
Solutions to Practice Final 3

1. The Fibonacci sequence is the sequence of numbers F (1), F (2), . . . defined by the
following recurrence relations:
F (1) = 1, F (2) = 1, F (n) = F (n− 1) + F (n− 2) for all n > 2.
For example, the first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, . . .

(a) Prove by induction that for any n ≥ 1 the consequtive Fibonacci numbers F (n)
and F (n+ 1) are relatively prime.

(b) Prove by induction that for any n ≥ 1 the following identity holds

F (2) + F (4) + . . . F (2n) = F (2n+ 1)− 1

Solution

(a) Since F (1) = F (2) = 1 the statement is true for n = 1.

Suppose we have proved that gcd(F (n), F (n + 1)) = 1 for some n ≥ 1. Observe
that for any integers a and b we have that d|a and d|b if and only if d|a and d|a+b.
Therefore, gcd(a, b) = gcd(a, a+ b).

Using the above observation we conclude gcd(F (n + 1), F (n + 2)) = gcd(F (n +
1), F (n) + F (n+ 1)) = gcd(F (n+ 1), F (n)) = 1 where the last equality holds by
the induction assumption.

This proves the induction step and therefore gcd(F (n), F (n + 1)) = 1 for any
n ≥ 1.

(b) First we check that the formula holds for n = 1:

F (2) = 1 = 2− 1 = F (3)− 1

Induction step. Suppose we’ve already proved that

F (2) + F (4) + . . . F (2n) = F (2n+ 1)− 1

for some n ≥ 1. Then F (2)+F (4)+. . . F (2n)+F (2·(n+1)) = F (2n+1)−1+F (2n+2) =
F (2n+ 3)− 1 = F (2(n+ 1) + 1)− 1.

Therefore the formula holds for n+ 1. This proves the induction step and hence

F (2) + F (4) + . . . F (2n) = F (2n+ 1)− 1

for any n ≥ 1.

2. (a) Find the remainder when 73100 is divided by 20.
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Solution

We find φ(20) = φ(22 ·5) = (22−21) ·(5−1) = 8. Since gcd(7, 20) = 1 this implies
that 78 ≡ 1 (mod 20) by Euler’s theorem. Thus we need to find 3100 (mod 8).
We have 32 = 9 ≡ 1 (mod 8). Therefore 3100 = (32)50 ≡ 150 ≡ 1 (mod 8), i.e.
3100 = 8k + 1 for some natural k. Hence 73100 = 78k+1 = (78)k · 7 ≡ 1k · 7 ≡ 7
(mod 20).

Answer: 73100 ≡ 7 (mod 20).

(b) Find 2p!( mod p) where p is an odd prime.

Solution

By Fermat’s theorem 2p−1 ≡ 1 (mod p). Since p − 1 divides p! this implies that
2p! ≡ 1 (mod p) too.

Answer: 2p! ≡ 1 (mod p).

3. Prove that q1
√

2 + q2
√

6 is irrational for any rational q1, q2 unless q1 = q2 = 0.

Solution

Suppose x = q1
√

2 + q2
√

6 is rational and at least one of the numbers q1, q2 is not zero.

Case 1. q1 = 0, q2 6= 0. This means that x = q2
√

6 is rational and hence
√

6 = x
q2

is
rational too. This is false and therefore this case is impossible.

Case 2. q1 6= 0, q2 = 0. As above this means that x = q1
√

2 is rational and hence√
2 = x

q1
is also rational. This is known to be false and hence this case is impossible

too.

Case 3. q1 6= 0, q2 6= 0. Squaring both sides of the formula x = q1
√

2 + q2
√

6 we get

x2 = 2q21 +6q22 +2q1q2
√

12 = 2q21 +6q22 +4q1q2
√

3. Therefore
√

3 =
x2−2q21−6q22

4q1q2
is rational

(note that the denominator in this fraction is not zero). This is a contradiction.

Thus, q1
√

2 + q2
√

6 is irrational for any rational q1, q2 unless q1 = q2 = 0.

4. Suppose (φ(m),m) = 1. Here m is a natural number and φ is the Euler function.

Prove that
√
m is irrational.

Solution

Let m = pk11 · . . . · p
kl
l be the prime decomposition of m where p1, . . . , pl are distinct

primes. Then φ(m) = (pk11 − pk1−11 ) · . . . · (pkll − p
kl−1
l ).

If some ki > 1 this formula implies that pi divides φ(m) and hence gcd(φ(m),m) 6= 1.
Thus, if gcd(φ(m),m) = 1 then all ki are equal to 1. Therefore m = p1 · . . . · pk is not
a complete square and hence

√
m is irrational.
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5. Let p = 11, q = 5 and E = 23. Let N = 11 · 5 = 55. The receiver broadcasts the
numbers N = 55, E = 23. The sender sends a secret message M to the receiver using
RSA encryption. What is sent is the number R = 2.

Decode the original message M .

Solution

First we compute φ(N) = (5 − 1) · (11 − 1) = 40. Thus we need to find a decoder D
such that DE ≡ 1 (mod 40) where E = 23. We find D using the Euclidean algorithm.

40 = 23 · 1 + 17, 17 = 40 · 1− 23 · 1,
23 = 17 · 1 + 6, 6 = 23 · 1− 17 · 1 = 23 · 1− (40 · 1− 23 · 1) = 23 · 2− 40 · 1,
17 = 6 · 2 + 5, 5 = 17 · 1− 6 · 2 = (40 · 1− 23 · 1)− (23 · 2− 40 · 1) · 2 = 40 · 3− 23 · 5,
6 = 5 · 1 + 1, 1 = 6 · 1− 5 · 1 = (23 · 2− 40 · 1)− (40 · 3− 23 · 5) = 23 · 7− 40 · 4.

Thus 23 · 7 ≡ 1 (mod 40) and we can take D = 7.

Then M = RD (mod N) = 27 (mod 55) = 128 (mod 55) ≡ 18 (mod 55).

Answer: M = 18.

6. (a) Find all complex roots of the equation

z6 + (1− i)z3 − i = 0

Solution

Put y = z3. We first need to solve y2 + (1− i)y − i = 0.

We have y =
−(1−i)±

√
(1−i)2+4i

2
= −(1−i)±

√
12+i2−2i−4i
2

= −(1−i)±
√
12+i2+2i

2
=
−(1−i)±

√
(1+i)2

2

= −(1−i)±(1+i)
2

which gives y1 = −(1−i)+(1+i)
2

= i and y2 = −(1−i)−(1+i)
2

= −1.

Next, we separately solve z3 = i and z3 = −1.

From the first equation we get z3 = i = 1(cos π
2

+ i sin π
2
) and hence z =

3
√

1((cos
π
2
+2πk

3
+i sin

π
2
+2πk

3
) = cos(π

6
+ 2πk

3
)+i sin(π

6
+ 2πk

3
) for k = 0, 1, 2. Plugging

in k = 0, 1, 2 this gives

z1 = cos(π
6

+ 0) + i sin(π
6

+ 0) =
√
3
2

+ i
2
,

z2 = cos(π
6

+ 2π
3

) + i sin(π
6

+ 2π
3

) = cos(5π
6

) + i sin(5π
6

) = −
√
3
2

+ i
2
,

z3 = cos(π
6

+ 4π
3

) + i sin(π
6

+ 4π
3

) = cos(3π
2

) + i sin(3π
2

) = −i.
Similarly, from the second equation we get

z3 = −1 = cos π + i sin π and hence z = cos π+2πk
3

+ i sin π+2πk
3

for k = 0, 1, 2.

Plugging in k = 0, 1, 2 this gives

z4 = cos π+0
3

+ i sin π+0
3

=
√
3
2

+ i
2
,

z5 = cos π+2π
3

+ i sin π+2π
3

= cosπ + i sin π = −1,

z6 = cos π+4π
3

+ i sin π+4π
3

= cos 5π
3

+ i sin 5π
3

= cos −π
3

+ i sin −π
3

=
√
3
2
− i

2
.
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(b) Express as a+ bi for some real a, b:

6100

(3 +
√

3i)103

Solution

First we compute |3 +
√

3i| =
√

9 + 3 =
√

12 = 2
√

3. Therefore, we can rewrite

3 +
√

3i = 2
√

3(
√
3
2

+ i
2
) = 2

√
3(cos π

6
+ i sin π

6
).

Thus,

6100

(3 +
√

3i)103
=

6100

(2
√

3(cos π
6

+ i sin π
6
))103

=
6100

(2
√

3)103
· (cos(−π

6
) + i sin(−π

6
))103

=
6100

(2
√

3)103
·(cos(−103π

6
)+i sin(−103π

6
)) =

6100

(2
√

3)103
·(cos(−17π−π/6)+i sin(−17π−π/6))

=
6100

(2
√

3)103
· (cos(5π/6) + i sin(5π/6)) =

6100

(2
√

3)103
· (−
√

3

2
+
i

2
)

7. A complex number is called algebraic if it is a root of a polynomial with integer coef-
ficients.

Prove that the set of algebraic numbers is countable.

Solution

For a polynomial f let us denote by Zf the set of roots of f . Then the set of algebraic
numbers A is equal to

⋃
f∈P Zf where P is the set of all nonzero polynomials. Since a

nonzero polynomial of degree n has at most n roots we have that Zf is finite (and hence
countable) for every f . Since a union of countably many countable sets is countable
it’s therefore enough to prove that P is countable. We can write P as the union
P =

⋃
n∈N Pn where Pn is the set of nonzero polynomials of degree n. A polynomial

f(x) of degree n is given by f(x) = anx
n + . . . + a1x + a0. The correspondence f 7→

(an, an−1, . . . , a1, a0) give an injective map Pn → Zn+1 and since |Zn+1| = |Nn+1| = |N |
we conclude that Pn is countable. Therefore P =

⋃
n∈N Pn is also countable as a union

of countably many countable sets and hence so is A.

8. Suppose 0 < α < π/2 satisfies cosα = 1
6
. Prove that the angle α can not be trisected

with a ruler and a compass.

Solution

4



Recall that cos 3θ = 4 cos3 θ − 3 cos θ for any θ.

Note that the angle α is constructible since cosα = 1
6

is a constructible number.

Suppose α can be trisected. Then x = cos(α/3) is also constructible and satisfies
4x3 − 3x = 1

6
or 8x3 − 6x = 1

3
, (2x)3 − 3 · (2x) = 1

3
. If x is constructible then so is

y = 2x which satisfies y3 − 3y = 1
3
, 3y3 − 9y − 1 = 0. This is a cubic polynomial with

rational coefficients. If it has a constructible root it also has a rational one. Suppose
p
q

is a rational root where gcd(p, q) = 1. By the rational root theorem we must have

that p| − 1 and q|3. Therefore, p = ±1, q = ±1,±3 and p
q

= ±1,±1
3
. Plugging in these

numbers into 3y3 − 9y − 1 = 0 we get

3 · 13− 9− 1 = −7 6= 0, 3 · (−1)3− 9 · (−1)− 1 = 5 6= 0, 3 · (1
3
)3− 9 · 1

3
− 1 = 1

9
− 4 6= 0,

3 · (−1
3
)3 − 9 · (−1

3
)− 1 = −1

9
+ 2 6= 0.

Thus 3y3 − 9y − 1 = 0 has no rational roots. This is a contradiction and hence α can
not be trisected with a ruler and a compass.

9. Let S be that set of all functions f : R→ R.

Prove that |S| > |R|.

Solution

The set S contains the set T = {f : R → {0, 1}}. Therefore |S| ≥ |T |. However T
is bijective to P (R) which is the set of all subsets of R and |P (R)| > |R| by Cantor’s
theorem.

Therefore |S| ≥ |T | = |P (R)| > |R|.

10. For each of the following answer ”true” or ”false”. Justify your answer.

a)
√ √

5
3√2+
√
11

is constructible.

Solution

Suppose x =
√ √

5
3√2+
√
11

is constructible. Then x2 =
√
5

3√2+
√
11

is also constructible and

hence so is 1
x2

=
3√2+
√
11√

5
. Since both

√
5 and

√
11 are constructible this implies that

3
√

2 is constructible too. But 3
√

2 is a root of the cubic polynomial with rational
coefficients y3 − 2 = 0. If it has a constructible root it also has a rational one.
Suppose p

q
is a rational root where gcd(p, q) = 1. By the rational root theorem we

must have that p| − 2 and q|1 so that p = ±1,±2, q = ±1 and therefore p/q =
±1,±2. Plugging these numbers into y3 − 2 = 0 we see that none are roots.

13 − 2 = −1 6= 0, (−1)3 − 2 = −3 6= 0, 23 − 2 = 6 6= 0, (−2)3 − 2 = −10 6= 0.

Therefore 3
√

2 is not constructible which mans that
√ √

5
3√2+
√
11

is not constructible

either.

Answer: False.
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b) If x is not constructible then
√
x is also not constructible.

Solution

If
√
x is constructible then x =

√
x ·
√
x is constructible too because the product of

two constructible numbers is constructible.

Answer: True.

c) If x is constructible then 8
√
x is also constructible.

Solution

Square root of a constructible number is constructible. Therefore if x is constructible
then so are

√
x,

√√
x = 4
√
x and

√
4
√
x = 8
√
x.

Answer: True.
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