
MAT 246S Solutions to the Term Test Winter 2013

(1) (10 pts) The pigeonhole principle states that if n items are put into m pigeonholes
with n > m, then at least one pigeonhole must contain more than one item.

Prove the pigeonhole principle by induction in m.

Solution

We prove it by induction on m.
If m = 1 then the statement is obvious as we have n > 1 objects and only one

pigeonhole.
Induction step. Suppose the pigeonhole principle has been proved for m− 1 ≥ 1

and we want to prove it for m.
Suppose we have n > m items distributed between m pigeonholes. Consider the

last pigeonhole. If it contains more than one item we are done. Suppose it has
exactly one item. Then the remaining n− 1 items are distributed between the first
m − 1 pigeonholes and since n − 1 > m − 1, by the induction assumption we can
conclude that one of the first m− 1 holes contains at least two items.

Similarly, if the last pigeonhole is empty and contains no items at all then we
have that n items are distributed between the first m − 1 pigeonholes. Since n >
m > m− 1, we can again use the induction assumption to conclude that one of the
first m− 1 holes contains at least two items.

(2) (15 pts) Let a, b be relatively prime natural numbers bigger than 1.
Prove that

aφ(b) + bφ(a) ≡ 1 (mod ab)

Hint: Use that gcd(a, b) can be written as gcd(a, b) = ax+ by for some integer x
and y.

Solution 1 (not using the hint)

Since (a, b) = 1, by Euler’s theorem a|(bφ(a) − 1) and therefore

a|(aφ(b) + (bφ(a) − 1)) = aφ(b) + bφ(a) − 1
1
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Similarly b|(aφ(b) − 1) and hence

b|(bφ(a) + (aφ(b) − 1)) = aφ(b) + bφ(a) − 1

Since (a, b) = 1 this implies that ab|(aφ(b)+bφ(a)−1) i.e. aφ(b)+bφ(a) ≡ 1 (mod ab)

Solution 2 (using the hint)

Since gcd(a, b) = 1 there exist integer x and y such that ax+ by = 1.
By Euler’s theorem aφ(b) ≡ 1 (mod b). Therefore, aφ(b) ≡ 1− kb (mod b) for any

integer k. In particular, aφ(b) ≡ 1 − yb (mod b). But 1 − yb = xa ≡ 0 (mod a)
Therefore aφ(b) − (1 − yb) = aφ(b) − ax ≡ 0 (mod a). Thus, a|aφ(b) − (1 − yb) and
b|aφ(b) − (1− yb) and hence ab|aφ(b) − (1− yb) since gcd(a, b) = 1. In other words,
aφ(b) ≡ 1− yb (mod ab).

Similarly, bφ(a) ≡ 1− xa (mod ab). Adding these congruencies we obtain

aφ(b) + bφ(a) ≡ 1− yb+ 1− xa = 2− (ax+ by) = 1 (mod ab)

(3) (10 pts) Let n ≥ 2 be a composite number.
Prove that there exists a prime number p ≤

√
n which divides n.

Solution

A composite number contains at least two prime factors. Therefore n = pqc
where p, q are prime and c ≥ 1. We can assume that p ≤ q (otherwise we can just
rename them).

Therefore n = pqc ≥ pq ≥ p2 and hence
√
n ≥ p.

(4) (a) (20 pts) Let p > 1 be a prime number.
Find 2(p!)

2

(mod p).

Solution
If p = 2 then 2(p!)

2 ≡ 0 (mod 2).
Suppose p > 2. Then p is not divisible by 2 and hence 2p−1 ≡ 1 (mod p) by
Fermat’s theorem. Therefore 2k(p−1) = (2p−1)k ≡ 1 (mod p) for any natural k.
Since (p!)2 is divisible by p− 1 this implies that 2(p!)

2 ≡ 1 (mod p).
(b) Find (26!)143 (mod 29).

Solution
Recall that by Wilson’s theorem (p − 1)! ≡ −1 (mod p) for any prime p.
Applying this to p = 29 we see that 28! ≡ −1 (mod 29). We can rewrite
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28! = 26! · 27 · 28. Since 27 ≡ −2 (mod 29) and 28 ≡ −1 (mod 29) This gives
26! · (−2) · (−1) ≡ −1 (mod 29) or 26! · (−2) ≡ 1 (mod 29).
Therefore

(26!)143 · (−2)143 ≡ 1 (mod 29)

Let’s find (−2)143 (mod 29). By Fermat’s theorem (−2)28 ≡ 1 (mod 29). Since
143 = 5 · 28 + 3 this gives (−2)143 ≡ (−2)3 = −8 (mod 29).
Thus (26!)143 · (−8) ≡ 1 (mod 29). Therefore we need to solve the equation
−8x ≡ 1 (mod 29). Since (8, 29) = 1 it has only one solution mod 29. We can
find it using the Euclidean algorithm or by guessing. Observe that 8 ·11 = 88 =
3 · 29 + 1. Hence (−11) · (−8) ≡ 1 (mod 29).
Therefore, (26!)143 ≡ −11 ≡ 18 (mod 29).
Answer: (26!)143 ≡ 18 (mod 29).

(c) Find 23
101

(mod 15).

Solution
Observe that (2, 15) = 1. We compute φ(15) = φ(3 · 5) = 2 · 4 = 8. Therefore,
by Euler’s theorem, 2φ(15) = 28 ≡ 1 (mod 1)5.
Thus we need to find 3101 (mod 8). Notice that 32 = 9 ≡ 1 (mod 8). Hence
32k ≡ 1 (mod 8) for any natural k. Therefore, 3100 = 3100 · 3 ≡ 1 · 3 ≡ 3
(mod 8). In other words, 3101 = 3 + 8m for some natural number m.
Therefore 23

101

= 23+8m ≡ 23 = 8 (mod 15).
Answer: 23

101 ≡ 8 (mod 15).
(5) (10 pts) Let n be a natural number. Prove that 10

√
n is rational if and only if n is

a complete 10th power, i.e. n = m10 for some natural number m.

Solution

If n = m10 is a complete 10th power then, obviously, 10
√
n = m is rational.

Conversely, suppose 10
√
n is rational. Then 10

√
n = p

q for some integer p, q and by

reducing the fraction if necessary we can assume that gcd(p, q) = 1.
Then p

q is a rational solution of the equation x10−m = 0. Since gcd(p, q) = 1, by

the Rational Root Theorem this implies that p|n and q|1. Therefore, q = ±1 and
hence p

q = m is actually an integer. This means that n = (pq )
10 = m10 is a complete

10th power.
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(6) (15 pts) Let p = 11, q = 3 and E = 13. Let N = 11·3 = 33. The receiver broadcasts
the numbers N = 33, E = 13. The sender wants to send a secret message M to the
receiver using RSA encryption. What is sent is the number R = 2.

Decode the original message M .

Solution

We compute φ(N) = φ(3 · 11) = 2 · 10 = 20. To decode the message we need to
find D such that ED ≡ 1 (mod φ(N)) which in our case means 13D ≡ 1 (mod 20).
Observe that 13 · 3 = 39 ≡ −1 (mod 20). Therefore, 13 · (−3) ≡ 1 (mod 20) and
13 · 17 ≡ 1 (mod 20). Thus we can take D = 17. This can also be computed using
the Euclidean algorithm.

20 = 13 · 1 + 7, 13 = 7 · 1 + 6, 7 = 6 · 1 + 1, 6 = 1 · 6 + 0. Thus 1 = gcd(13, 20).
From the first equation we get 7 = 20 · 1 − 13 · 1. From the second that 6 =

13 · 1− 7 · 1 = 13 · 1− (20 · 1− 13 · 1) · 1 = 13 · 2− 20 · 1. Next, 1 = 7 · 1− 6 · 1 =
(20 · 1− 13 · 1) · 1− (13 · 2− 20 · 1) · 1 = 20 · 2− 13 · 3.

Thus 20 · 2 − 13 · 3 = 1 which means that 13 · (−3) ≡ 1 (mod 20) and hence
13 · 17 ≡ 1 (mod 20).

Either way we can take D = 17.
By the general RSA procedure, M = RD (mod N). In our case this gives M =

217 (mod 33). To compute it notice that 25 = 32 ≡ −1 (mod 33). Therefore,
217 = (25)3 · 22 ≡ (−1)3 · 4 ≡ −4 ≡ 29 (mod 33).
Answer: M = 29.


