Practice Final 3

1. The Fibonacci sequence is the sequence of numbers $F(1), F(2), \ldots$ defined by the following recurrence relations:

$$F(1) = 1, F(2) = 1, F(n) = F(n-1) + F(n-2)$$
 for all $n > 2$.

For example, the first few Fibonacci numbers are $1, 1, 2, 3, 5, 8, 13, \ldots$

- (a) Prove by induction that for any $n \ge 1$ the consequtive Fibonacci numbers F(n) and F(n+1) are relatively prime.
- (b) Prove by induction that for any $n \ge 1$ the following identity holds

$$F(2) + F(4) + \dots + F(2n) = F(2n+1) - 1$$

- 2. (a) Find the remainder when $7^{3^{100}}$ is divided by 20.
 - (b) Find $2^{p!} \pmod{p}$ where p is an odd prime.
- 3. Prove that $q_1\sqrt{2} + q_2\sqrt{6}$ is irrational for any rational q_1, q_2 unless $q_1 = q_2 = 0$.
- 4. Suppose $(\phi(m), m) = 1$. Here m is a natural number and ϕ is the Euler function. Prove that \sqrt{m} is irrational.
- 5. Let p=11, q=5 and E=23. Let $N=11\cdot 5=55$. The receiver broadcasts the numbers N=55, E=23. The sender sends a secret message M to the receiver using RSA encryption. What is sent is the number R=2.

Decode the original message M.

6. (a) Find all complex roots of the equation

$$z^6 + (1 - i)z^3 - i = 0$$

(b) Express as a + bi for some real a, b:

$$\frac{6^{100}}{(3+\sqrt{3}i)^{103}}$$

7. A complex number is called *algebraic* if it is a root of a polynomial with integer coefficients.

Prove that the set of algebraic numbers is countable.

- 8. Suppose $0 < \alpha < \pi/2$ satisfies $\cos \alpha = \frac{1}{6}$. Prove that the angle α can not be trisected with a ruler and a compass.
- 9. Let S be that set of all functions $f: \mathbb{R} \to \mathbb{R}$. Prove that $|S| > |\mathbb{R}|$.
- 10. For each of the following answer "true" or "false". Justify your answer.
 - a) $\sqrt{\frac{\sqrt{5}}{\sqrt[3]{2}+\sqrt{11}}}$ is constructible.
 - b) If x is not constructible then \sqrt{x} is also not constructible.
 - c) If x is constructible then $\sqrt[8]{x}$ is also constructible.