(1) Give a proof by induction of the following theorem from class:

Let m > 1 be a natural number. Then for any $n \ge 0$ there exists an integer r such that $0 \le r < m$ and $n \equiv r \pmod{m}$.

- (2) Let p_1, p_2 be distinct primes. Using the Fundamental Theorem of Arithmetic prove that a natural number n is divisible by p_1p_2 if and only if n is divisible by p_1 and n is divisible by p_2 .
- (3) Prime "triplets" are triples of prime numbers of the form n, n+2, n+4.

Find all prime triplets. *Hint:* Think (mod 3).

- (4) (a) Find all possible values of $2^k \pmod{6}$.
 - (b) Find all possible values of $k^2 \pmod{6}$
- (5) Prove that for any natural k

 $4^k + 4 \cdot 9^k \equiv 0 \pmod{5}$

- (6) Find the rule for checking when an integer is divisible by 13 similar to the rule for checking divisibility by 7 done in class.
- (7) Prove that if m > 1 is not prime then there exist integers a, b, c such that $c \not\equiv 0 \pmod{m}$, $ac \equiv bc \pmod{m}$ but $a \not\equiv b \pmod{m}$.