- (1) Let S be a rectifiable subset of the xz plane in R^3 such that $Cl(S) \subset \{x>0\}$. Let V be a solid obtained by rotating S around z axis. Prove that V is rectifiable and $vol(V) = 2\pi \int_S x$.

 Hint: Use cylindrical coordinates.
- (2) Let n > 1. Give an example of an $n \times n$ matrix A which preserves volume but is not orthogonal.
- (3) Finish the prove of the theorem from class and show that if A is an $n \times n$ matrix with det A = 0 and $S \subset \mathbb{R}^n$ is rectifiable then A(S) has volume 0.
- (4) Let $v_1, v_2, \ldots v_k \in \mathbb{R}^n$. Let $v_k' = v_k + \sum_{i=1}^{k-1} \lambda_i v_i$ for some $\lambda_i \in \mathbb{R}$. Prove that $\operatorname{vol}_k(P(v_1, \ldots, v_{k-1}, v_k)) = \operatorname{vol}_k(P(v_1, \ldots, v_{k-1}, v_k'))$.

Extra Credit Problem (to be written up and submitted separately)

Give an example of a C^1 diffeomorphism $f \colon U \to V$ between open sets in \mathbb{R}^n such that U and V are bounded, ||df|| is bounded and U is rectifiable but V is not.

Is it possible to also have $||df^{-1}||$ bounded?