
Solutions to Practice Final Exam 1

1. (12 pts) Give the following definitions

(a) an open set in Rn.

(b) a differentiable function f : Rn → R at a point p.

(c) an integrable function f on a rectangle A ⊂ Rn.

(d) an alternating k-tensor on a vector space V .

(e) a k-dimensional manifold in Rn.

Solution

(a) A set U ⊂ Rn is open if for every point p ∈ U there exists ε > 0 such that B(p, ε) ⊂ U .

(b) A function f : Rn → R is differentiable at p ∈ Rn if there exists a linear map
L : Rn → R such that

lim
h→0

f(p+ h)− f(p)− L(h)

|h|
= 0

(c) A function f : A→ R is called integrable if f is bounded and

lim sup
P partition of A

L(f, P ) = lim inf
P partition of A

U(f, P )

(d) a k-tensor T on a vector space V is called alternating if for any vectors v1, . . . , vk ∈ V
and any 1 ≤ i ≤ j ≤ k we have

T (v1, . . . , vi, . . . , vj, . . . , vk) = −T (v1, . . . , vj, . . . , vi, . . . , vk)

(e) A set M ⊂ Rn is a k-dimensional Cr-manifold without a boundary if for every point
p ∈M there exists a set U ⊂M which is open in M , an open subset V ⊂ Rk and a
Cr map f : V → Rn such that

i. f(V ) = U and f : V → U is 1-1 and onto;

ii. rank[dfx] = k for any x ∈ V ;

iii. f−1 : U → V is continuous.

2. (10 pts) Let A be a rectangle in Rn. Suppose f, g : A→ R are integrable on A.

Prove that f + g is also integrable on A.

Solution
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First observe that if Q is any rectangle then mf+gQ ≥ mfQ + mgQ. Indeed, for any
x ∈ Q we have f(x)+g(x) ≥ f(x)+mfQ ≥ mfQ+mgQ. Since this is true for any x ∈ Q
this implies that mf+gQ ≥ mfQ + mgQ. Therefore, for any partition P of A we have
L(f + g, P ) =

∑
Q∈P mf+gQvolQ ≥

∑
Q∈P (mfQ+mgQ)QvolQ = L(f, P ) + L(g, P ).

Next, note that for any partitions P1, P2 of A and any common refinement P of P1, P2 we
have L(f, P ) ≥ L(f, P1) and L(g, P ) ≥ L(g, P2). Therefore

∫
A
f +

∫
A
g = supP1

L(f, P1)+

supP2
L(f, P2) ≤ supP L(f, P ) + L(g, P ) ≤ supP L(f + g, P ) =

∫
A
f + g.

Similarly,
∫

A
f +

∫
A
g ≥

∫
A
f + g. Together with the above this gives

∫
A

f +

∫
A

g ≤
∫

A

f + g ≤
∫

A

f + g ≤
∫

A

f +

∫
A

g

Since,
∫
A
f =

∫
A
f and

∫
A
g =

∫
A
g. This implies that

∫
A

f + g =

∫
A

f + g =

∫
A

f +

∫
A

g

3. (10 pts) Let A be a subset of Rn. Prove that A ∪ br(A) is closed.

Solution

Let U = Rn\(A ∪ br(A)). We claim that U is open. Indeed, by definition if p ∈ U then
there exists ε > 0 such that B(p, ε)∩A = ∅. Then we also have that B(p, ε)∩ br(A) = ∅,
i.e. B(p, ε ⊂ U . Indeed, if not then there exists q ∈ B(p, ε) ∩ br(A). Pick δ > 0 such
that δ + d(q, p) < ε. Then B(q, δ) ∩ A 6= ∅ since q ∈ br(A). But B(q, δ) ⊂ B(p, ε) by
the triangle inequality. This means that B(p, ε) ∩ A 6= ∅ also. This is a contradiction.
Therefore, B(p, ε) ⊂ U . Since p ∈ U was arbitrary this implies that U is open. Hence,
A ∪ br(A) is closed.

4. (8 pts) Let C ⊂ Rn be compact. Let f : C → R be continuous.

Prove that f(C) is bounded. You are not allowed to use any theorems about
compact sets in the proof.

Solution

Let Un = {−n < f(x) < n}. Then Un is open in C for any n. Obviously, ∪nUn = C and
hence it’s an open cover of C. By compactness we can choose a finite subcover. Since
Un ⊂ Um for m < n this implies that C = Un for some n.

5. (10 pts) Let f : R2 → R be given by f(x, y) = |xy|.
Show that f is differentiable at (0, 0) and compute df(0, 0).
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Solution

We claim that df(0, 0) = 0. To verify that we check the definition

lim
h→0

f(p+ h)− f(p)− L(h)

|h|
= 0

where h = (h1, h2) ∈ R2. The above limit reduces to

lim
h→0

|h1h2|√
h21 + h22

= lim
h→0
|h1| ·

|h2|√
h21 + h22

= 0

since limh→0 |h1| = 0 and |h2|√
h2
1+h2

2

≤ 1 for any h 6= 0.

6. (8 pts) Let V be an n-dimensional vector space and 〈·, ·〉 be an inner product on V . Let
e1, . . . , en be an orthonormal basis of V . Recall that we use the following notation. For
I = (i1, . . . ik) where 1 ≤ ij ≤ n denote e∗I = e∗i1 ⊗ . . .⊗ e

∗
ik

.

Prove that {e∗I}I=(ii,...,ik) are linearly independent.

Solution

Suppose
∑

I λie
∗
I = 0. Let’s fix J = (j1, . . . jk) and compute 0 = e∗I(ej1 , . . . , ejk) =∑

I λie
∗
I(ej1 , . . . , ejk) =

∑
I λiδIJ = λJ . This means that λJ = 0 for any J and hence

{e∗I}I=(ii,...,ik) are linearly independent.

7. (10 pts) Let f = f 1(x, y), f 2(x, y)) : R2 → R2 be a C1 map satisfying

f(x, 0) = (cos x, x), f(0, y) = (1 + y, sin y)

Prove that for some open set U containing (0, 0) the set V = f(U) is open and f : U → V
is a diffeomorphism and compute d(f−1)(1, 0).

Solution

We compute D1f(0, 0) = (− sin 0, 1) = (0, 1) and D2f(0, 0) = (1, cos 0) = (1, 1). There-
fore the matrix of partial derivatives [df(0, 0)] is

A =

(
0 1
1 1

)
Note that f(0, 0) = (cos 0, 0) = (1, 0). Observe that detA = −1 6= 0 and hence A is
invertible. We compute

A−1 =

(
−1 1
1 0

)
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By Inverse Function Theorem there is an open set U containing (0, 0) such that the set
V = f(U) is open and f : U → V is a diffeomorphism and

[d(f−1)(1, 0)] = A−1 =

(
−1 1
1 0

)
8. (10 pts) Let U = {(x, y) ∈ R2| such that x > 1, 1 < y < 2}. Let f : U → R be given by
f(x, y) = 1

xy
.

Does
∫ ext

U
f exist? If yes, compute it, if not, explain why not. Give a careful justification

of your answer.

Solution

Let Un = (1, n)× (1, 2). Then Un is an open exhaustion of U . Observe that f > 0 on U .
Therefore

∫ ext

U
f exists iff limn→∞

∫
Uext
n
f exists. Note that f is continuous and bound and

hence integrable on every Un. Therefore
∫
Uext
n
f exists and is equal to

∫
Un
f . Using Fubini

we compute
∫
Un
f =

∫ n

1
(
∫ 2

1
1
xy
dy)dx =

∫ n

1
ln 2
x
dx = ln 2 · lnn → ∞ as n → ∞. Therefore∫ ext

U
f does not exist.

9. (12 pts) Let ω = xdy∧dz+ydz∧dx+zdx∧dy
(x2+y2+z2)3/2

be a 2-form on U = R3\(0, 0, 0).

One can check that dω = 0. You DO NOT have to verify that.

(a) Let S2 = {(x, y, z) ∈ R3| such that x2 + y2 + z2 = 1} with the orientation induced
from B3 = {(x, y, z) ∈ R3| such that x2 + y2 + z2 ≤ 1}.
Show that ω|S2 = dV

(b) Show that ω is not exact on U .

Hint: Assume that ω = dη and use Stokes’ formula.

Solution

(a) Note that ω|S2 = xdy ∧ dz + ydz ∧ dx+ zdx|S2 and the unit outward normal filed n
on S2 is given by N(x, y, z) = (x, y, z). Let p = (x, y, z) ∈ S2. Recall that for any
u, v ∈ TpS

2 we have dV (u, v) = 〈u × v,N(p)〉 = detA where Ais the matrix with
rows u, v,N(p).

On the other hand we easily see that xdy ∧ dz + ydz ∧ dx + zdx(u, v) = 〈u ×
v, (x, y, z)〉 = detA also.

(b) Suppose ω is exact on U . Then ω = dη for some 1-form η. Using Stokes formula we
get

∫
S2 dη = 0 since ∂S2 = ∅. But dη = ω. Hence, using a) we get

∫
S2 dη =

∫
S2 ω =∫

S2 dV = area(S2) = 4π 6= 0. This is a contradiction and hence ω is not exact on U .
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10. (10 pts) Let U be the parallelogram with vertices (0, 0), (2, 1), (1, 3) and (3, 4).

Compute
∫
U
x+ 2y.

Solution

Consider following change of variables

(
x
y

)
=

(
2 1
1 3

)(
u
v

)
or x = 2u + v, y = u + 3v.

Then detA = 5 and by the change of variables forumla
∫
U
x + 2y =

∫
(0,1)2

5[(2u + v) +

2(u+ 3v)] = 5
∫
(0,1)2

4u+ 5
∫
(0,1)2

7v = 5
∫ 1

0
(
∫ 1

0
4udu)dv+ 5

∫ 1

0
(
∫ 1

0
7vdv)du = 5(2 + 7

2
) = 55

2
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