- (1) Let V be a finite dimensional vector space over \mathbb{C} with an inner product $\langle \cdot, \cdot \rangle$. Let $\langle \cdot, \cdot \rangle_2$ be a different inner product on V.
 - (a) Given $v \in V$ show that there is a unique $v' \in V$ such that $\langle v, u \rangle_2 = \langle v', u \rangle$ for any $u \in V$.
 - Define $T: V \to V$ by the formula T(v) = v'
 - (b) Show that T is linear.
 - (c) Show that T is self-adjoint with respect to $\langle \cdot, \cdot \rangle$.
 - (d) Show that all eigenvalues of T are positive real numbers.
- (2) Let V be a finite dimensional vector space and let $P_1, P_2: V \to V$ be projections (not necessarily orthogonal) such that $P_1P_2 = P_2P_1$. Prove that $P = P_1P_2$ is again a projection.