 3. s@=l" 8 f)=x  g(x)=xP
e Wronskian of two functions is W () = t sin® S
. b b v g e (t) = rsin” 1. Are the functions linearly indepen
. The Wronskian of two functions i £
: nsis W) =1~ — i i i

e e (1) = 17 — 4. Are the functions linearly indeper

1. It i ) i i
pr(t)tz il;lzfu‘ons v, and y, are linearly independent solutions of y" + p(1)v' + g(t)y-
B thd ¢y, and ¢, y, are also linearly independent solutions, provided e
o , provided that neithg

12. 1f i y i i
- ([)l\lz ffl:::tslon—s ¥, and y, are linearly independent solutions of y” + p(t)v' + q(t)y
et ;3if—vhatdy2v an‘;ir f;:v41 i: y 11 = y:._d also form a linearly independent-set of sol 7

sely, 1f V, ear soluti i i

i and}yq X ;130- y independent solutions of the differential equa

13. If the functions y, ¢ i i

v, and y, are linearly independent solutio 4
‘ e s ns of y" + )/ :
d]etermme uqder wh_at conditions the functions y, = a,y, +a, v anﬁ(f') }j:’)qu
" ? jo lf)orm a linearly independent set of solutions . . o =P
. (a) Prove that any two-di i ) i i

T y imensional vector can be written as a linear combination of |
b) Pr o . .
(b) Prove that if the vectors X = x,i+x,j and y = y,i + y,j are linearly indepent

1. f@)=1"+5¢ =12
) : g(t)=1" -5t
%‘ IJ]:E:?)) =508 36, 2(0) = 4cos’ 0 — 3cosh
3. f@) = e cos (1) = e si
4. f(x)= e'}"‘ glx) = 63(1—1{), sinut, e #0
5. fiD=3-5, = -
7 g(f)—9f—15 6 f(.f):,“ g(t):r*'
9.

then any vec =z,i+2,j
y vector z = z,i + z,j can be expressed as a linear combination of x and y. B

tha[ lf X alld " are ll[lf.‘/a]ly llldependel‘l!, [hEIl X Vz = .¥2 }l ?’—' O \:V hy
ln E:aCh 01 Proble“l'\ ]5 l’thli b ons 0‘ t]le ven dlﬂ -
g
h 18 ﬁlld l]le “‘ 1()nSklan Of two \Olutl n g |

15. 2y —t(t+2)y + (¢
N J + 2)V = O 16 x " . ’
Ty o . . (cost)y” + (sinn)y —ty =
:; ’(VI v, ‘*’21.\” I (Xzf* vy =0, Bessel’s equation (R~ 1 7
- (=x9y" = 2xy +ate+ Dy =0, Legendre’s equation

1 ) s - " .
9. Show that if p is differentiable and p(t) > 0, then the Wronskian W (1) of two soluf

of [p(1)y']'+ q(t)y = 0is W(t) = ¢/pl(t), where ¢ is a constant.

20. ; L . 3
If y, and y, are lincarly independent solutions of ry” + 2y +re'y =0 and

. [\:/(y]. ¥,)(1) = 2, find the value of W (y,, y,)(5).
21. y, and y, are linearly independent solutions 2y

5 of t = ! I an

- I‘?(gl._vz)(Z) = 3, find the value of W (y,, y,)(4) Emrfibill

. If the Wronskian of any two solutions of y” 1)y’ i t d

23 this imply about the coefficients p and q?y A LA e

. If £, g. and h are differentiable functions, show that W( fg, fh) = f*W(g. h)

Inl roblems 24 th.rough 26 assume that 2 E}nd g are continuous and ]’_hat the functlons yl "
are SOIutIDﬂS Df the dlffele“ual equanml 2] P (" )J | q (I)J = 0 on an Open interva .
- 3 F

fs Of INE LGyt ey

24, Prove thatif y, and y, are zero at the same point in /, then they cannot be a fundamental
set of solutions on that interval.

25. Prove thatif y, and v, have maxima or minima at
a fundamental set of solutions on that interval.

26. Prove that if y, and y, have a common point of inflection in 1. then they cannot be a
fundamental set of solutions on [ unless both p and g are zero at f;.

27. Show that 1 and 1% are linearly independent on _| <t < 1; indeed, they are linearly
independent on every interval. Show also that W(z, 12y is zero at t = 0. What can you
conclude from this about the possibility that and 12 are solutions of a differential equation
y' 4 p)y +q0)y =07 Verify that ¢ and 12 are solutions of the equation £2y" =2ty +
2y = 0. Does this contradict your conclusion? Does the behavior of the Wronskian of 1

and ¢> contradict Theorem 3.3.27

28. Show that the functions fln= 2|¢] and g(1)
and on —1 <t < 0, but are linearly independ
linearly independent there, show that W(f, g) is zero
g cannot be solutions of an equation y" + p(r) v +q

i) <t < 1.

the same point in 7, then they cannot be

— {3 are linearly dependent on 0 < < 1
ent on —1 <t < 1. Although f and g are
forall7in —1 <t < 1. Hence f and
(r)y = 0 with pand ¢ continuous on

e e —————

lex Roots of the Characteristic Equation

We continue our discussion of the equation
ay’ +by +cy=0,

al numbers. In Section 3.1 we found that if we seek
be a root of the characteristic equation

(1

where a, b, and ¢ are given re
solutions of the form y = ¢'’, then r must

ar: +br+c=0. (2)

If the roots r, and r, are real and different, which occurs whenever the discriminant
b® — 4ac is positive, then the general solution of Eq. (1) is
P cle"l' + ¢ e’ (3)
Suppose now that b — 4ac is negative. Then the roots of Eq. (2) are conjugate
complex numbers; we denote them by
r1=k+iu, rzzl—i;.L. 4)
where A and p are real. The corresponding expressions for y are
¥, (1) = expl(h + ipt], y,(t) = expl(h — ip)t]. (3

what is meant by these expressions, which involve evaluating

Our first task is to explore
mple, if A = —1,t=2,and

the exponential function for a complex exponent. For exa
t = 3, then from Eq. (5)

w0, _ (6)
What does it mean to raise the number ¢ t0 a complex powe
by an important relation known as Euler’s formula.

r? The answer is provided



Euler’s Formula. To assign a meaning to the expressions in Eqgs. (5) we need g giy
a definition of the complex exponential function. Of course, we want the definitigy
reduce to the familiar real exponential function when the exponent is real. There '.1.‘
several ways to accomplish this extension of the exponential function. Here WE ga
method based on infinite series; an alternative is outlined in Problem 28.
Recall from calculus that the Taylor series for e’ about r = 0 is

imaginary parts of exp[(A + i)t] are expressed entirely in terms of elementary real-
valued functions. For example, the quantity in Eq. (6) has the value

e 3 — o3 056+ ie " sin6 = 0.0478041 — 0.0139113i.

With the definitions (9) and (13) it is straightforward to show that the usual !aws of
exponents are valid for the complex exponential function. It is also easy to verify that

e = 5 " —00 <t <00 the differentiation formula
n!’ ' P
o — (") =re" (14)
If we now assume that we can substitute iz for ¢ in Eq. (7), then we have di
n_ x Gt also holds for complex values of r.
n! | -
P ; - utions. The functions v, (¢) and y,(7), given by Eqgs. (5) and with
= i (VLR o G Vi fhe:lm‘:lal;?iidg i(fpressed by Eq. (13), arc, ‘alations' SEBA, A1 wilest e roots of the
= (m)! r=EC characteristic equation (2) are complex numbers A + i ;. Unfortunately, the solutions y,

and y, are complex-valued functions, whereas in general we \_:vould prefer to have' real-
valued solutions, if possible, because the differential equation itself has l"eal coefﬁcuant's.
- Such solutions can be found as a consequence of Theorem ?.2.2, which state.s that if
" y, and y, are solutions of Eg. (1) then any linear combmf.mon of y, and y, is also a
solution. In particular, let us form the sum and then the difference of y, and y,. We

have

where we have separated the sum into its real and imaginary parts, making use of
fact that i* = —1,i* = —i, i* = 1, and so forth. The first series in Eq. (8) is precise
the Taylor series for cos 7 about t = 0, and the second is the Taylor series for sis
about t = 0. Thus we have '

e =cost+isint.

Equation (9) is known as Euler’s formula and is an extremely important mathematic
relationship. While our derivation of Eq. (9) is based on the unverified assumption tf
the series (7) can be used for complex as well as real values of the independent variab
our intention is to use this derivation only to make Eq. (9) seem plausible. We now
matters on a firm foundation by adopting Eq. (9) as the definition of ¢ . In other worg
whenever we write e'!, we mean the expression on the right side of Eq. (9).

There are some variations of Euler’s formula that are also worth noting. If we repla
1 by —t in Eq. (9) and recall that cos(—7) = cos and sin(—t) = —sin ¢, then we ha

(1) + (1) = e (cos pt + i sinut) + eM(cos put — i sin jut)

= 2¢M cos jut

¥i(6) — y, () = e (cos put + i sin jut) — e (cos put — i sin ut)
= 2ie™ sin put.

71' o= . - . i . - .

¢ Tty Hence, neglecting the constant multipliers 2 and 2i, respectively, we have obtained a

Further, if 7 is replaced by ut in Eq. (9), then we obtain a generalized version of Eule pair of real-valued solutions

=)

formula sannsly, _ N u(t) = e* cos ut, v(r) = €M sin ut. (15)
e = cos ut + i sin put. (1 . ;
~ Observe that u and v are simply the real and imaginary parts, respectively, of y,.

Next, we want to extend the definition of the exponential function to arbitrary con B ¢ commputation you can show that the Wronskian of u and v'is

exponents of the form (A + ij4)¢. Since we want the usual properties of the expon
function to hold for complex exponents, we certainly want exp[(A + i )] to sat Wiu, v)(t) = pe*. (16)

(AFip)t __ At it 1 .
7R = e Thus, as long as 1« # 0, the Wronskian W is not zero, so u and v form a fundamental

set of solutions. (Of course, if i = 0, then the roots are real and the fiis.cussion.in this
- section is not applicable.) Consequently, if the roots of the characteristic equation are
complex numbers ) + i i, with 2 # 0, then the general solution of Eq. (1) is

Then, substituting for e’ from Eq. (11), we obtain

e — oM (cos ut + i sin ut)

= e cos ut +ie* sinpt.

We now take Eq. (13) as the definition of exp[(A + i)t]. The value of the exponert il
function with a complex exponent is a complex number whose real and imagind

y = ¢ € cos jut + c,e’ sin put, (17)

- where ¢, and c, are arbitrary constants. Note that the solution (17) can be written down
- as soon as the values of A and p are known.
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Find the general solution of
y'+y +y=0.
The characteristic equation is
rP+r+1=0,
and its roots are

—14(1—4)!72 1 . .3
r=—m/ = 4
2 2 2

Thus A = —1/2 and u = +/3/2, so the general solution of Eq. (18) is
y= lez"/2 COS(\/it/2) + C2€7{/2 Sin(\/gl/2) :

Find the general solution of
v '+ 9y =0.

The characteristic equation is r? +9 = 0 with the roots r = +3i; thus A =
(= 3. The general solution is

¥y = ¢, cos 3t + ¢, sin 3t;

note that if the real part of the roots is zero, as in this example, then there i
exponential factor in the solution.

Find the solution of the initial value problem
16y” — 8y + 145y =0,  y(0)= -2, y(0)=1.

The characteristic equation is 16r> — 8r + 145 = 0 and its roots are r = | /44
Thus the general solution of the differential equation is

y =c,e*cos3t + cze‘/4 sin 3f.
To apply the first initial condition we set r = 0 in Eq. (23); this gives
y(0) =¢, = -2.

For the second initial condition we must differentiate Eq. (23) and then set £
this way we find that

v (0) = %c, +3¢c,=1,
from which ¢, = 1/2. Using these values of ¢, and c, in Eq. (23), we obtain
y = —2¢'/*cos 3t + %e'“ sin 3¢

as the solution of the initial value problem (22).

We will discuss the geometrical properties of solutions such as these more ful
Section 3.8, so we will be very brief here. Each of the solutions u and v in EgS:
represents an oscillation, because of the trigonometric factors, and also either gF

ts of the Characteristic Lquation ek i

decays exponentially, depending on the sign of A (unless 4 = 0).In Examp.!e 1 we hz}ve
A = —1/2 < 0, so solutions are decaying oscillations. The graph of a typl_cal solution
of Eq. (18) is shown in Figure 3.4.1. On the other hand_, A= 1./4 > 0 in Example
3, so solutions of the differential equation (22) are growing osc:_lllatllons. The graph
of the solution (24) of the given initial value problem is shown in Figure 3.4.2. The
intermediate case is illustrated in Example 2 in which A = 0'. In this case the so'lutlon
neither grows nor decays exponentially, but oscillates steadily; a typical solution of
Eq. (20) is shown in Figure 3.4.3.

e FIGURE 3.4.1 A typical solutionof y" + y" +y = 0.

FIGURE 3.4.2

Solution of 16y” — 8y’ + 145y =0, y(0) = =2, ¥'(0) = 1.
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(c) Find, as a function of «, the smallest positive value of ¢ for which y = 0.

‘ (d) Determine the limit of the expression found in part (c) as @ — 0.

| . 1~ . Consider the initial value problem

| : Y42y +@+1)y=0  y0 =1, y(0)=0.

| - (a) Find the solution y(r) of this problem.
(b) Fora = 1 find the smallest T such that |y(z)| < 0.1 forz > T'.

: (c) Repeat part (b) fora = 1/4, 1/2, and 2.
e (d) Using the results of parts (b) and (c), plot T versus a and describe the relation between
: T and a.

. Show that W (e cos ur, ¢*' sin ) = pe®.

. In this problem we outline a different derivation of Euler’s formula.
(a) Show that y, (1) = cost and y,(r) = sins are a fundamental set of solutions of y" +
y = 0; that is, show that they are solutions and that their Wronskian is not zero.
(b) Show (formally) that y = '’ is also a solution of y” 4 y = 0. Therefore,

FIGURE 3.4.3 A typical solution of y”" + 9y = 0.

i PROBLEMS In each of Problems 1 through 6 use Euler’s formula to write the given expression in the fi ot ¢, cost + ¢, sint (i)

\ a+ib.
1. exp(l +2i) 2. exp(2 —3i) for some constants ¢, and ¢,. Why is this so?
3 @7 4. 62—(”/?“ (¢) Sett =0inEq. (i) to show that ¢, = 1.
5. ol-i 6. 7 !t (d) Assuming that Eq. (14) is true, differentiate Eq. (i) and then set 7 = 0 to conclude that

¢, =i. Use the values of ¢| and ¢, in Eq. (i) to arrive at Euler’s formula.

In each of Problems 7 through 16 find the general solution of the given differential equatio Using Euler’s formula, show that

7. y'=2y'+2y=0 8. ¥y -2y +6y=0 it 4. gk : it _ =ity 12y
9. Y'+2y'—8y=0 10. ¥/ +2y' +2y=0 cost = (e +e™)/2,  sint=(e" —e™")/2i.
H. y': +6y' 413y =0 L2 4yn + g'vfz ¢ - Ife¢" is given by Eq. (13), show that e"1772"" = ¢"1'¢"' for any complex numbers ryandr,.
13. y"+2y'+125y =0 14. 9y"+9y —4y =0 If ¢ is given by Eq. (13), show that
15, y"+y +125y =0 16. vy’ 4+4y +6.25y=0 )
S rt _ nort
In each of Problems 17 through 22 find the solution of the given initial value problem. 8 =k

the graph of the solution and describe its behavior for increasing 7. for any complex number r.
Let the real-valued functions p and g be continuous on the open interval /, and let

Y =¢(t) = u(t) + iv(t) be a complex-valued solution of

Y'+p®)y +4q)y =0, (i)

- where u and v are real-valued functions. Show that « and v are also solutions of Eq. (i).
Hint: Substitute y = ¢ (¢) in Eq. (i) and separate into real and imaginary parts.
If the functions y, and y, are linearly independent solutions of y” + p(1)y’ + q(t)y = 0,
sh.ow that between consecutive zeros of y, there is one and only one zero of ¥,. Note that
ﬂz’is result Ois illustrated by the solutions y, (t) = cost and ¥,(t) = sint of the equation
Yy +y=0.

17. y" 44y =0, y(0) =0, YO =1
18. y' 44y +5y =0, y0) =1, y(@©=0
19. y" =2y +5y=0, y(r/2)=0, y(m/2)=2
\ 20. y'+y=0, y(mx/3) =2, y(x/3)=—4
' 21, V' 4y +125vy=0, yO0) =3 (O =1
22, y'4+2y +2y =0, yir/4) =2, y@@/H=-2
P 23. Consider the initial value problem
| 3 — W +2 =0, W) =2 ¥ =0.

(a) Find the solution u(¢) of this problem.
(b) Find the first time at which |u(r)| = 10.
P 24. Consider the initial value problem

5u" +2u' +7u =0, w0 =2, w0)=1

ge of Variables. Often a differential equation with variable coefficients,

Y'+p®)y +q@)y =0, ()

1 be put in a more suitable form for finding a solution by making a change of the independent
iad/o dependent variables. We explore these ideas in Problems 34 through 42. In particular, in
Pro l?m 34 we determine conditions under which Eq. (i) can be transformed into a differential
‘€quation with constant coefficients and thereby becomes easily solvable. Problems 35 through
) 42 give specific applications of this procedure. :

(a) Find the solution u(t) of this problem.
(b) Find the smallest T such that [u(r)| < 0.1 forallt > T.

» 25. Consider the initial value problem
¥y +2y'+6y=0 y0 =2 yO0=ax0.

(a) Find the solution y(t) of this problem.
(b) Find « sothat y =0 whent = 1.

.In this problem we determine conditions on p and g such that Eq. (i) can be transformed
d ~ Into an equation with constant coefficients by a change of the independent variable. Let
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X = u(t) be the new independent variable, with the relation between x and f to be
later.

(a) Show that

dZ
dt

dy
dx

N
=

|
|

dy dxdy d*y (dx)2 d? i

di — drdx’ a2 \dr) ax

(b) Show that the differential equation (i) becomes

(ix)zdzu L2 1 p02) 2 4 gy =0
dr) ax? " \a? TPar Jax T =0

(c) In order for Eq. (ii) to have constant coefficients, the coefficients of a’z_v /dx* and,
y must be proportional. If ¢(1) > 0, then we can choose the constant of proportional '
be 1 hence '

[
18]

x=u(t) = f[q(z)]‘/2 dt.

(d) With x chosen as in part (c) show that the coefficient of dy/dx in Eq. (ii) is als
constant, provided that the expression

q'(t) +2p(t)q(t)
\ 20g(n]*?

| is a constant. Thus Eq. (i) can be transformed into an equation with constant coefficier
‘ by a change of the independent variable, provided that the function (@' +2pq) /g
constant. How must this result be modified if g(r) < 07

In each of Problems 35 through 37 try to transform the given equation into one with consta
coefficients by the method of Problem 34. If this is possible, find the general solution of |
given equation.

3s. y”+ty’+e"3y=0, —00 <t < 00
36. ¥y +3ty + 7y =0, —00 <t <00
3. '+ (2 - Dy + %y =0, 0<t<oo
38. Euler Equations. An equation of the form

2y +aty + By =0, t >0,

where « and f are real constants, is called an Euler equation. Show that the substituti
x = Int transforms an Euler equation into an equation with constant coefficients. Bt
equations are discussed in detail in Section 5.5.

In each of Problems 39 through 42 use the result of Problem 38 to solve the given equatio n |

t > 0.
| 39. 2y 41y +y=0 40. 2y" +ary' +2y =0
il 41. 12y +3ty +1.25y =0 42. *y" —dty —6y =0

3.5 Repeated Roots; Reduction of Order

In earlier sections we showed how to solve the equation

ay’ + by +cy=0

ots; Reduction of Order 161
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when the roots of the characteristic equation
ar’+br+c=0 (2)

are either real and different, or are complex conjugates. Now we consider the third
possibility, namely, that the two roots r, and r, are equal. This case occurs when the
discriminant b> — 4ac is zero, and it follows from the quadratic formula that

r,=r,=-—b/2a. (3)
The difficulty is immediately apparent; both roots yield the same solution
yi (1) = e/ @

of the differential equation (1), and it is not obvious how to find a second solution.

Solve the differential equation
Y +4y' +4y =0. (5)
The characteristic equation is
rP+4r+4=0r+27%=0,

80 r, = r, = —2. Therefore one solution of Eq. (5)is y, (1) = e~ To find the general
solution of Eq. (5) we need a second solution that is not a multiple of y,- This second
- solution can be found in several ways (see Problems 20 through 22); here we use a
~ method originated by D’Alembert’ in the eighteenth century. Recall that since y, (1) is
a solution of Eq. (1), so is ¢y, (r) for any constant c. The basic idea is to generalize this
observation by replacing ¢ by a function v(¢) and then trying to determine v(¢) so that
the product v(r) ¥, (#) is a solution of Eq. (1).
To carry out this program we substitute y = v(¢)y,(r) in Eq. (1) and use the resulting
equation to find v(¢). Starting with

y =v()y,(t) = v(t)e ™, (6)
we have
| Y =v()e ¥ - 20(r)e™ (7)
~and
4 y' =v"(t)e ™ — 4’ (e ™ +dv()e ¥, (8)

By substituting the expressions in Egs. (6), (7), and (8) in Eq. (5) and collecting terms,

~ we obtain

[V (1) — 40/ (1) + 4v(t) + 40/ (1) — Bu(r) + 4v(1)]e > =0,

- which simplifies to

3

v ()= 0. (€)

~ Jean d’ Alembert (1717-1783), a French mathematician, was a contemporary of Euler and Daniel Bernoulli, and

is known primarily for his work in mechanics and differential equations. D’ Alembert’s principle in mechanics and
d’Alembert’s paradox in hydrodynamics are named for him, and the wave equation first appeared in his paper on
Vibrating strings in 1747. In his later years he devoted himself primarily to philosophy and to his duties as science
editor of Diderot’s Encyclopédie.



Therefore
v'(t) =c,
and

v(t) = eit +¢5,

where ¢, and ¢, are arbitrary constants. Finally, substituting for v() in Eq. (),

obtain

e ~2 -2
y=cite = +ce .

The second term on the right side of Eq. (11) corresponds to the original solut
v, () = exp(—2t), but the first term arises from a second solution, namely yz(”
t exp(—2t). These two solutions are obviously not proportional, but we can verify i

they are linearly independent by calculating their Wronskian:
—2¢ o
é ie

. (1—2t)e ™

=e ¥ -2V + UM =V #£0.

2t
W(yl, yz)(t) =

Therefore

!

i =e  ye)=te?

form a fundamental set of solutions of Eq. (5), and the general solution of that equa
is given by Eq. (11). Note thatboth y, (¢) and y, (¢) tend to zeroas t — 00; consequen
all solutions of Eq. (5) behave in this way. The graph of a typical solution is show

Figure 3.5.1.

FIGURE 3.5.1 A typical solution of y" + 4y + 4y = 0.

The procedure used in Example 1 can be extended to a general equation
characteristic equation has repeated roots. That is, we assume that the coefficient

Eq. (1) satisfy b* — 4ac = 0, in which case

Y () = efbr/Za

is a solution. Then we assume that

y = v(t)y, (1) = v(t)e "%

~ and substitute in Eq. (1) to determine v(7). We have

b
y = (t)e % — —y(r)e P/ (14)
’ 2a

b o B
yn = vn(r)e—brﬂcr _ _vt(t)e-br/-a B _Zv(l)efbrﬂa‘ (15)
a 4a

. I*:i"hen, by substituting in Eq. (1), we obtain

2 b
{a [u”(r) - gv’(t) + fazv(r):| +b [v'(t) - 5gum] + cv(t)} e =0. (16)

Canceling the factor exp(—bt/2a), which is nonzero, and rearranging the remaining

- terms, we find that

¥ b
av"(t) + (=b + b (1) + (f - —+ C) v(t) =0. (17)
4a 2a

The term involving v'(1)is obviously zero. Further, the coefficientof v(r) is ¢ — (b?/4a),

‘which is also zero because b* — 4ac = 0 in the problem that we are considering. Thus,
just as in Example 1, Eq. (17) reduces to
v'(t) =0;
therefore,
v(t) = ¢t +c,.

i_ﬁ'f_;‘nce, from Eq. (13), we have

L y = c e H*  c,em %, (18)
‘Thus y is a linear combination of the two solutions
L (@) =Py ) =1 (19)
The Wronskian of these two solutions is
1. g bt/2a e/
Wy, y(1) = _ie—b!ﬂa - bt - CRL (20)
2a 2a

iy
Since W(y,.y,)(t) is never zero, the solutions y, and y, given by Eq. (19) are a

fundamental set of solutions. Further, Eq. (18) is the general solution of Eq. (1) when
the roots of the characteristic equation are equal. In other words, in this case, there is

~ one exponential solution corresponding to the repeated root, while a second solution is
~ obtained by multiplying the exponential solution by .

: Find the solution of the initial value problem
b y' —y +025y=0, yO =2 y@©O=3 1)

The characteristic equation is
rP—r+025=0,
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. The geometrical behavior of solutions is similar in this case to that when the roots are
" real and different. If the exponents are either positive or negative, then the magnitude
~ of the solution grows or decays accordingly: the linear factor ¢ has little influence.
A decaying solution is shown in Figure 3.5.1 and growing solutions in Figure 3.5.2.
" However, if the repeated root is zero, then the differential equation is y” = 0 and the

general solution is a linear function of 7.

so the roots are r; = r, = 1/2. Thus the general solution of the differential equag,
“
y=c,e'? +cyte'’?
The first initial condition requires that
y(0) =c, =2

- Summary. We can now summarize the results that we have obtained for second order

To satisfy the second initial condition, we first differentiate Eq. (22) and then set -
linear homogeneous equations with constant coefficients,

This gives

oy — L

Y0) =3¢+ = 3. ay” + by’ +cy =0. (1)

s0 ¢, = —2/3. Thus, the solution of the initial value problem is ~ Letr, and r, be the roots of the corresponding characteristic polynomial
art+br+c=0. (2)

— /2 _ 24,t/2
y=2e Zre'/?, "
If r, and r, are real but not equal, then the general solution of the differential

The graph of this solution is shown in Figure 3.5.2.
ation (1) is

y =cen' + e (24)
If ry and r, are complex conjugates A % i, then the general solution is

I y = c,e" cos ut + c,e™ sin pt. (25)
CIf ry="ry then the general solution is

y=c eV &+ cyten’. (26)
tction of Order. 1t is worth noting that the procedure used earlier in this section

requations with constant coefficients is more generally applicable. Suppose we know
solution y, (1), not everywhere zero, of

V' + p(t)y +qt)y =0. (27)

o find a second solution, let

y=v(t)y, @) (28)

F,IGURE 352 _Solutions of v —y +0.25y =0, y(0) =2, with y'(0) =1/3 and =R vl
¥'(0) = 2, respectively.
: Y = 0" (0, (1) + 20 () (0) + v @)y ().
tituting for y, ', and y” in Eq. (27) and collecting terms, we find that
yv" + @y + pyv + OF + pyy +qy)v =0 29
is a solution of Eq. (27), the coefficient of v in Eq. (29) is zero, so that Eq. (29)

Let us now modify the initial value problem (21) by changing the initial slope
be specific, let the second initial condition be y'(0) = 2. The solution of this mod
problem is

¥y 2 kel
y "+ @y 4 pypv' =0 (30)

pite its appearance, Eq. (30) is actually a first order equation for the function v and
1 be solved either as a first order linear equation or as a separable equation. Once
n found, then v is obtained by an integration. Finally, y is determined from

and its_ grapkli i.s alslo .sl.lowu in Figure 3.5.2. The graphs shown in this figure sugge st

there is a cnt{c‘al initial slope, with a value between % and 2, that separates solut

that grow dgosmvely from those that ultimately grow negatively. In Problem 16
l lm‘ - i’_.“,]-..l] f
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Eq. (28). This procedure is called the method of reduction of order because the ¢

step is the solution of a first order differential equation for v’ rather than the
second order equation for y. Although it is possible to write down a formula for ;

we will instead illustrate how this method works by an example.

!is a solution of

2u

Given that y, (f) =1~
+3ty' —y=0, t >0,

find a second linearly independent solution.
We set y = v(t)t '; then

= gf 2, Y ="l = et 4 2R,
Substituting for y, y’, and y” in Eq. (31) and collecting terms, we obtain
200" = 20 20 ) + 3t — vty — !
=200+ (=4 +3' + @ =37 — 1
=2n"—v' =0.

Note that the coefficient of v is zero, as it should be; this provides a useful check
our algebra.
Separating the variables in Eq. (32) and solving for v'(t), we find that

V() = ct'?;
then
v(t) = 2t + k.
It follows that
y=3ct"? + k™,

where ¢ and k are arbitrary constants. The second term on the right side of Eq. (33)
a multiple of y, () and can be dropped, but the first term provides a new independ
solution. Neglecting the arbitrary multiplicative constant, we have y, (1) = 1/

In each of Problems 1 through 10 find the general solution of the given differential equation

L ¥y =2y'+y=0 2. 9" +6y+y=0
3. 4y" —dy' —-3y=0 4. 4y" +12y +9y =0
5. ¥ =2y +10y=0 6. y' =6y +9y=0
7. 4y"+ 17y +4y =0 8. 16y"+24y' +9y =0
9. 25y" =20y +4y =0 10. 2y"+2y'+y=0

In each of Problems 11 through 14 solve the given initial value problem. Sketch the grs ph
the solution and describe its behavior for increasing 7.

11. 9y — 12y +4y=0, y(0)=2, y(©0) =—

12. y" =6y +9y =0, YOy=0, ' y0)=2

13. 9y" + 6y + 82y =0, y(0)=-1, ¥y (0) =2
14. y" 44y +4y =0, y=1)=2, y(=1)=1

20.

~ equation are r; = r, = —a, so that one solution of the equation is e
(b) Use Abel’s formula [Eq. (8) of Section 3.3] to show that the Wronskian of any two
- solutions of the given equation is

Consider the initial value problem
4y" + 12y +9y =0, yO =1, Y0 =-

(a) Solve the initial value problem and plot its solution for 0 < ¢ < 5.

(b) Determine where the solution has the value zero.

(c) Determine the coordinates (¢, ,) of the minimum point.

(d) Change the second initial condition to y'(0) = b and find the solution as a function
of b. Then find the critical value of b that separates solutions that always remain positive
from those that eventually become negative.

Consider the following modification of the initial value problem in Example 2:

y' =y +025y =0, y(0) =2, () =b.

Find the solution as a function of b and then determine the critical value of b that separates
solutions that grow positively from those that eventually grow negatively.
Consider the initial value problem

4" +4y' +y=0. yO =1, YO =2

(a) Solve the initial value problem and plot the solution.

(b) Determine the coordinates (t,,y,) of the maximum point.

(¢) Change the second initial conditionto y'(0) = b > O and ﬁnd the solution as a function
of b.

(d) Find the coordinates (r,,,y,,) of the maximum point in terms of b. Describe the
dependence of t,, and y,, on b as b increases.

. Consider the initial value problem

9y" +12y' 44y =0, y(0)=a>0, YO0 =-

(a) Solve the initial value problem.

(b) Find the critical value of a that separates solutions that become negative from those
that are always positive.

If the roots of the characteristic equation are real, show that a solution of ay” + by’ + ¢y =
0 can take on the value zero at most once.

Problems 20 through 22 indicate other ways of finding the second solution when the characteristic
‘equation has repeated roots.

(a) Consider the equation y” + 2ay’ + a’y = 0. Show that the roots of the characteristic

—at

W (1) = y,(0)y5() — y1(0)y,(t) = c e >,

where ¢, is a constant.

(c) Let y,(r) = e~ and use the result of part (b) to show that a second solution is

¥alf) =re™".

. Suppose that r, and r, are roots of ar 24br+c=0 and that 7, # r,; then exp(r,7)

and exp(r,t) are solutions of the differential equation ay” + by’ +cy = (). Show that
¢(t; ' rz) = [exp(r,t) —exp(r,t)]/(r, — r))isalsoa solution of the equation for r, # r,.
Then think of r, as fixed and use L’Hospita]‘s rule to evaluate the limit of ¢(z; |, r,) as
r, — r,, thereby obtaining the second solution in the case of equal roots.

(a) Ifar®+br+c=0has equal roots r, show that

L[err] = a(err)u +b(erl)f +ce” = a(r _r])lert‘ (1)
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Since the right side of Eq. (i) is zero when r = ry, it follows that exp(r, 1) is a solutjgp.
Liyl=ay" +by +cy=0. i
(b) Differentiate Eq. (i) with respect to r and interchange differentiation with respect..'
and with respect to 1, thus showing that ' d

x—1y' —xy+y=0 x>1 yx)=¢

.. 22y +xy' + (x> =025y=0 x>0 ¥, (x) =x"2

sinx

0 L =L ] _ 11te = ate™ 2 4 26" - Behavior O_fSOlllt'iO.l'lS ast — oo. Problems 38 through 40 are concerned with the behavior
ar € 1= rreRel b [te"] = ate" (r —r )" +2ae"(r —r).  of solutions in the limit as r — 00.
Since the right side of Eq. (ii) is zero when r = r;, conclude that 7 exp(r, ) is also a solug ~ 38, Ifa,b,and c are positive constants, show that all solutions of ay” + by’ + ¢y = 0 approach
of Liy] =4 ] zero as t — 00,

). (a) Ifa > 0andc >0, buth=0,show that the result of Problem 38 is no longer true,
but that all solutions are bounded as 1 — 0.
(b) Ifa>0andb >0, butc= 0. show that the result of Problem 38 is no longer true,
but that all solutions approach a constant that depends on the initial conditions as f — 0.
Determine this constant for the initial conditions y(0) = ¥ ¥ (0) = o
. Show that y = sin¢ is a solution of

In each of Problems 23 through 30 use the method of reduction of order to find a second so]
of the given differential equation. 1
23, 2y —4ty' +6y=0, t>0; y, () = £
24, 2y +2y -2y=0, t>0 vt =t
25. 12y 43ty +y=0, t>0; y@®) =t
26. 2y —t@+2y +@+2)y=0, >0 y@)=t
27. xy" —y +4x%y =0, x>0; yﬂx):sinx2

28. x—1y"'—xy+y=0, x>1; yx)=¢€"

29. x*y" —(x—0.1875)y =0, x>0; ¥ (x) = x'/2e™*

I

y' + (k sin® 1)y’ + (1 — kcostsint)y =0

for any value of the constant k. If 0 < k < 2.showthat1 — kcoszsint > Oandk sin®t = 0.
Thus observe that even though the coefficients of this variable coefficient differential equa-

2.1 ' 2 _ o . — —1/2 s o . .
A Xy -‘i-xy + (x Q.ZS)y =0, a=0 Filx) =% BLR.¥ tion are nonnegative (and the coefficient of y' is zero only at the points = 0,78, 200 ),
31. The differential equation it has a solution that does not approach zero as t — co. Compare this situation with the
" / * result of Problem 38. Thus we observe a not unusual situation in the theory of differential
xy" —(x+ N)y +Ny=0, . . . v L ;
equations: equations that are apparently very similar can have quite different properties.

where N is a nonnegative integer, has been discussed by several authors.® One reasoni -'”" '

interesting is that it has an exponential solution and a polynomial solution. ~ Euler Equations. Use the substitution introduced in Problem 38 in Section 3.4 to solve each
(a) Verify that one solution is y, (x) = e, of the equations in Problems 41 and 42.

(b) Show that a second solution has the form y,(x) = ce* [ xNe ™ dx. Calculate ¥,
for N = 1 and N = 2; convince yourself that, with ¢ = —1/N, : 2y =3ty +4y =0, t>0

" ~ 12y" + 2ty’ +0.25y =0, t >0

_1 x  x*
¥ (x) = +ﬁ+a+---+m. I
Note that y,(x) is exactly the first N 4 1 terms in the Taylor series about x = 0 for &%,
is, for y, (x). )
32. The differential equation

y' +8(xy +y)=0

arises in the study of the turbulent flow of a uniform stream past a circular cylinder. Ve

that y, (x) = exp(—ﬁxz /2) is one solution and then find the general solution in the forn

an integral. A —
33. The method of Problem 20 can be extended to second order equations with vart ' We now return to the nonhomogeneous equation

coefficients. If y, is a known'nonvanishing solution of v+ p(t)y + gq(1)y = 0, show: gt

a second solution y, satisfies (y,/y,) = W(y,.y )/y}, where W (y,,y,) is the Wrons! SRR sl ' " 1

of y, and y,. Then ﬁse Abel’s f()znm].lla [Eq. (8; onSection 3.3]to de]tcrinine Yy A b Rrx pl)y +q(t)y 8(t), @

In each of Problems 34 through 37 use the method of Problem 33 to find a second indep end P g, and g are given (continuous) functions on the open interval /. The equation

solution of the given equation.
34. 2" +3ty +y=0, t>0; y, () =1t
35. by —y +4Cy =0, t=0 ¥, (1) = sin(*)

Liyl=y"+ p@)y +qt)y =0, 2

1 B O

~in which g(r) = 0 and p and ¢ are the same as in Eq. (1), is called the homogeneous
- equatior corresponding to Eq. (1). The following two results describe the structure of
~ solutions of the nonhomogeneous equation (1) and provide a basis for constructing its
ral solution.

6T, A. Newton, “On Using a Differential Equation to Generate Polynomials,” American Mathemarical for
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