
MAT 257Y Solutions to Practice Final 2

1. Let A ⊂ Rn be a rectangle. Let f : A→ R be integrable.
Let

f+(x) =

{
f(x) if f(x) ≥ 0

0 if f(x) < 0

Prove that f+ is also integrable on A.

Solution

Since f is integrable there exists a set of measure zero
S ⊂ A such that f continuous at every x ∈ A\S. Also
f is bounded on A, that is |f(x)| ≤ M for all x ∈ A for
some M > 0.

We have f+(x) = 1
2(f(x) + |f(x)|) is also continuous

on x ∈ A\S since g(y) = |y| is continuous everywhere.
Clearly |f+(x)| ≤M for any x ∈ A. Therefore, by the

criterion of integrability, f+ is integrable on A.
2. Mark True or False. If true, give a proof. If false,

give a counterexample.
(a) Let S ⊂ Rn. If bd(S) is rectifiable then S is rectifi-

able.
(b) Let A,B ⊂ Rn. Then bd(A ∩B) = bd(A) ∩ bd(B);
(c) Let A ⊂ Rn. Then int(intA) = int(A)
(d) Let f : Rn → Rn be continuous. If A ⊂ Rn is open

then f(A) is open.

Solution

(a) False. For example, take S = [0,∞) ⊂ R. Then
bd(S) = {0} is rectifiable but S is not as it’s not
bounded.

(b) False. For example, take A = Q and B = R\Q.
Then bd(A) = bd(B) = R so that bd(A)∩bd(B) = R.
But A ∩B = ∅ and hence bd(A ∩B) = ∅.

(c) True. int(A) is open and int(U) = U for any open
set U .
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(d) False. Let f(x) ≡ 0 and A = Rn. Then A is open
but f(A) = {0} is not.

3. Let f : R2 → R be defined by

f(x, y) =

{
0 if (x, y) = (0, 0)
2x3+xy2

x2+y2 if (x, y) 6= (0, 0)

(a) Show that the partial derivativesD1f(0, 0), D2f(0, 0)
exist and compute them.

(b) Is f differentiable at (0, 0)? If yes, find df(0,0). If no,
explain why not.
Hint: use part a).

Solution

(a) We compute f(x, 0) = 2x3

x2 = 2x. Note that this
formula remains true for x = 0 as f(0, 0) = 0 and 2 ·
0 = 0. Therefore, D1f(0, 0) = 2. Similarly, f(0, y) =
0 so that D2f(0, 0) = 0.

(b) We claim that f is not differentiable at (0, 0)?If it
were differentiable then the differential would be given
by B(x, y) = 2x by part a). However, we compute

for v = (1, 1) that DvF (0, 0) = limt→0
2t3+t3

2t3 = 3
2 6=

B(1, 1) = 2.
Therefore f is not differentiable at (0, 0).

4. Let F (x, y) =
∫ y
x

√
etx + 3ydt. Let c = F (0, 1).

Show that near (0, 1) the level set F (x, y) = c can be
written as y = g(x) for some differentiable function g
and compute g′(0).

Solution

First we evaluate ∂F (x,y)
∂x = −

√
ex2 + 3y+

∫ y
x

tetx

2
√
etx+3y

dt

and ∂F (x,y)
∂y =

√
exy + 3y +

∫ y
x

3

2
√
etx+3y

dt. Plugging in

x = 0, y = 1 we get ∂F (1,0)
∂x = −

√
e02 + 3 +

∫ 1

0
te0

2
√
e0+3

dt =

−2 +
∫ 1

0
t
4dt = −2 + 1

8 = −7
8 and ∂F (1,0)

∂y =
√
e0 + 3 +



3∫ 1

0
3

2
√
e0+3

dt = 2 +
∫ 1

0
3
4dt = 2 + 3

4 = 11
4 . Since ∂F (1,0)

∂y 6= 0,

by the Implicit Function theorem we conclude that near
(0, 1) the level set F (x, y) = c can be written as a graph
of a differentiable function y = g(x) and

g′(0) = −
∂F (1,0)
∂x

∂F (1,0)
∂y

= −
−7

8
11
4

=
7

22

5. Let η be an alternating k-tensor on a vector space V .
Let v1, . . . vk ∈ V be linearly dependent.

Show that η(v1, . . . , vk) = 0.

Solution

WLOG we can assume that v1 is a linear combina-
tion of v2, . . . , vk, that is v1 =

∑k
i=2 λivi. Therefore

η(v1, . . . , vk) = η(
∑k

i=2 λivi, v2, . . . , vk) =
∑k

i=2 λiη(vi, . . . , vi, . . . , vk) =
0 since η is alternating.

6. Let M 3 = {(x, y, z) ∈ R3| such that 1 ≤ x2+y2+z2 ≤ 4}
with the orientation induced from R3.

Let p = ( 1√
3
, 1√

3
, 1√

3
). Find a positive basis of Tp∂M

with respect to the orientation of ∂M induced from M .

Solution

It’s easy to see that that outward unit normal toM at p
is n = −( 1√

3
, 1√

3
, 1√

3
) and the tangent space TpM is given

by x + y + z = 0. Let u1 = (1,−1, 0), u2 = (1, 0,−1).
This is obviously a basis of TpM . To determine if this
basis if positive we compute the sign of the

det(n, u1, u2) = det

− 1√
3
− 1√

3
− 1√

3

1 −1 0
1 0 −1

 =

= − 1√
3

det

1 1 1
1 −1 0
1 0 −1

 = −
√

3 < 0
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Thus, this basis is negative. Therefore the basis −u1 =
(−1, 1, 0), u2 = (1, 0,−1) is positive.

7. Let (X, d) be a metric space.
(a) Let p ∈ X be any point. Prove that {p} is a closed

subset of X.
(b) Let C ⊂ X be compact. Prove that C is closed.

You are not allowed to use any theorems about
compact sets in the proof.

Solution

(a) It’s enough to show that X\{p} is open. Let q ∈
X\{p} Then p 6= q. Let ε = d(p,q)

2 . Then p /∈ Bε(q),
i.e. Bε(q) ⊂ X\{p}.

(b) It’s enough to show that X\C is open. Let p ∈ X\C.
Let Un = {x ∈ X| such that d(x, p) > 1

n}. Then Un
is open and ∪∞n=1Un = X\{p} ⊃ C. Therefore we
can choose a finite cover of C out of this open cover.
as the sets Un are nested this means that C ⊂ Um
for some m which means that B(p, 1

m) ⊂ X\C.
8. Let U = {(x, y) ∈ R2|x2 + y2 > 1}. Let f(x, y) = y

x2+y2 .

Determine if
∫ ext
U f exists and if it does compute it.

Solution

Let Un = {1 < x2 + y2, n2}. Then Un form an open

exhaustion of U so that
∫ ext
U f exists iff limn→∞

∫ ext
Un
|f |

exists. Let Vn = Un\[0∞)×{0}. Then f is integrable on

Un and we have
∫ ext
Un
|f | =

∫ ∫ ext
Vn
|f |. By making polar

coordinates change of variables we get∫ ∫ ext

Vn

|f | =
∫ n

0

(

∫ 2π

0

|r sin θ|
r2

rdθ)dr = 2

∫ n

0

∫ π

0

sin θdθdr = 4n

Therefore, limn→∞
∫ ext
Un
|f | does not exists and hence∫ ext

U f does not exist.
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9. Let f : R2 → R2 be given by f(s, t) = (st, s+ 2t) and
let ω = sinxdy. Compute f ∗(dω) and d(f ∗ω) and verify
that they are equal.

Solution

We compute dω = cosxdx∧dy and f ∗(dω) = cos(st)d(st)∧
d(s+ 2t) = cos(st)(sdt+ tds)∧ (ds+ 2dt) = cos(st)(2t−
s)ds ∧ dt.

Next, f ∗(ω) = sin(st)d(s+2t) = sin(st)ds+2 sin(st)dt
and df ∗(ω) = d sin(st)∧ds+2d sin(st)∧dt = (cos(st)sdt+
cos(st)tds∧ds+2(cos(st)sdt+cos(st)tds∧dt) = − cos(st)sds∧
dt+ 2t cos(st)ds ∧ dt = cos(st)(2t− s)ds ∧ dt

10. Let a, b > 0 and Let M ⊂ R2 be the ellipse {x2a2 + y2

b2 = 1}
with the orientation induced by the standard orientation

on {x2a2 + y2

b2 ≤ 1}.
Find

∫
M(cosx)ydx+ (x+ sin(x))dy.

Solution

Let ω = (cosx)ydx+ (x+ sin(x))dy.

Note that M = ∂N where N = {x2a2 + y2

b2 ≤ 1} taken
with the standard orientation coming from R2. By Stokes’s
Theorem this gives

∫
M ω =

∫
N dω. We compute dω =

(cosx)dy ∧ dx + (1 + cosx)dx ∧ dy = dx ∧ dy. Thus∫
N dω =

∫
N 1. Using the change of avriables x = au, y =

bv we get
∫
N 1 =

∫
{u2+v2≤1} ab = πab.


