- (1) Prove that $|\mathbb{Z}| = |\mathbb{N}|$ by constructing an explicit bijection $f: \mathbb{N} \to \mathbb{Z}$
- (2) Construct an explicit bijection $f: [0,1] \to (0,1)$.
- (3) For any set S define P(S) to be the set of all subsets of S. For example, if $S = \{a, b\}$ then $P(S) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Let A be a finite set. Show that $|P(A)| = 2^{|A|}$. *Hint:* Let $A = \{x_1, \ldots, x_n\}$. Represent a subset S of A by a sequence of 0s and 1s of length n such that the *i*-th element in the
 - sequence is 1 if $x_i \in S$ and is 0 if $x_i \notin S$.
- (4) Finish the proof of the Shroeder-Berenstein Theorem from class. Recall that the proof goes as follows. Let f: S → T and g: T → S be 1-1. Define S_S to be the set of points in S whose last ancestor is in S. Define S_T to be the set of points whose last ancestor is in T. Define S_∞ to be the set of points in S which have infinitely many ancestors. Define T_S, T_T, T_∞ similarly.

Then define $h: S \to T$ by the formula

$$h(s) = \begin{cases} f(x) \text{ if } s \in S_S \cup S_\infty \\ g^{-1}(s) \text{ if } s \in S_T \end{cases}$$

It was shown in class that $h: S_S \to T_S$ is 1-1 and onto.

Finish the proof by showing that $h: S_T \to T_T$ and $h: S_\infty \to T_\infty$ are also 1-1 and onto.

- (5) Let S be infinite and $A \subset S$ be finite. Prove that $|S| = |S \setminus A|$.
- (6) Let S = (0, 1) and T = [0, 1). Let $f: S \to T$ be given by f(x) = x and $g: T \to S$ be given by $g(x) = \frac{x+1}{2}$.
 - (a) Find $S_S, S_T, S_\infty, T_S, T_T, T_\infty$
 - (b) give an explicit formula for a 1-1 and onto map $h: S \to T$ coming from f and g using the proof of the Schroeder-Berenstein theorem.
- (7) Let $S = P(\mathbb{N})$

Show that $|S| \leq |\mathbb{R}|$.

Hint: represent a subset A of N as a sequence of 1s and 0s such that the n-th element of the sequence is 1 if $n \in A$ and is 0 if $n \notin A$.