
Solutions to Practice Final

(1) Recall that for a group G its center Z(G) is defined to be the set of all elements
h ∈ G such that hg = gh for any g ∈ G.
(a) Prove that Z(G) is a normal subgroup of G.
(b) Show that Z(Sn) is trivial for any n > 2.
(c) Find the center of GL(n,R).

Solution

(a) Let g ∈ G and h ∈ Z(G) be any elements. Then ghg−1 = hgg−1 = h ∈ Z(G)
and hence Z(G) �G is normal in G.

(b) First observe that for any σ ∈ Sn and any i 6= j we have σ◦(ij)◦σ−1 = (σ(i)σ(j)).
Suppose σ ∈ Z(G). Then by above (σ(i)σ(j)) = σ ◦ (ij) ◦ σ−1 = (ij). Therefore
σ(i) = i, σ(j) = j or σ(i) = j, σ(j) = i. Suppose σ 6= e and n ≥ 3. Then there is
1 ≤ i ≤ n such that j = σ(i) 6= i. Let 1 ≤ k ≤ n be different from both i and j
(this is where we need n ≥ 3). Then σ ◦ (ik)◦σ−1 = (σ(i)σ(k)) = (jσ(k)) 6= (ik)
since j 6= i and j 6= k.

(c) We claim that Z(GL(n,R)) = {λId|λ ∈ R\{0}} .
Suppose A ∈ Z(GL(n,R)). Let B ∈ GL(n,R) be the diagonal matrix with
bii = λi where λi 6= 0 for any i and λi 6= λj for any i 6= j (for example we can take
λi = i). Then we must have AB = BA. We compute that (AB)ij = aijλj and
(BA)ij = aijλi. For any i 6= j this implies aijλj = aijλi, aij(λi−λj) = 0, aij = 0.
Hence A is diagonal.
Suppose some of the diagonal entries of A are different. WLOG, say, a11 6= a22.
Take B to be the permutation matrix such that B(e1) = e2, B(e2) = e1 and
B(ei) = ei for i > 2. Then C = BAB−1 is a diagonal matrix with c11 = a22
and c22 = a11. Hence C 6= A which means that A can not be in the centre of G.
Therefore all diagonal entries of A are equal i.e. A = λ Id for some λ 6= 0. It’s
obvious that any such matrix commutes with any n × n matrix and therefore
Z(GL(n,R)) = {λId|λ ∈ R\{0}} .

(2) Let V be the space of quadratic polynomials with real coefficients with the inner
product given by

〈f, g〉 =

∫ 1

0

f(t)g(t)dt

Find an orthogonal basis of V .

Solution

Let’s choose a basis of V . The most natural basis to take is v1 = 1, v2 = t, v3 = t2.

We orthogonolize it using Gramm-Schmidt. Set w1 = v1 = 1, w2 = v2 − 〈v2,w1〉
〈w1,w1〉w1.

We compute 〈w1, w1〉 =
∫ 1

0
1 = 1 and 〈v2, w1〉 =

∫ 1

0
tdt = t2

2
|10 = 1

2
. Therefore,

w2 = v2 − 1
2
w1 = t− 1

2
.

Next we find w3 = v3 − 〈v3,w1〉
〈w1,w1〉w1 − 〈v3,w2〉

〈w2,w2〉w2. We compute 〈v3, w1〉 =
∫ 1

0
t2dt = 1

3
,

〈w2, w2〉 =
∫ 1

0
(t − 1

2
)2dt =

(t− 1
2
)3

3
|10 = 1

12
and 〈v3, w2〉 =

∫ 1

0
t2(t − 1

2
)dt =

∫ 1

0
t3 −

1
2
t2dt = t4

4
− t3

6
|10 = 1

12
. Therefore, w3 = v3 − 1

3
w1 −w2 = t2 − 1

3
− (t− 1

2
) = t2 − t+ 1
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(3) Give the definitions of the following notions:
a) A normal linear map;
b) A self-adjoint matrix;
c) An inner product on a vector space over C.

Solution

a) Let V be a vector space with an inner product. A linear map T : V → V is called
normal if AA∗ = A∗A.

b) An n× n matrix is called self-adjoint if A = Āt.
c) A inner product on a vector space V over C is a map 〈·, ·〉 : V × V → C which

satisfies the following properties
(i) 〈λ1u1 + λ2u2, v〉 = λ1〈u1, v〉+ λ2〈u2, v〉 for any u1, u2, v ∈ V, λ1, λ2 ∈ C.

(ii) 〈u, v〉 = 〈v, u〉 for any u.v ∈ V .
(iii) 〈u, u〉 ≥ 0 for any u ∈ V and 〈u, u〉 = 0 if and only if u = 0.

(4) Which of the following define an inner product?
a) 〈A,B〉 = tr(A+B) on M2×2(R);

b) 〈f, g〉 =
∫ 1/2

0
f(t)ḡ(t)dt on C[0, 1];

c) 〈f, g〉 =
∫ 1

0
f(t)ḡ(t)w1(t)dt +

∫ 1

0
f ′(t)ḡ′(t)w2(t)dt on C∞[0, 1] (the space functions

on [0, 1] having derivatives of all orders) where w1(t) > 0, w2(t) > 0 are continuous
positive functions on [0, 1].

Solution

a) Not a scalar product because 〈−Id,−Id〉 = −2n < 0.
b) Not a scalar product. Take

f(x) =

{
0 if x ≤ 1/2

x− 1
2

if x > 1
2

Then f is continuous and not identically zero on [0, 1] but 〈f, f〉 =
∫ 1/2

0
f 2(t)dt = 0.

c) A scalar product. It’s easy to check that all the properties of a scalar product are
satisfied.

(5) Mark true or false. If true, give an argument why, if false, give a counterexample.
Let V be a finite dimensional vector space.
a) If T : V → V satisfies |Tv| = |v| for any v ∈ V then T is normal.
b) The adjoint of a normal operator on a finite dimensional vector space is normal.
c) If T : V → V is a self-adjoint linear operator satisfying 〈Tx, x〉 > 0 for any x 6= 0

then 〈x, y〉2 = 〈Tx, y〉 is an inner product on V .
d) Every orthonormal set of vectors is linearly independent;
e) If T : V → V satisfies |λ| = 1 for any eigenvalue λ of T then T is unitary.

Solution

a) True. If T satisfies |Tv| = |v| for any v ∈ V then T is unitary and hence normal.
b) True. Since V is finite dimensional we have that (T ∗)∗ = T . Hence (T ∗)∗T ∗ =

TT ∗ = T ∗T = T ∗(T ∗)∗ and therefore T ∗ is normal.
c) True. It’s easy to check that all the properties of a scalar product are satisfied.

d) True. Suppose v1, . . . vk are orthonormal and
∑k

i=1 λivi = 0. Fix any 1 ≤ j ≤ k

then 0 = 〈
∑k

i=1 λivi, vj〉 =
∑k

i=1 λi〈vj, vi〉 = λj. Thus λj = 0 for every j.
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e) False. For example take A =

(
1 1
0 1

)
. Then all eigenvalues of A are equal to 1

but A is not unitary.
(6) Let T : V → V be a normal operator satisfying T 2 = I. Show that there exists a

subspace W ⊂ V such that T (x) = x for any x ∈ W and T (x) = −x for any x ∈ W⊥.

Solution

Since T 2 = Id any eigenvalue λ of T satisfies λ2 = 1. Therefore λ = ±1. Now the
result follows from the Spectral decomposition theorem with W (W⊥) equal to the
+1 (respectively −1) eigenspace of T .

(7) Let A be a real n×n matrix all of whose eigenvalues are real. Show that A is normal
if and only if it is symmetric.

Solution

If A is symmetric it is obviously normal. Now suppose A is normal and all its
eigenvalues are real. Then viewed as a complex matrix it’s unitarily equivalent to
a diagonal matrix, i.e. A = UDU∗ where U is unitary and D is diagonal with real
entries. Then A∗ = (UDU∗)∗ = (U∗)∗D∗U∗ = UDU∗ = A which means that A is
symmetric.

(8) Let A =

(
2 i
−i 2

)
. Write A as QDQ? where D is diagonal and Q is unitary.

Solution

We first find the eigenvalues ofA. We have PA(λ) = (λ−2)2−(−i2) = (λ−2)2−12 =
(λ− 1)(λ− 3). Hence the eigenvalues are λ1 = 1, λ2 = 3.

Next we find the corresponding eigenvectors. For λ1 = 1 we get that an eingen-

vector v1 =

(
x
y

)
satisfies (A− Id)v1 = 0 or(

1 i
−i 1

)(
x
y

)
=

(
0
0

)
x+ iy = 0

We can take v1 =

(
−i
1

)
. Similarly, we solve (A − 3Id)v2 = 0 and find v2 =

(
i
1

)
.

Then v1 and v2 are orthogonal and we can make them orthonormal by rescaling.

Set ṽ1 = 1√
2

(
−i
1

)
and ṽ2 = 1√

2

(
i
1

)
. Then U with the columns ṽ1, ṽ2 (i.e. U =(

−i√
2

i√
2

1√
2

1√
2

)
) is unitary and satisfies A = UDU∗ where D =

(
1 0
0 3

)
.

(9) Let H ≤ G be a subgroup of index [G : H] = 2.
Prove that H is a normal subgroup of G.

Solution

Pick g0 ∈ G\H. Since [G : H] = 2 we have that G consists of exactly two cosets
eH = H and g0H. If g ∈ H and h ∈ H then, obviously, ghg−1 ∈ H also since
H is a subgroup. If g /∈ H then g = g0h0 for some h0 ∈ H. Suppose for some
h ∈ H we have ghg−1 /∈ H. Then ghg−1 = g0h1 for some h1 ∈ H. This gives
g0h1 = ghg−1 = (g0h0)h(g0h0)

−1 = g0h0hh
−1
0 g−10 . Multiplying both sides by g−10 on
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the left we get h1 = (h0hh
−1
0 )g−10 , h1g0 = h0hh

−1
0 , g0 = h−11 h0hh

−1
0 ∈ H. This is a

contradiction and hence ghg−1 ∈ H which means that H �G is normal in G.
(10) Let σ ∈ Sn be a permutation. Define an n×n matrix Pσ by the formula (Pσ)ij = δiσ(j).

Prove that σ 7→ Pσ is a homomorphism and detPσ = sign(σ).

Solution

By construction we have that Pσ(ei) = eσ(i) where e1, . . . en is the standard basis
of Rn. Therefore Pστ (ei) = eστ(i) = Pσ(eτ(i)) = Pσ(Pτ (ei)) for any i which means
that Pστ = PσPτ and hence σ 7→ Pσ is a homomorphism and φ : Sn → R\{0} given
by φ(σ) = detPσ is also a homomorphism as a composition of two homomorphisms.
For any transposition σ we have φ(σ) = detPσ = −1 = sign(σ). Thus φ and sign are
homomorphisms that agree all transpositions. Since transpositions generate Sn this
means that φ(σ) =sign(σ) for any σ ∈ Sn.

(11) Let G be a group. For any a, b ∈ G the commutator of a and b is defined as [a, b] =
aba−1b−1. Further, denote by [G,G] the subgroup of G generated by the commutators
[a, b] where a, b ∈ G are arbitrary.

Prove that [G,G] �G is a normal subgroup of G.

Solution

First observe that [a, b]−1 = [b, a]. Therefore [G,G] is equal to the set of elements
of the form h1 ·h2 · . . . ·hk where every hi has the form hi = [ai, bi] for some ai, bi ∈ G.
Next observe that g[a, b]g−1 = [gag−1, gbg−1] ∈ [G,G] for any a, b, g ∈ G. Therefore
for any g ∈ G and h ∈ [G,G] we can write h as h1 ·h2 · . . . ·hk with hi = [ai, bi]. Then
ghg−1 = (gh1g

−1)(gh2g
−1) . . . (ghkg

−1) ∈ [G,G] by the observation above.
(12) Let T : V → V be a skew-adjoint linear operator. Prove that all the eigenvalues of

T are purely imaginary (i.e every eigenvalue λ has the form λ = ia where a is real).

Solution

Let Tv = λv where v 6= 0. By rescaling we can assume |v| = 1. Then λ =
λ〈v, v〉 = 〈λv, v〉 = 〈Tv, v〉 = 〈v, T ∗v〉 = 〈v, (−T )v〉 = 〈v,−λv〉 = −λ̄〈v, v〉 = −λ̄.
Thus λ = −λ̄ and hence λ is purely imaginary.

(13) Let f : Mn×n(C)→ C be a function satisfying the following conditions
(a) f(Id) = 1
(b) f(A′) = −f(A) if A is obtained by interchanging two rows of A.
(c) f(A′) = f(A) if A′ is obtained from A by adding a multiple of a row to another

row.
Is it true that f(A) = detA? If true give a proof, if false, give a counterexample.

Solution

This is false. For example, f(A) = (detA)3 satisfies all these conditions.
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