Solutions to selected problems from homework 10

(1) (a) Prove that $\sqrt[3]{\pi}$ is not constructible.

Solution

Suppose $\sqrt[3]{\pi}$ is constructible. Then $\pi = \sqrt[3]{\pi} \cdot \sqrt[3]{\pi} \cdot \sqrt[3]{\pi}$ is constructible too. However, we know that π is transcendental and hence not constructible. This is a contradiction and therefore, $\sqrt[3]{\pi}$ is not constructible. \Box

(b) Prove that π^3 is not constructible.

Solution

Suppose π^3 is constructible. Then it must be algebraic because by a theorem from class all constructible numbers are algebraic. This means that there exists a polynomial $P(x) = a_n x^n + \ldots + a_1 x + a_0$ such that $a_n \neq 0$, all a_i 's are integers and $P(\pi^3) = 0$. Then $0 = P(\pi^3) = a_n(\pi^3)^n + a_{n-1}(\pi^3)^{n-1} + \ldots + a_1(\pi^3) + a_0 = a_n \pi^{3n} + a_{n-1}(\pi)^{3(n-1)} + \ldots + a_1(\pi^3) + a_0$. In other words, π is a root of the polynomial $Q(x) = a_n x^{3n} + a_{n-1} x^{3n-3} + \ldots + a_1 x^3 + a_0$. This means that π is algebraic which we know is false. This is a contradiction and hence π^3 is not constructible. \Box

(2) Find a polynomial with integer coefficients which has $1 + \sqrt{2} + \sqrt{3}$ as a root.

Solution

Let $x = 1 + \sqrt{2} + \sqrt{3}$. Then $x - 1 - \sqrt{2} = \sqrt{3}$. taking squares of both sides we get $(x - 1)^2 - 2(x - 1)\sqrt{2} + 2 = 3$. We can rewrite this as $(x - 1)^2 - 1 = 2(x - 1)\sqrt{2}$. Again taking squares of both sides we get

$$((x-1)^2-1)^2 = 4(x-1)^2 \cdot 2, (x^2-2x)^2 = 8(x^2-2x+1), x^4 - 4x^3 + 4x^2 = 8x^2 - 16x + 8, x^4 - 4x^3 - 12x^2 + 16x - 8 = 0.$$

Thus x satisfies $x^4 - 4x^3 - 12x^2 + 16x - 8 = 0.$

(3) Find the cardinality of the set of all surds.

Solution

Let S be the set of all surds. It was proved in class that all surds are algebraic. Therefore $|S| \leq |A|$ where A is the set of all algebraic numbers. By another theorem from class A is countable and hence $|S| \leq |A| = |\mathbb{N}|$. This means that S is countable too. On the other hand, it's obvious that $\mathbb{N} \subset S$. Therefore $|N| \leq |S|$. By above $|S| \leq |\mathbb{N}|$. By the Schroeder-Berenstein theorem this implies that $|S| = |\mathbb{N}|$.

(4) Is there a line in the plane such that every point on it is constructible?

Solution

It was proved in class that a point (x, y) is constructible if and only if both x and y are constructible. In other words, the set of constructible points on the plane is equal to $S \times S$ where S is the set of constructible numbers. By a theorem from class the set of constructible numbers is equal to the set of all surds which is countable by the previous problem. Therefore, $|S \times S| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$ is also countable. Thus, the set of constructible points on the plane is countable.

On the other hand, we claim that any line on the plane has the same cardinality as \mathbb{R} . Indeed, given a line L with the equation y = kx + b the map $f \colon \mathbb{R} \to L$ given by f(x) = (x, kx + b) is 1-1 and onto. Therefore, $|L| = |\mathbb{R}|$. Vertical lines (they are given by equations x = c) can be easily seen to have the same cardinality too.

Thus, since $|\mathbb{R}| > |\mathbb{N}|$, there is no line that consists entirely of constructible points.

(5) Let t be a transcendental number. Prove that the set $F = \{(a+bt) : a, b \in \mathbb{Q}\}$ is not a number field.

Solution

Suppose F is a number field. Since $t \in F$ and F is closed under multiplication we must have that $t^2 = t \cdot t$ is also in F. That means that it can be written as $t^2 = at + b$ for some rational a, b. In other words, t satisfies the quadratic equation $t^2 - at - b = 0$ with rational coefficients. Therefore, t is algebraic. This is a contradiction and hence F is not a number field.