MAT 246S Solutions to Practice Term Test 1 Winter 2014

(1) Prove by mathematical induction that $n^3 + 5n$ is divisible by 6 for any natural n.

Solution

We first check that the statement is true for n=1. We have $1^3 + 5 = 6$ is divisible by 6.

Suppose the statement is true for $n \ge 1$. Let's show that it's also true for n + 1. We have $(n+1)^3 + 5(n+1) = n^3 + 3n^2 + 3n + 1 + 5n + 5 = (n^3 + 5n) + 3n^2 + 3n + 6$. Clearly $3n^2 + 3n + 6 \equiv 0 \pmod{3}$. Also, either n or n = 1 is even so that n(n+1) is even and hence is divisible by 2. therefore $3n^2 + 3n + 6 \equiv 3n(n+1) + 6 \equiv 0 \pmod{6}$. Therefore $(n+1)^3 + 5(n+1) = (n^3 + 5n) + 3n^2 + 3n + 6 \equiv 0 \pmod{6}$ by induction assumption.

(2) Find the remainder when 7^{101} is divided by 101.

Solution

Since 101 is prime, By Fermat theorem $7^{100} \equiv 1 \pmod{101}$ and hence $7^{107} \equiv 7 \cdot 1 \equiv 7 \pmod{101}$.

(3) Find the integer $a, 0 \le a \le 20$ such that $13a \equiv 1 \pmod{20}$.

Solution

We have that $13 \cdot 3 = 39 \equiv -1 \pmod{20}$. Hence $13 \cdot (-3) \equiv 1 \pmod{20}$. Since $-3 \equiv 17 \pmod{20}$ we have $13 \cdot 17 \equiv 1 \pmod{20}$.

(4) Prove that if $m \equiv 1 \pmod{\phi(n)}$ and (a, n) = 1 then $a^m \equiv a \pmod{n}$, where ϕ is Euler's function.

Solution

We are given $m \equiv 1 \pmod{\phi(n)}$, i.e $m = k\phi(n) + 1$ By Euler's theorem $a^{\phi(n)} \equiv 1 \pmod{n}$. (mod n). Therefore, $a^{k\phi(n)} \equiv 1 \pmod{n}$ and hence $a^{k\phi(n)+1} \equiv 1 \cdot a \equiv a \pmod{n}$

(5) Suppose $3^{3^{100}}$ is written in ordinary way. What are the last two digits?

Solution

We need to find the remainder when we divide $3^{3^{100}}$ by 100. Let $n = 100 = 2^2 \cdot 5^2$. Then $\phi(n) = (2^2 - 2^1) \cdot (5^2 - 5^1) = 40$. therefore, by the previous problem, $3^{40k+1} \equiv 3 \pmod{100}$. Next observe that $3^4 = 81 \equiv 1 \pmod{40}$. Therefore, $3^{100} = (3^4)^{25} \equiv 1 \pmod{40}$. This finally implies that $3^{3^{100}} \equiv 3 \pmod{100}$. This means that the last two digits of $3^{3^{100}}$ are 03. (6) Prove that $\sqrt[3]{\frac{2}{7}}$ is irrational.

Solution

Suppose $\sqrt[3]{\frac{2}{7}} = \frac{a}{b}$ where a, b are integers. we can assume that (a, b) = 1. Then $\frac{2}{7} = \frac{a^3}{b^3}$ and $2b^3 = 7a^3$. LHS is even which means that a must be even. Hence a = 2c and we have $2b^3 = 7 \cdot 8c^3$, $b^3 = 28c^3$. Now RHS is even and hence b must be even. That means that both a and b are even which contradicts (a, b) = 1.