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2.

Solutions to Practice Final 3

The Fibonacci sequence is the sequence of numbers F(1), F'(2),... defined by the
following recurrence relations:

F(1)=1,F(2)=1,F(n)=F(n—-1)+ F(n—2) for all n > 2.

For example, the first few Fibonacci numbers are 1,1,2,3,5,8,13, ...

(a) Prove by induction that for any n > 1 the consequtive Fibonacci numbers F'(n)
and F'(n + 1) are relatively prime.

(b) Prove by induction that for any n > 1 the following identity holds
F2)+ F4)+...F2n)=F2n+1) -1

Solution

(a) Since F(1) = F(2) = 1 the statement is true for n = 1.

Suppose we have proved that ged(F(n), F(n + 1)) = 1 for some n > 1. Observe
that for any integers a and b we have that d|a and d|b if and only if d|a and d|a+b.
Therefore, ged(a,b) = ged(a, a + ).

Using the above observation we conclude ged(F(n + 1), F(n + 2)) = ged(F(n +
1),F(n)+ F(n+1)) = ged(F(n+ 1), F(n)) = 1 where the last equality holds by
the induction assumption.

This proves the induction step and therefore ged(F(n), F(n + 1)) = 1 for any
n > 1.

(b) First we check that the formula holds for n = 1:

F2)=1=2-1=F3)-1
Induction step. Suppose we've already proved that

FQ)+F4) +...F(2n)=F2n+1)—1

for somen > 1. Then F(2)+F(4)+... F(2n)+F(2-(n+1)) = F(2n+1)—1+F(2n+2) =
F2n+3)—1=FQ2(n+1)+1)—1.

Therefore the formula holds for n + 1. This proves the induction step and hence
F2)+F4)+...F2n)=F(2n+1)—1
for any n > 1.

(a) Find the remainder when 73 is divided by 20.



Solution

We find ¢(20) = ¢(2%-5) = (22—2')-(5—1) = 8. Since gcd(7,20) = 1 this implies
that 7 = 1 (mod 20) by Euler’s theorem. Thus we need to find 3% (mod 8)
We have 3> = 9 = 1 (mod 8). Therefore 3'%° = (32)°° = 1°° = 1 (mod 8), i
3190 — 8k + 1 for some natural k. Hence 73" = 7841 — (78)F .7 = 1k .7 = 7
(mod 20).

Answer: 7" =7 (mod 20).
(b) Find 2?"( mod p) where p is an odd prime.
Solution
By Fermat’s theorem 2°~! = 1 (mod p). Since p — 1 divides p! this implies that

2" =1 (mod p) too.
Answer: 2?' =1 (mod p).

3. Prove that ¢;v/2 + ¢21/6 is irrational for any rational ¢y, ¢ unless ¢; = ¢o = 0.
Solution

Suppose = = ¢1v/2+ ¢21/6 is rational and at least one of the numbers g, ¢ is not zero.

Case 1. ¢ = 0,q2 # 0. This means that = = qz\/é is rational and hence v6 = £
rational too. This is false and therefore this case is impossible.

Case 2. ¢1 # 0,¢o = 0. As above this means that z = ¢;1/2 is rational and hence
V2 = q% is also rational. This is known to be false and hence this case is impossible
too.

Case 3. q1 # 0,q2 # 0. Squaring both sides of the formula x = Q1\/_ + Q2\/_ 6 we get
2% = 22+ 643 4 2q192V/12 = 2¢3 4+ 643 + 4q192/3. Therefore /3 = 222207643 5o 1ational

49192
(note that the denominator in this fraction is not zero). This is a contradiction.

Thus, ¢1v/2 + ¢21/6 is irrational for any rational ¢, g» unless ¢ = g» = 0.

4. Suppose (¢(m), m) = 1. Here m is a natural number and ¢ is the Euler function.

Prove that \/m is irrational.

Solution
Let m = p]fl Cae pfl be the prime decomposition of m where py,...,p; are distinct
primes. Then ¢(m) = (pf* — pi=t) ... .- (p p;” h.
If some k; > 1 this formula implies that p; divides ¢(m) and hence ged(d(m), m) # 1.
Thus, if ged(¢p(m), m) =1 then all k; are equal to 1. Therefore m = p; - ... - py is not

a complete square and hence /m is irrational.
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d.

6.

Let p=11,g = 5 and F = 23. Let N = 11 -5 = 55. The receiver broadcasts the
numbers N = 55, F = 23. The sender sends a secret message M to the receiver using
RSA encryption. What is sent is the number R = 2.

Decode the original message M.
Solution

First we compute ¢(N) = (5 —1)- (11 — 1) = 40. Thus we need to find a decoder D
such that DE =1 (mod 40) where £ = 23. We find D using the Euclidean algorithm.

40=123-1+17,17=40-1-23-1,
23=17-146,6=23-1—17-1=23-1—(40-1—23-1)=123-2—-40-1,
17=6-2455=17-1-6-2=(40-1—-23-1) — (23-2—-40-1)-2=40-3 — 235,
6=5-1+1,1=6-1-5-1=(23-2—40-1) — (40-3—23-5) =23-7—40- 4.

Thus 23 -7 =1 (mod 40) and we can take D = 7.
Then M = RP (mod N) =27 (mod 55) = 128 (mod 55) = 18 (mod 55).
Answer: M = 18.

(a) Find all complex roots of the equation
P+ (1-9)2—i=0
Solution

Put y = 23. We first need to solve y> + (1 — i)y — i = 0.

We have y = —(1=)£4/(1=0)2+4i (1) EVIZ42—2i—di _ —(1—)EV124i2+2 _ —(1—i)E4/(14i)2

2 . 2 - 2 S 2
_ == z):l: 144) which gives yl —(1- z)2+(1+2) =i and yp = —(1—@)2—(1+z) -1
Next, we separately solve 2% =i and 2° = —1.
From the first equation we get z* = i = 1(cos5 + isin%) and hence z =

V/1((cos g+327rk+isin g+327rk) = cos(Z+ %) +isin(Z +2) for k = 0,1,2. Plugging
in k=0,1,2 this gives

z1 = cos(§ +0) +isin(§ +0) = ‘[ +4

zp = cos(§ + %’T) +isin(§ + 2;) = cos( ) +isin(3F) = —B 4L

23 =cos(f + &) +isin(f + ) = cos(3) +isin(F) = —i.

Similarly, from the second equation we get

2% = —1=cos7 +isinm and hence z = cos TEZ2E 4 jsin T2 for k=0, 1,2.

Plugging in k = 0,1, 2 this gives

zy = cos T2 +isin ”;0 ‘[ + i
7r+27r

z5 = cos 728 + ¢ gin =T ”+2” = cos7r+isin7r = —1,
%6 :cos.”Jr47r —i—zsm’”g“ = cos 2 +isin 2 = cos ¥ +isin 5F = ¥ — L.




(b) Express as a + bi for some real a, b:

6100

(3+ v/3i)103

Solution

First we compute |3 4+ v/3i| = /9 + 3 = v/12 = 2¢/3. Therefore, we can rewrite
34+ v3i=2v3(L + 1) =2v3(cos T +isinT).

Thus,
6100 6100 6100 - B _
- = - (cos(—=) +isin(——=
(3 + /31)108 (2\/§(COS% +isin §))103 (2¢/3)103 (cos( 6) ( 6))
6% 1037, ., 103w 6100 N
- (2\/3)103'((308(_ 6 )+isin(— 6 ) = (2\/5)103'(COS(—177T—7T/6)+2 sin(—17r—m/6))

6100 6100 V3 i
= —— - (cos(dbm/6) +1sin(b7/6)) = ———— - (——— + =
gy (€ONEn/6) +isnET/6) = o (<)
7. A complex number is called algebraic if it is a root of a polynomial with integer coef-
ficients.

Prove that the set of algebraic numbers is countable.
Solution

For a polynomial f let us denote by Z; the set of roots of f. Then the set of algebraic
numbers A is equal to |J rep Zy where P is the set of all nonzero polynomials. Since a
nonzero polynomial of degree n has at most n roots we have that Z; is finite (and hence
countable) for every f. Since a union of countably many countable sets is countable
it’s therefore enough to prove that P is countable. We can write P as the union
P = {J,en Pn where P, is the set of nonzero polynomials of degree n. A polynomial
f(z) of degree n is given by f(z) = a,2™ + ...+ a1z + ag. The correspondence f +—
(@nyQn_1,--.,a1,a0) give an injective map P, — Z" and since | Z"*!| = [N"*!| = |N|
we conclude that P, is countable. Therefore P = UnG ~ Pn is also countable as a union
of countably many countable sets and hence so is A.

8. Suppose 0 < o < 7/2 satisfies cosa = %. Prove that the angle v can not be trisected
with a ruler and a compass.

Solution



10.

Recall that cos 30 = 4 cos®  — 3cosf for any 6.
1

Note that the angle a is constructible since cosa = ¢ is a constructible number.

Suppose « can be trisected. Then z = cos(a/3) is also constructible and satisfies

42% — 3z = § or 82% — 6z = %, (22)* — 3 (22) = 4. If  is constructible then so is
y = 2z which satisfies y* — 3y = ,3y® — 9y — 1 = 0. This is a cubic polynomial with

rational coefficients. If it has a constructible root it also has a rational one. Suppose

§ is a rational root where ged(p,q) = 1. By the rational root theorem we must have

that p| — 1 and ¢|3. Therefore, p = +1,q = +1,£3 and § = =41, :I:%. Plugging in these
numbers into 3y — 9y — 1 = 0 we get

1 1 1
3-13—9—1:—77&0,3-(—1)3—9-(—1)—1:57&0,3-(3)3—9-3—1:5—47&0,
3-(—3)P=9- (=) —-1=-L+2#0.
Thus 3y — 9y — 1 = 0 has no rational roots. This is a contradiction and hence a can
not be trisected with a ruler and a compass.

Let S be that set of all functions f: R — R.
Prove that |S| > |R|.

Solution

The set S contains the set T = {f: R — {0,1}}. Therefore |S| > |T'|. However T
is bijective to P(R) which is the set of all subsets of R and |P(R)| > |R| by Cantor’s
theorem.

Therefore |S| > |T| = |P(R)| > |R|.
For each of the following answer "true” or "false”. Justify your answer.

a) 1/ =22~ is constructible.

V2+v/11
Solution
Suppose © = %‘f NG is constructible. Then x? = %{5 AT is also constructible and
3
hence so is x—lg = ﬁ\’;g*/ﬁ Since both v/5 and /11 are constructible this implies that

/2 is constructible too. But /2 is a root of the cubic polynomial with rational
coefficients y*> — 2 = 0. If it has a constructible root it also has a rational one.
Suppose § is a rational root where ged(p, q) = 1. By the rational root theorem we
must have that p| — 2 and ¢|1 so that p = +1,£2, ¢ = £1 and therefore p/q =
+1, £2. Plugging these numbers into y* — 2 = 0 we see that none are roots.

13-2=-14£0,(-1P%-2=-34£0,28-2=6+£0,(—2)3—2=-10£0.

Therefore /2 is not constructible which mans that Wl not constructible

either.
Answer: False.



b) If x is not constructible then /z is also not constructible.
Solution

If \/z is constructible then = \/z - \/z is constructible too because the product of
two constructible numbers is constructible.

Answer: True.
c) If = is constructible then /x is also constructible.
Solution

Square root of a constructible number is constructible. Therefore if x is constructible

then so are v/, \/v/z = x and \/Vz = /.

Answer: True.



