(1) (10 pts) The pigeonhole principle states that if n items are put into m pigeonholes with n > m, then at least one pigeonhole must contain more than one item.

Prove the pigeonhole principle by induction in m.

Solution

We prove it by induction on m.

If m = 1 then the statement is obvious as we have n > 1 objects and only one pigeonhole.

Induction step. Suppose the pigeonhole principle has been proved for $m-1 \ge 1$ and we want to prove it for m.

Suppose we have n > m items distributed between m pigeonholes. Consider the last pigeonhole. If it contains more than one item we are done. Suppose it has exactly one item. Then the remaining n-1 items are distributed between the first m-1 pigeonholes and since n-1 > m-1, by the induction assumption we can conclude that one of the first m-1 holes contains at least two items.

Similarly, if the last pigeonhole is empty and contains no items at all then we have that n items are distributed between the first m-1 pigeonholes. Since n > m > m-1, we can again use the induction assumption to conclude that one of the first m-1 holes contains at least two items.

(2) (15 pts) Let a, b be relatively prime natural numbers bigger than 1. Prove that

$$a^{\phi(b)} + b^{\phi(a)} \equiv 1 \pmod{ab}$$

Hint: Use that gcd(a, b) can be written as gcd(a, b) = ax + by for some integer x and y.

Solution 1 (not using the hint)

Since (a, b) = 1, by Euler's theorem $a|(b^{\phi(a)} - 1))$ and therefore

$$a|(a^{\phi(b)} + (b^{\phi(a)} - 1))| = a^{\phi(b)} + b^{\phi(a)} - 1$$

Similarly $b|(a^{\phi(b)}-1)$ and hence

$$b|(b^{\phi(a)} + (a^{\phi(b)} - 1)) = a^{\phi(b)} + b^{\phi(a)} - 1$$

Since (a, b) = 1 this implies that $ab|(a^{\phi(b)} + b^{\phi(a)} - 1)$ i.e. $a^{\phi(b)} + b^{\phi(a)} \equiv 1 \pmod{ab}$

Solution 2 (using the hint)

Since gcd(a, b) = 1 there exist integer x and y such that ax + by = 1.

By Euler's theorem $a^{\phi(b)} \equiv 1 \pmod{b}$. Therefore, $a^{\phi(b)} \equiv 1 - kb \pmod{b}$ for any integer k. In particular, $a^{\phi(b)} \equiv 1 - yb \pmod{b}$. But $1 - yb = xa \equiv 0 \pmod{a}$. Therefore $a^{\phi(b)} - (1 - yb) = a^{\phi(b)} - ax \equiv 0 \pmod{a}$. Thus, $a|a^{\phi(b)} - (1 - yb)$ and $b|a^{\phi(b)} - (1 - yb)$ and hence $ab|a^{\phi(b)} - (1 - yb)$ since gcd(a, b) = 1. In other words, $a^{\phi(b)} \equiv 1 - yb \pmod{ab}$.

Similarly, $b^{\phi(a)} \equiv 1 - xa \pmod{ab}$. Adding these congruencies we obtain

$$a^{\phi(b)} + b^{\phi(a)} \equiv 1 - yb + 1 - xa = 2 - (ax + by) = 1 \pmod{ab}$$

(3) (10 pts) Let $n \ge 2$ be a composite number.

Prove that there exists a prime number $p \leq \sqrt{n}$ which divides n.

Solution

A composite number contains at least two prime factors. Therefore n = pqc where p, q are prime and $c \ge 1$. We can assume that $p \le q$ (otherwise we can just rename them).

Therefore $n = pqc \ge pq \ge p^2$ and hence $\sqrt{n} \ge p$.

(4) (a) (20 pts) Let p > 1 be a prime number. Find $2^{(p!)^2} \pmod{p}$.

Solution

If p = 2 then $2^{(p!)^2} \equiv 0 \pmod{2}$. Suppose p > 2. Then p is not divisible by 2 and hence $2^{p-1} \equiv 1 \pmod{p}$ by Fermat's theorem. Therefore $2^{k(p-1)} = (2^{p-1})^k \equiv 1 \pmod{p}$ for any natural k. Since $(p!)^2$ is divisible by p - 1 this implies that $2^{(p!)^2} \equiv 1 \pmod{p}$. (b) Find $(26!)^{143} \pmod{29}$.

Solution

Recall that by Wilson's theorem $(p-1)! \equiv -1 \pmod{p}$ for any prime p. Applying this to p = 29 we see that $28! \equiv -1 \pmod{29}$. We can rewrite $28! = 26! \cdot 27 \cdot 28$. Since $27 \equiv -2 \pmod{29}$ and $28 \equiv -1 \pmod{29}$ This gives $26! \cdot (-2) \cdot (-1) \equiv -1 \pmod{29}$ or $26! \cdot (-2) \equiv 1 \pmod{29}$. Therefore

$$(26!)^{143} \cdot (-2)^{143} \equiv 1 \pmod{29}$$

Let's find $(-2)^{143} \pmod{29}$. By Fermat's theorem $(-2)^{28} \equiv 1 \pmod{29}$. Since $143 = 5 \cdot 28 + 3$ this gives $(-2)^{143} \equiv (-2)^3 = -8 \pmod{29}$.

Thus $(26!)^{143} \cdot (-8) \equiv 1 \pmod{29}$. Therefore we need to solve the equation $-8x \equiv 1 \pmod{29}$. Since (8, 29) = 1 it has only one solution mod 29. We can find it using the Euclidean algorithm or by guessing. Observe that $8 \cdot 11 = 88 = 3 \cdot 29 + 1$. Hence $(-11) \cdot (-8) \equiv 1 \pmod{29}$. Therefore, $(26!)^{143} \equiv -11 \equiv 18 \pmod{29}$.

- **Answer:** $(26!)^{143} \equiv 18 \pmod{29}$.
- (c) Find $2^{3^{101}} \pmod{15}$.

Solution

Observe that (2, 15) = 1. We compute $\phi(15) = \phi(3 \cdot 5) = 2 \cdot 4 = 8$. Therefore, by Euler's theorem, $2^{\phi(15)} = 2^8 \equiv 1 \pmod{15}$.

Thus we need to find $3^{101} \pmod{8}$. Notice that $3^2 = 9 \equiv 1 \pmod{8}$. Hence $3^{2k} \equiv 1 \pmod{8}$ for any natural k. Therefore, $3^{100} = 3^{100} \cdot 3 \equiv 1 \cdot 3 \equiv 3 \pmod{8}$. In other words, $3^{101} = 3 + 8m$ for some natural number m. Therefore $2^{3^{101}} = 2^{3+8m} \equiv 2^3 = 8 \pmod{15}$.

Answer: $2^{3^{101}} \equiv 8 \pmod{15}$.

(5) (10 pts) Let n be a natural number. Prove that $\sqrt[10]{n}$ is rational if and only if n is a complete 10th power, i.e. $n = m^{10}$ for some natural number m.

Solution

If $n = m^{10}$ is a complete 10th power then, obviously, $\sqrt[10]{n} = m$ is rational.

Conversely, suppose $\sqrt[10]{n}$ is rational. Then $\sqrt[10]{n} = \frac{p}{q}$ for some integer p, q and by reducing the fraction if necessary we can assume that gcd(p,q) = 1.

Then $\frac{p}{q}$ is a rational solution of the equation $x^{10} - m = 0$. Since gcd(p,q) = 1, by the Rational Root Theorem this implies that p|n and q|1. Therefore, $q = \pm 1$ and hence $\frac{p}{q} = m$ is actually an integer. This means that $n = (\frac{p}{q})^{10} = m^{10}$ is a complete 10th power. 4

(6) (15 pts) Let p = 11, q = 3 and E = 13. Let $N = 11 \cdot 3 = 33$. The receiver broadcasts the numbers N = 33, E = 13. The sender wants to send a secret message M to the receiver using RSA encryption. What is sent is the number R = 2.

Decode the original message M.

Solution

We compute $\phi(N) = \phi(3 \cdot 11) = 2 \cdot 10 = 20$. To decode the message we need to find D such that $ED \equiv 1 \pmod{\phi(N)}$ which in our case means $13D \equiv 1 \pmod{20}$. Observe that $13 \cdot 3 = 39 \equiv -1 \pmod{20}$. Therefore, $13 \cdot (-3) \equiv 1 \pmod{20}$ and $13 \cdot 17 \equiv 1 \pmod{20}$. Thus we can take D = 17. This can also be computed using the Euclidean algorithm.

 $20 = 13 \cdot 1 + 7, 13 = 7 \cdot 1 + 6, 7 = 6 \cdot 1 + 1, 6 = 1 \cdot 6 + 0.$ Thus 1 = gcd(13, 20).

From the first equation we get $7 = 20 \cdot 1 - 13 \cdot 1$. From the second that $6 = 13 \cdot 1 - 7 \cdot 1 = 13 \cdot 1 - (20 \cdot 1 - 13 \cdot 1) \cdot 1 = 13 \cdot 2 - 20 \cdot 1$. Next, $1 = 7 \cdot 1 - 6 \cdot 1 = (20 \cdot 1 - 13 \cdot 1) \cdot 1 - (13 \cdot 2 - 20 \cdot 1) \cdot 1 = 20 \cdot 2 - 13 \cdot 3$.

Thus $20 \cdot 2 - 13 \cdot 3 = 1$ which means that $13 \cdot (-3) \equiv 1 \pmod{20}$ and hence $13 \cdot 17 \equiv 1 \pmod{20}$.

Either way we can take D = 17.

By the general RSA procedure, $M = R^D \pmod{N}$. In our case this gives $M = 2^{17} \pmod{33}$. To compute it notice that $2^5 = 32 \equiv -1 \pmod{33}$. Therefore, $2^{17} = (2^5)^3 \cdot 2^2 \equiv (-1)^3 \cdot 4 \equiv -4 \equiv 29 \pmod{33}$.

Answer: M = 29.