Solutions to Practice Final

(1) Recall that for a group G its center Z(G) is defined to be the set of all elements
h € G such that hg = gh for any g € G.

(a) Prove that Z(G) is a normal subgroup of G.

(b) Show that Z(S,) is trivial for any n > 2.

(c) Find the center of GL(n,R).

Solution

(a) Let g € G and h € Z(G) be any elements. Then ghg™' = hgg™' = h € Z(G)
and hence Z(G) < G is normal in G.

(b) First observe that for any o € S,, and any i # j we have go(ij)oo™! = (o (i)o(j)).
Suppose o € Z(G). Then by above (a(i)o(j)) = oo (ij) oo~! = (ij). Therefore
o(i)=1i,0(j) =joro(i)=7j,0(j) =i. Suppose o # e and n > 3. Then there is
1 < i < mnsuch that j = o(i) #i. Let 1 < k < n be different from both i and j
(this is where we need n > 3). Then oo (ik)oo™! = (c(i)o(k)) = (jo(k)) # (ik)
since j # i and j # k.

(c) We claim that Z(GL(n,R)) = {A\Id|X € R\{0}} .

Suppose A € Z(GL(n,R)). Let B € GL(n,R) be the diagonal matrix with
b;i = \; where \; # 0 for any i and \; # \; for any ¢ # j (for example we can take
Ai = 1). Then we must have AB = BA. We compute that (AB);; = a;;\; and
(BA)U = ai]’)\i. For any ) 75 j this anhes aij)\j = aij)\i, ai]’(>\i — )\J) = O, Q5 = 0.
Hence A is diagonal.
Suppose some of the diagonal entries of A are different. WLOG, say, a1 # ass.
Take B to be the permutation matrix such that B(e;) = ey, B(es) = e; and
B(e;) = e; for i > 2. Then C = BAB™! is a diagonal matrix with ¢;; = ag
and cg92 = aq;. Hence C' # A which means that A can not be in the centre of G.
Therefore all diagonal entries of A are equal i.e. A = X Id for some X\ # 0. It’s
obvious that any such matrix commutes with any n x n matrix and therefore
Z(GL(n,R)) = {AId|X € R\{0}} .

(2) Let V be the space of quadratic polynomials with real coefficients with the inner

product given by
1
= d
)= [ fatar

Find an orthogonal basis of V.
Solution
Let’s choose a basis of V. The most natural basis to take is v, = 1, vy = t,v3 = t2.

We orthogonolize it using Gramm-Schmidt. Set w; = vy = 1,wy = vy — %
We compute (wy,w) fo = 1 and (vo,wy) = fol tdt = §|(1) = 1. Therefore,

wgzvg—%wl—t—%

(v3,w1) w (v3,w2)

(wiwi) LT {wa, w2>
(t=5)° s = E and (v3, ws) = fo t2(t — 3 dt fo 3 —

Therefore w3 = V3 — w1 —wy = t* — %—(25—2)—152 t+ g

wy. We compute (v3, wy) = fl t2dt = 3,

Next we find ws = vz —

wg,wg fO t — zdt
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(3) Give the definitions of the following notions:
a) A normal linear map;
b) A self-adjoint matrix;
¢) An inner product on a vector space over C.
Solution

a) Let V be a vector space with an inner product. A linear map 7: V — V is called
normal if AA* = A*A.
b) An n x n matrix is called self-adjoint if A = A’.
¢) A inner product on a vector space V over C is a map (-,-): V x V — C which
satisfies the following properties
(1) (Mug 4+ Aug, vy = A (ug,v) + Ao (ug, v) for any uy, us,v € V, A\j, A € C.
(ii) (u,v) = (v,u) for any u.v € V.
(iii) (u,u) >0 for any u € V and (u,u) = 0 if and only if u = 0.
(4) Which of the following define an inner product?
a) (A, B) =tr(A+ B) on Msys(R);
b) (f.9) = J,* F(D)g()dt on C[0. 1]
c) {f,g9) = f01 F(@)g(t)w: (¢)dt + fol () g (t)wo(t)dt on C>[0, 1] (the space functions
on [0, 1] having derivatives of all orders) where wy (t) > 0,wy(t) > 0 are continuous
positive functions on [0, 1].

Solution

a) Not a scalar product because (—Id, —Id) = —2n < 0.
b) Not a scalar product. Take

Fa) = {Oif.r <1/2

1 1
T 21fZL‘>2

Then f is continuous and not identically zero on [0, 1] but (f, f) = 01/2 f2(t)dt = 0.

¢) A scalar product. It’s easy to check that all the properties of a scalar product are
satisfied.

(5) Mark true or false. If true, give an argument why, if false, give a counterexample.

Let V be a finite dimensional vector space.

a) If T: V — V satisfies |Tw| = |v| for any v € V then T' is normal.

b) The adjoint of a normal operator on a finite dimensional vector space is normal.

c) If T: V — V is a self-adjoint linear operator satisfying (T'z, z) > 0 for any x # 0
then (x,y)s = (T'z,y) is an inner product on V.

d) Every orthonormal set of vectors is linearly independent;

e) If T: V — V satisfies |A\| = 1 for any eigenvalue A of 7" then T is unitary.
Solution

a) True. If T satisfies |Tv| = |v| for any v € V then T is unitary and hence normal.
b) True. Since V is finite dimensional we have that (7*)* = T. Hence (T%)*T* =
TT* =T*T =T*(T*)* and therefore T is normal.
c) True. It’s easy to check that all the properties of a scalar product are satisfied.
d) True. Suppose vy, ...v; are orthonormal and Zle Av; =0. Fixany 1 <753 <k
then 0 = (31, Awi,v;) = S5 Mi{vy,v;) = A;. Thus \; = 0 for every .
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e) False. For example take A = (0 1

). Then all eigenvalues of A are equal to 1

but A is not unitary.
(6) Let T: V — V be a normal operator satisfying 7?2 = I. Show that there exists a
subspace W C V such that T'(z) = z for any x € W and T'(z) = —x for any x € W+,

Solution

Since T? = Id any eigenvalue \ of T satisfies A2 = 1. Therefore A = £1. Now the
result follows from the Spectral decomposition theorem with W (W) equal to the
+1 (respectively —1) eigenspace of T
(7) Let A be a real n x n matrix all of whose eigenvalues are real. Show that A is normal
if and only if it is symmetric.

Solution

If A is symmetric it is obviously normal. Now suppose A is normal and all its
eigenvalues are real. Then viewed as a complex matrix it’s unitarily equivalent to

a diagonal matrix, i.e. A = UDU* where U is unitary and D is diagonal with real
entries. Then A* = (UDU*)* = (U*)*D*U* = UDU* = A which means that A is
symmetric.

(8) Let A = ( 2

;) Write A as QDQ* where D is diagonal and () is unitary.

Solution

We first find the eigenvalues of A. We have Py()\) = (A—2)?—(—i%) = (A—2)?—12 =
(A —1)(A — 3). Hence the eigenvalues are \; = 1, Ay = 3.
Next we find the corresponding eigenvectors. For A\; = 1 we get that an eingen-

vector vy = (;) satisfies (A — Id)vy =0 or

(DE)-) woues ,

We can take v; = . Similarly, we solve (A — 3/d)vy = 0 and find vy = ( >

—1i
1 1
Then v; and vy are orthogonal and we can make them orthonormal by rescaling.

Set 0, = \% <_12> and Uy = \/Li (i) Then U with the columns oy, 0y (i.e. U =

7? ? ) is unitary and satisfies A = UDU* where D = ((1) g)
V2 V2
(9) Let H < G be a subgroup of index |G : H| = 2.

et
Prove that H is a normal subgroup of G.
Solution

Pick go € G\H. Since [G : H] = 2 we have that G consists of exactly two cosets
eH = H and goH. If ¢ € H and h € H then, obviously, ghg~' € H also since
H is a subgroup. If ¢ ¢ H then g = goho for some hy € H. Suppose for some
h € H we have ghg™' ¢ H. Then ghg™ = goh; for some hy € H. This gives
goh1 = ghg™" = (goho)h(goho)™" = gohohhg'gy*. Multiplying both sides by g;* on
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the left we get hy = (hohhy  )gy ", higo = hohhg', g0 = hi‘hohhy' € H. This is a
contradiction and hence ghg~! € H which means that H < G is normal in G.

(10) Let o € S, be a permutation. Define an nxn matrix P, by the formula (P,);; = 6i0(;)-
Prove that o — P, is a homomorphism and det P, = sign(o).

Solution

By construction we have that P,(e;) = e,(;) where ey, ...e, is the standard basis
of R™. Therefore P,.(e;) = €srs) = Prler)) = Po(Pr(e;)) for any i which means
that P,, = P,P, and hence o — P, is a homomorphism and ¢: S, — R\{0} given
by ¢(0) = det P, is also a homomorphism as a composition of two homomorphisms.
For any transposition o we have ¢(c) = det P, = —1 = sign(o). Thus ¢ and sign are
homomorphisms that agree all transpositions. Since transpositions generate S,, this
means that ¢(o) =sign(o) for any o € S,.

(11) Let G be a group. For any a,b € G the commutator of a and b is defined as [a, b] =
aba~'b~1. Further, denote by [G, G] the subgroup of G generated by the commutators
[a, b] where a,b € G are arbitrary.

Prove that [G,G] < G is a normal subgroup of G.

Solution

First observe that [a,b]™' = [b,a]. Therefore [G, G| is equal to the set of elements

of the form hy - hy-...-hy where every h; has the form h; = [a;, b;] for some a;,b; € G.

Next observe that gla,blg~! = [gag™, gbg™'] € |G, G| for any a,b,g € G. Therefore

for any g € G and h € [G, G| we can write h as hy - hy-...-hy with h; = [a;, b;]. Then
ghg™' = (ghig™ ") (ghag™) ... (ghxg™") € |G, G] by the observation above.

(12) Let T: V — V be a skew-adjoint linear operator. Prove that all the eigenvalues of

T are purely imaginary (i.e every eigenvalue A has the form A\ = ia where a is real).

Solution

Let Tv = Av where v # 0. By rescaling we can assume |v| = 1. =
Mo, v) = w,v) = (Tv,v) = (v,T*) = (v, (=T)v) = (v, = ) = =\v,v) = =\
Thus A = —\ and hence \ is purely imaginary.

(13) Let f: M;xn(C) — C be a function satisfying the following conditions
(a) f(Id) = 1
(b) f( —f(A) if A is obtained by interchanging two rows of A.
(c) f( f(A) if A" is obtained from A by adding a multiple of a row to another
row.
Is it true that f(A) = det A? If true give a proof, if false, give a counterexample.

A =
A =

Solution
This is false. For example, f(A) = (det A)? satisfies all these conditions.



