Solutions to Practice Final 2

1. Using induction prove that

2 _ (n+1)2n+1)(2n + 3)
3

24324+ ... +(2n+1)

Solution

First we verify the base of induction. When n = 0 LHS= 1?2 = 1 and RHS= % =1

Induction step. Assume the formula is true for n > 0 and we need to verify it for n+1.
Then we have

(n+1)(2n+1)(2n+ 3)

P+3+...+2n+1)2+(2n+3)° = 2 +(2n+3)?%=
(n+1)(2n + 1)(2n + 3) + 3(2n + 3)? _ (@2n+ 3)(2n* +3n+ 1+ 3(2n + 3))
3 3
_ (2n + 3)(2n% + 9n + 10) _ (2n+3)(2n +5)(n + 2)

3 3

This completes the induction step and proves the formula for all n > 0.

2. Let a, b, c be natural numbers.

(a) Show that the equation ax + by = ¢ has a solution if and only if (a,b)|c.
(b) Find all integer solutions of 6z + 15y = 9.

Solution

(a) Suppose ax + by = ¢ for some integer x and y. If dja and d|b then obviously,
d|lax + by = c. In particular, if (a,b)|c.

Conversely, suppose (a,b)|c so that ¢ = d - (a,b). Then ax + by = (a,b) has
an integer solution by a result from class. Multiplying both sides by d we get
a(zd) + b(yd) = (a,b) - d = c.

(b) First, divide both sides by 3. we get 2z + 5y = 3. We have (2,5) = 1 and we can
find integer solution of 2x 4+ 5y = 1 using either Euclidean algorithm or just by
trying a few small numbers we get
2-(—2)+5-1 = 1. Multiplying by 3 we get 2-(—6)+5-(3) = 3 so xg = —6,yp = 3
is a solution of 2z + 5y = 3.

It’s easy to see that © = —6 — 5k, y = 3 + 2k is a solution of 2z + by = 3 for any
k. We claim that any integer solution of 2z + 5y = 3 has this form.

Suppose 2z + 5y = 3. we also have 2 - (—6) + 5 - (3) = 3. Subtracting these
equations we get 2(—6 — ) +5(3 —y) = 0 or 2(—6 — x) = 5(y — 3). This implies
that 2|(y —3) so that y —3 = 2k or y = 3+ 2k. This gives 2(—6 —x) =5(y—3) =
6k, —6 —x =3k, = —6 — 3k.

Thus the general solution is * = —6 — bk, y = 3 4+ 2k where £ is any integer.
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3. Find the last digit of the sum

21 +3+ 32+ 3 +... + 3
Solution

First, we compute

310 _ 1

=330 _1.
3—1

21 +3+32+3 +...+39) =2.

We have ¢(10) = ¢(2-5) = 1-4 = 4. By Euler’s theorem this implies that 3* = 1(
mod 10). Of course, this can also be seen directly as 3* = 81.
Therefore 3% = 1( mod 10). We have 310 = 308 + 2 and 4|308. Therefore 33!° = 3%(

mod 10). This means that the last digit of 33!% is 9 and hence the last digit of 331 — 1
is 8.

4. Let S be infinite and A C S be finite. Prove that |S| = |S\A].
Solution

Let A = {s1,...,8,}. Since S is infinite the set S\A is non empty. Pick any
Sni1 € S\A = S\{s1,...,8,}. Next, since S\{s1,..., 8,11} # 0 we can choose $,,2 €
S\{s1,...,8ns1}. Proceeding by induction we con construct s,,.1 € S\{s1,...,5m}
for any m > n.

Now define f: S — S\A by the formula f(s;) = s;1, for any i and f(z) = =z if
x € S\{s1, S2,...}. By construction, f is 1-1 and onto.

5. Let S =1[0,1] and T"=[0,2). Let f: S — T be given by f(z) =2 and g: T'— S be
given by g(z) = /2.

(a) Find Sg, S7, Soo;

(b) give an explicit formula for a 1-1 and onto map h: S — T coming from f and g
using the proof of the Schroeder-Berenstein theorem.

Solution

(a) Note that 1 ¢ ¢(7T") and therefore 1 € Sg. Next, we see that 1/2 € Sg also.
Indeed, 1/2 = g(1) and 1 = f(1). So 1 is the last ancestor of 1/2 and hence
1/2 € Sg. proceeding by induction we see that 2% € Sg for any n > 0.

Next observe that (1/2,1) C Sp. Indeed, if 1/2 < x < 1 then z = ¢(2x) and
1 <2z < 2so that 2z ¢ f(9).



Proceeding by induction we claim that (znﬂ, 2,L) € St for any n > 0. We just
verified the base of induction.

Induction step. Suppose we know the statement of n > 0 and we need to prove

it for n + 1. Let # <z < # then = = ¢g(2x) and # < 2z < 2% Also,

2r = f(2z). By induction assumption, 2z € St and the last ancestor of z is the
last ancestor of 2x so z € St also.
This concludes the induction step.
It’s obvious that 0 € S,. Therefore Soo = {0},5¢ = {1,3,%,.... 5%} and
Sy ={x €[0,1] such that z #0,1,3, 1, %,...}.

(b) By the proof os the Shroeder Berenstein Theorem the following map h: S — T
is 1-1 and onto.

vifr=0,1,%11 ...
M) = R
2.7)1fl’7é0, )93 4580

6. Let n = 2p where p is an odd prime. Find the remainder when ¢(n)! is divided by n.
Here ¢(n) is the Euler function of n.

Solution

We have ¢(n) = ¢(2p) = (2—1)(p—1) = p—1. By Wilson’s theorem ¢(n)! = (p—1)! =
—1( mod p) = p — 1( mod p). This measn that p|(p — 1)! — (p — 1). Since p is odd
p — 1 is even and therefore 2|(p — 1)! — (p — 1) also. Since (2,p) = 1 this implies that
2p|(p — 1)!' = (p — 1) or, equivalently (p — 1)! =p — 1( mod 2p).

Answer: p — 1.

7. Prove that q;v/3+q2v/5 # ¢,V/3+¢,\/5 for any rational ¢1, g2, ¢}, ¢, unless q; = ¢}, ¢ =
-

Solution

Suppose 1v3 + V5 = ¢;vV3 + ¢5V5. Then (1 — ¢))V3 + (¢2 — ¢5)V5 = 0. Let

a = q —¢,b = qy — ¢ are rational and av/3 + bv/2 = 0. We want to show that
a=>b=0. If a # 0 this gives \/g = —2 which is rational. This is a contradiction since

\/g is irrational. Hence a = 0. Since av/3 + bv/2 = 0 this implies by/2 = 0,b=0.

8. Let a be a root of 2° — 623 + 222 + 5 — 1 = 0. Construct a polynomial with integer
coefficients which has a? as a root.

Hint: separate even and odd powers.



Solution

We can rewrite the equation as x® — 62° + 5z = 1 — 222 x(2? — 62° +5) = 1 — 222
Squaring both sides we get z%(2* — 622 + 5)? = (1 — 22?)2. Clearly, y = 2? satisfies
yly* = 6y +5)* = (1 - 29)*.

9. Find all complex roots of 2% 4+ 723 — 8 = 0.

Reminder: Real numbers are also complex numbers.

Solution

Let z = 23. Then z satisfies 22 + 72 — 8 = 0 Solving this quadratic equation we get

z =1,z = —8. Thus we need to solve z° = 1 and 2> = —8. Solving 2® = 1 gives
x = 1,2 =cos(21/3) + isin(27/3) = %,x = cos(47/3) + isin(47/3) = #ﬁ

Next we write —8 as 23(cos m +isin ). Thus solving 23 = —8 we get x = 2(cos(7/3) +
isin(n/3)) = 14+1iv/3, 2 = 2(cos(n/3 + 27/3) +isin(r/3+27/3)) = 2(cos 7 +isin7) =
—2, 2 = 2(cos(m/3 + 471 /3) +isin(r/3 + 41 /3)) = 2(cos(57/3) +isin(57/3)) = 1 —iv/3

10. Represent sin(560) as a polynomial in sin(6).
Solution

We have cos(56) + isin(560) = (cosf + isin)® = (cos@ + isinf)?(cosf + isinh)> We
compute separately (cos@ + isinf)? = (cos®>6 — sin?@ + 2isinf cosf) and (cos® +
isind)® = (cos® + isinf)?(cosd + isinh) = (cos? — sin® @ + 2isin 6 cos)(cos +
isin @) = (cos? § — sin? @) cos @ — 2sin? # cos @ + i(cos? § — sin? f) sin O + 2i sin 6 cos? § =
cos® 6 — 3sin® @ cos 0 + i(3sin  cos? § — sin® 6).

Combining these together we get cos(50) + isin(50) = (cos® + isin)®> = (cos6 +

isin 0)%(cos +i sin 0)% = (cos? —sin? O+2i sin O cos 0)(cos® —3 sin? O cos O+i(3 sin 6 cos? O —
sin®#)) = (cos?§ — sin?#)(cos® § — 3sin® @ cos §) — 2sin O cos (3 sin f cos? § — sin® §) +
i(cos? @ — sin? 0) (3 sin 0 cos? @ — sin® #) + 2i sin O cos O(cos® § — 3sin?  cos 6).

Therefore, sin(50) = (cos? §—sin? §)(3 sin § cos? §—sin® #)+2 sin O cos §(cos® #—3 sin? § cos ) =
(1—2sin? ) (3 sin §(1—sin? §) —sin® §)+2 sin O cos? #—6 sin® O cos? @ = (1—2sin*#)(3sin O(1—
sin? 0) — sin® 0) + 2sin (1 — sin® §)% — 6sin® H(1 — sin?0).

V55
11. Is oW

constructible? Justify your answer.

Solution



12.

_ﬁ/i;\/\/?g is not constructible. We argue by contradiction. Assume %ﬁ is constructible.

Since v/5 and /7 are constructible this implies that /5 is constructible and hence
(v/5)? = v/5 is also constructible. v/5 is a root of 2% — 5 = 0 which is a cubic equation
with integer coefficients. By a theorem from class if it has a constructible root it must
have a rational root as well. Let ™ be a rational root where (m,n) = 1. Then m|5
and n|1 which means that ™ = £1,45. Plugging these numbers into 2> —5 =0 we
see that none of them are roots.

This is a contradiction and therefore ?E;\? is not constructible.

For each of the following answer ”true” or "false”. Justify your answer.

a) If % is constructible then both x and y are constructible.

=

If = is constructible then % is constructible.

¢) There is an angle 0 such that cos6 is constructible but sin # is not constructible.

)
)
)
)310

o is constructible.

oL

Solution

a) False. For example, take © = y = 7. Then X and y are not constructible but
x/y = 1 is constructible.

b) True. See figure below. Draw segments of lengths 1 and z on one side of an angle
and a segment of length 1 on the other side. Connect x and 1 on opposite sides by

a line a draw a parallel line through 1 on the same side as x. It intersect the second

. . . . . _ 1 o 1
side of the angle at distance y. Then from similar triangles we get T = ; Or Y=g



c¢) False. If cosf is constructible then so is 1 — cos? . Hence sinf = £1/1 — cos? 6 is
also constructible since a square root of a constructible number is constructible.

d) False. We argue by contradiction. Suppose x = {/ % is constructible. It satisfies

the equation 27z% — 10 = (3x)® — 10 = 0. If z is constructible then so is y = 3z
which satisfies the equation y*> — 10 = 0. This is a cubic equation with integer
coefficients. If it has a constructible root it must also have a rational one. We can
write that rational root as ¢ where (a,b) = 1. Then a|10 and b|1 which means
that y = $ = £1 + 2+ 5 or +10. By plugging these numbers into Y3 — 10 = 0 we

see that none of them are roots. This is a contradiction and therefore { % is not

constructible.

13. Prove that the equation
(1+2")P+1+2"Y)2-3=0

has no constructible solutions.
Solution

Suppose x is a constructible root. Then y = z' + 1 is also constructible and it
satisfies 4> + y?> — 1 = 0. This is a cubic equation with integer coefficients. If it has



a constructible root it must also have a rational one. We can write that rational root

as ¢ where (a,b) = 1. Then a|l and b|1 which means that y = § = £1. But neither

y = 1 nor y = —1 solve y®> + 4> — 1 = 0. This is a contradiction which means that
(1+2')3 + (1 4+ 2')? — 3 = 0 has no constructible solutions.



