Math 247SSolutions to Practice Term TestWinter 2012

(1) Let V be a complex vector space with two inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$.

Suppose $\langle v, v \rangle_1 = \langle v, v \rangle_2$ for any $v \in V$. Prove that $\langle u, v \rangle_1 = \langle u, v \rangle_2$ for any $u, v \in V$.

Solution

First observe that for any inner product $\langle v, v \rangle$ we have $\langle u + v, u + v \rangle = \langle u, u \rangle + \langle v, v \rangle + \langle u, v \rangle + \langle v, u \rangle = \langle u, u \rangle + \langle v, v \rangle + \langle u, v \rangle + \langle u, v \rangle + \langle u, v \rangle = \langle u, u \rangle + \langle v, v \rangle + 2 \text{Re} \langle u, v \rangle.$

Therefore $\operatorname{Re}\langle u, v \rangle_1 = \operatorname{Re}\langle u, v \rangle_2$ for any $u, v \in V$. Applying this to iu, v we get $\operatorname{Re}\langle iu, v \rangle_1 = \operatorname{Re}\langle iu, v \rangle_2$ for any $u, v \in V$. However, $\operatorname{Re}\langle iu, v \rangle_j = \operatorname{Re}(i\langle u, v \rangle_j) = -\operatorname{Im}\langle u, v \rangle_j$ for j = 1, 2 and hence $\operatorname{Im}\langle u, v \rangle_1 = \operatorname{Im}\langle u, v \rangle_2$ for any $u, v \in V$. Combining the above we get $\langle u, v \rangle_1 = \operatorname{Re}\langle u, v \rangle_1 + i\operatorname{Im}\langle u, v \rangle_1 = \operatorname{Re}\langle u, v \rangle_2 + i\operatorname{Im}\langle u, v \rangle_2 = \langle u, v \rangle_2$ for any $u, v \in V$.

(2) For which real values of a, b, c is the matrix the matrix

$$A = \begin{pmatrix} a & b & -c \\ -b & a & 0 \\ ac & 0 & 1 \end{pmatrix}$$

invertible? Find the formula for A^{-1} for those values of (a, b, c) for which A^{-1} exists.

Solution

First we compute $\det A$ by expanding along the last row:

$$\det A = ac(0+ac) - 0 + 1 \cdot (a^2 + b^2) = a^2c^2 + a^2 + b^2$$

We see that det $A \ge 0$ and it's equal to zero iff a = b = 0 and c is arbitrary. Thus A is invertible iff $(a, b) \ne (0, 0)$.

When $(a, b) \neq (0, 0)$ we compute A^{-1} by the general formula for the inverse matrix

$$A^{-1} = \frac{1}{a^2c^2 + a^2 + b^2} \begin{pmatrix} a & -b & ac \\ b & a + ac^2 & bc \\ -a^2c & abc & a^2 + b^2 \end{pmatrix}$$

(3) Let $V = \mathbb{R}^{\infty}$ i.e., V is the space of infinite sequences of real numbers $a = (a_1, a_2, ...)$ where all but finitely many a_i are zero for every $a \in V$.

Let $f: V \to \mathbb{R}$ be given by $f(a) = \sum_{i=1}^{\infty} a_i$.

Is it true that there exists $v \in V$ such that $f(a) = \langle a, v \rangle$ for all $a \in V$? if yes, find v. If not, explain why not.

Solution

Suppose such $v = (v_1, v_2, ...)$ exists. Let $e_i = (0, 0, ..., 1, 0...)$ be the *i*-th coordinate vector. Then $1 = f(e_i) = \langle e_i, v \rangle = v_i$. this $v_i = 1$ for every *i*. However, by definition of \mathbb{R}^{∞} we must have that $v_i = 0$ for all sufficiently large *i*. This is a contradiction and therefore no such v exists.

- (4) Mark true or false. If true, give an argument why, if false, give a counterexample.
 - a) Let V be a finite dimensional complex vector space with inner product and let $f: V \to \mathbb{C}$ be a linear map. Then there exists $v \in V$ such that $f(u) = \langle v, u \rangle$ for every $u \in V$.

False. As defined the function $g(u) = \langle v, u \rangle$ is complex anti-linear rather than complex linear since $g(\lambda u) = \langle v, \lambda u \rangle = \overline{\lambda} \langle v, u \rangle = \overline{\lambda} g(u).$

b) Similar matrices have equal determinants. **True.** If $A = T^{-1}BT$ then det $A = \det(T^{-1}) \cdot \det B \cdot \det T = (\det T)^{-1} \cdot \det B \cdot \det T = \det B$

3

c) Every orthonormal set of vectors is linearly independent.

True. Let v_1, \ldots be orthonormal. Suppose $\sum_{i=1}^n \lambda_i v_i = 0$. Fix some $j \leq n$ then we have

$$0 = \langle \sum_{i=1}^{n} \lambda_i v_i, v_j \rangle = \sum_{i=1}^{n} \lambda_i \langle v_i, v_j \rangle = \sum_{i=1}^{n} \lambda_i \delta_{ij} = \lambda_j$$

Since $j \leq n$ was arbitrary we conclude that v_1, \ldots are linearly independent.

d) Let V be a finite-dimensional vector space with inner product. Then for any $S \subset V$ we have $(S^{\perp})^{\perp} = S$.

False. Let $V = \mathbb{R}$ with the standard inner product and S = [0, 1]. Then $S^{\perp} = 0$ and $(S^{\perp})^{\perp} = \mathbb{R} \neq S$.

- (5) Let $W = \{(x, y, z) \in \mathbb{R}^3 \text{ such that } x + 2y z = 0\}.$
 - a) Find an orthogonal basis of W;
 - b) Find the orthogonal projection of (1, 1, 2) to W.

Solution

a) First we find that $v_1 = (1, 0, 1), v_2 = (0, 1, 2)$ is a basis of W. Next we apply Gramm-Schmidt orthogonalization to it.

 $w_1 = v_1, w_2 = v_2 - \frac{\langle v_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 = v_2 - \frac{2}{2} v_1 = v_2 - v_1 = (-1, 1, 1).$ Thus $w_1 = (1, 0, 1), w_2 = (-1, 1, 1)$ is an orthogonal basis of W.

- b) Let v = (1, 1, 2). Let $P: V \to W$ be the orthogonal projection map. Then $P(v) = \frac{\langle v, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 + \frac{\langle v, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 = \frac{3}{2} w_1 + \frac{2}{3} w_2 = \frac{3}{2} (1, 0, 1) + \frac{2}{3} (-1, 1, 1) = (\frac{5}{6}, \frac{2}{3}, \frac{11}{6})$
- (6) Let $v_1, \ldots v_n$ be vectors in \mathbb{R}^n . Let G be an $n \times n$ matrix with $G_{ij} = \langle v_i, v_j \rangle$. Let P be the parallelepiped spanned by $v_1, \ldots v_n$.

Prove that $vol(P) = \sqrt{\det G}$.

Hint: Look at the matrix A with rows $v_1, \ldots v_n$. Solution

Let A be the matrix with rows $v_1, \ldots v_n$. Then we have that $AA^t = G$. Therefore, det $G = \det A \cdot \det A^t = (\det A)^2 = (\operatorname{vol}(P))^2$ since $|\det A| = \operatorname{vol}(P)$.