Practice Final

- (1) Recall that for a group G its center Z(G) is defined to be the set of all elements $h \in G$ such that hg = gh for any $g \in G$.
 - (a) Prove that Z(G) is a normal subgroup of G.
 - (b) Show that $Z(S_n)$ is trivial for any n > 2.
 - (c) Find the center of $GL(n, \mathbb{R})$.
- (2) Let V be the space of quadratic polynomials with real coefficients with the inner product given by

$$\langle f,g\rangle = \int_0^1 f(t)g(t)dt$$

Find an orthogonal basis of V.

- (3) Give definitions of the following notions:
 - a) A normal linear map;
 - b) A self-adjoint matrix;
 - c) An inner product on a vector space over \mathbb{C} .
- (4) Which of the following define an inner product?
 - a) $\langle A, B \rangle = tr(A+B)$ on $M_{2 \times 2}(R)$;
 - b) $\langle f,g \rangle = \int_0^{1/2} f(t)\bar{g}(t)dt$ on C[0,1];
 - c) $\langle f,g \rangle = \int_0^1 f(t)\bar{g}(t)w_1(t)dt + \int_0^1 f'(t)\bar{g}'(t)w_2(t)dt$ on $C^{\infty}[0,1]$ (the space functions on [0,1] having derivatives of all orders) where $w_1(t) > 0, w_2(t) > 0$ are continuous positive functions on [0,1].
- (5) Mark true or false. If true, give an argument why, if false, give a counterexample. Let V be a finite dimensional vector space.
 - a) If $T: V \to V$ satisfies |Tv| = |v| for any $v \in V$ then T is normal.
 - b) The adjoint of a normal operator is normal.
 - c) If $T: V \to V$ is a self-adjoint linear operator satisfying $\langle Tx, x \rangle > 0$ for any $x \neq 0$ then $\langle x, y \rangle_2 = \langle Tx, y \rangle$ is an inner product on V.
 - d) Every orthonormal set of vectors is linearly independent;
 - e) If $T: V \to V$ satisfies $|\lambda| = 1$ for any eigenvalue λ of T then T is unitary.
- (6) Let $T: V \to V$ be a normal operator satisfying $T^2 = I$. Show that there exists a subspace $W \subset V$ such that T(x) = x for any $x \in W$ and T(x) = -x for any $x \in W^{\perp}$.
- (7) Let A be a real $n \times n$ matrix all of whose eigenvalues are real. Show that A is normal if and only if it is symmetric.
- (8) Let $A = \begin{pmatrix} 2 & i \\ -i & 2 \end{pmatrix}$. Write A as QDQ^* where D is diagonal and Q is unitary.
- (9) Let $H \leq G$ be a subgroup of index [G:H] = 2. Prove that H is a normal subgroup of G.
- (10) Let $\sigma \in S_n$ be a permutation. Define an $n \times n$ matrix P_{σ} by the formula $(P_{\sigma})_{ij} = \delta_{i\sigma(j)}$. Prove that $\sigma \mapsto P_{\sigma}$ is a homomorphism and det $P_{\sigma} = \text{sign}(\sigma)$.
- (11) Let G be a group. For any $a, b \in G$ the commutator of a and b is defined as $[a, b] = aba^{-1}b^{-1}$. Further, denote by [G, G] the subgroup of G generated by the commutators [a, b] where $a, b \in G$ are arbitrary.

Prove that $[G, G] \leq G$ is a normal subgroup of G.

- (12) Let $T: V \to V$ be a skew-adjoint linear operator. Prove that all the eigenvalues of T are purely imaginary (i.e every eigenvalue λ has the form $\lambda = ia$ where a is real).
- (13) Let $f: M_{n \times n}(\mathbb{C}) \to \mathbb{C}$ be a function satisfying the following conditions
 - (a) f(Id) = 1
 - (b) f(A') = -f(A) if A is obtained by interchanging two rows of A.
 - (c) f(A') = f(A) if A' is obtained from A by adding a multiple of a row to another row.

Is it true that $f(A) = \det A$? If true give a proof, if false, give a counterexample.