
Solutions to Practice Final 1

1. (a) What is φ(20100) where φ is Euler’s φ-function?

(b) Find an integer x such that 140x ≡ 133 (mod 301). Hint: gcd(140, 301) = 7.

Solution

(a) φ(20100) = φ(4100 · 5100) = φ(2200 · 5100) = (2200 − 2199)(5100 − 599) =
= 2199(2− 1)599(5− 1) = 2199 · 599 · 4 = 2201 · 599

(b) Note that 140 = 22·5·7 and 301 = 7·43 are prime decompositions. also 133 = 7·19.
therefore

140x ≡ 133 (mod 301) means 7 · 20x ≡ 7 · 19 (mod 7 · 43) and is equivalent to
20x ≡ 19 (mod 43).

Since 43 is prime and it does not divide 20, by the Little Fermat theorem we have
that 2042 ≡ 1 (mod 43) and hence 20 · 2041 · 19 ≡ 19 (mod 43). Therefore we can
take x = 2041 · 19.

2. (a) Prove, by mathematical induction, that 1 + 2 + 3 + ... + n = n(n+1)
2

for every
natural number n.

(b) Prove that for p an odd prime (that is, p is a prime that is not equal to 2),
1p + 2p + 3p + ...+ (p− 1)p ≡ 0 (mod p).

Solution

(a) First we check the formula for n = 1. we have 1 = 1(1+1)
2

so the formula is true

there. suppose the formula is proved for n ≥ 1 and 1 + 2 + 3 + ... + n = n(n+1)
2

.

Then 1 + 2 + 3 + ...+ n+ (n+ 1) = n(n+1)
2

+ (n+ 1) = n(n+1)+2(n+1)
2

= (n+1)(n+2)
2

which means that the formula is true for n+1 also. By induction this means that
the formula holds for all natural n.

(b) Prove that for p an odd prime (that is, p is a prime that is not equal to 2),
1p + 2p + 3p + ...+ (p− 1)p ≡ 0 (mod p).

By Little Fermat theorem we have that ap−1 ≡ 1 (mod p) for any a = 1, . . . , p−1.
Multiplying this by a gives ap ≡ a (mod p) any a = 1, . . . , p − 1. Therefore

1p + 2p + 3p + ... + (p − 1)p ≡ 1 + 2 + . . . (p − 1) ≡ (p−1)p
2

(mod p) by part (a).

Note that p− 1 is even which means that k = p−1
2

is an integer. therefore

1p + 2p + 3p + ...+ (p− 1)p ≡ kp ≡ 0 (mod p)

3. Prove that for any odd integer a, a and a4n+1 have the same last digit for every natural
number n.
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Solution

If a is odd and is divisible by 5 then the last digit of a is 5. therefore, the last digit of
any power of a is also 5 and the statement is clear.

Now suppose (a, 5) = 1. Since a is odd this means (a, 10) = 1 also. By Euler’s theorem
aφ(10) ≡ 1 (mod 10). we have φ(10) = φ(2 · 5) = (2 − 1) · (5 − 1) = 4. Thus a4 ≡ 1
(mod 10). therefore a4k ≡ 1 (mod 10) for any natural k and hence a4k+1 ≡ a (mod 10)
which means that a4k+1 and a have the same last digit.

4. Recall that a “perfect square” is a number of the form n2 where n is a natural number.
Show that 9120342526523 is not the sum of two perfect squares. Hint: Consider values
modulo 4.

Solution

If a ≡ 0 (mod 4) or a ≡ 2 (mod 4) then a2 ≡ 0 (mod 4). If a ≡ 1 (mod 4) or a ≡ 3
(mod 4) then a2 ≡ 1 (mod 4). Thus the only possible values of a2 (mod 4) or 0 and
1.

Therefore the only possible values (mod 4) for a2 + b2 are 0 + 0 = 0, 0 + 1 = 1 and
1 + 1 = 2.

On the other hand we have 9120342526523 = 91203425265 ·100+23 ≡ 23 ≡ 3 (mod 4)
(we used that 100 ≡ 0 (mod 4). thus 9120342526523 can not be written as a2 + b2.

5. (a) Are there rational numbers a and b such that
√

3 = a+b
√

2 ? Justify your answer.

(b) Prove that
√
5√

2+
√
11

is irrational.

Solution

(a) Suppose
√

3 = a + b
√

2 where a and b are rational. taking squares of both sides
we get 3 = a2 + 2ab

√
2 + 2b2, 3 − a2 − 2b2 = 2ab

√
2. Note that we can not have

a = 0 since it would mean
√

3 = b
√

2,
√

3
2

= b is rational. This is easily seen to

be impossible. Similarly we can not have b = 0 as this would mean that
√

3 = a
is rational. Thus 3 − a2 − 2b2 = 2ab

√
2 means

√
2 = 3−a2−2b2

2ab
is rational. this is

impossible and therefore we can not write
√

3 = a+ b
√

2 with rational a, b.

(b) Suppose
√
5√

2+
√
11

= q is rational. then
√

5 = q(
√

2 +
√

11). Note that q can not
be equal to zero.

taking squares of both sides we get 5 = q2(2 + 11 + 2
√

22). This means 5
q2

=

13 + 2
√

22,
√

22 = 5−13q2
2q2

is rational. This is a contradiction and hence
√
5√

2+
√
11

is
irrational.
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6. (a) What is the cardinality of the set of roots of polynomials with constructible coef-
ficients? Justify your answer.

(b) Let N denote the set of all natural numbers. What is the cardinality of the set of
all functions from N to {1, 3, 5}? Justify your answer.

Solution

(a) Let S be the set of roots of polynomials with constructible coefficients. It’s easy
to see that |S| ≥ |N|. On the other hand, it was proved in class that a root of
a polynomial with constructible coefficients is also a root of a polynomial with
rational coefficients. Therefore all elements of S are algebraic and hence |S| ≤ |N|.
By Schroeder-Berenstein this implies that |S| = |N|.

(b) Let N denote the set of all natural numbers. What is the cardinality of the set S
of all functions from N to {1, 3, 5}?
First observe that any such function corresponds to a sequence a1, a2, a3, . . . where
each ai is equal either 1, 3 or 5. Consider the map

f : S → R given by f(a1, a2, a3, . . .) = 0.a1a2a3 . . .. Clearly f is 1-1 which means
that |S| ≤ |R|.
On the other hand recall that |R| = |P (N)| and P (N) is equal to the set of
functions from N to {0, 1}. Since |{0, 1}| ≤ |{1, 3, 5}| we have that |R| = |P (N)| ≤
|S|.
By Schroeder-Berenstein theorem this implies that |S| = |R|.

7. Let θ be an angle between 0 and 90 degrees. Suppose that cos θ = 3
4
. Prove that θ

3
is

not a constructible angle.

Solution

let x = cos θ
3
. Suppose x is constructible. using the formula cos(θ) = 4 cos3 θ

3
− 3 cos θ

3

we see that 4x3 − 3x = 3
4
. therefore 16x3 − 12x = 3. If x is constructible then so is

y = 2x which must satisfy 2y3 − 6y = 3, 2y3 − 6y − 3 = 0. this is a cubic polynomial
with rational coefficients. If it has a constructible root it must have a rational one.
Suppose p

q
is a rational root of 2y3−6y−3 = 0 where p, q are relatively prime integers.

Then p|3 and q|2. Thus the only possibilities for p
q

are ±1,±3,±1
2
,±3

2
. Plugging those

numbers into 2y3 − 6y − 3 we see that none of them are roots. This is a contradiction
and hence, x is not constructible.

8. For each of the following numbers, state whether or not it is constructible and justify
your answer.

(a) cos θ where the angle θ
3

is constructible
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(b) 3

√
25
8

(c)
√

7 +
√

5

(d) (0.029)1/3

(e) tan 22.5◦

Solution

(a) cos(θ) = 4 cos3 θ
3
− 3 cos θ

3
, therefore it’s constructible if cos θ is.

(b) 3

√
25
8

=
3√25
2

. If it were constructible then so would be 3
√

25 which is a root of

x3 − 25 = 0. This is a cubic polynomial with rational coefficients. If it has a
constructible root it must have a rational root which has to be an integer dividing
25. The only possibilities are ±1,±5,±25. None of these are roots of x3− 25 = 0

and hence 3

√
25
8

is not constructible.

(c)
√

7 +
√

5 belongs to F2 for the tower of fields Q = F0 ⊂ F1 = F0(
√

5) ⊂ F2 =

F1(
√

7 +
√

5). Therefore
√

7 +
√

5 is constructible.

(d) (0.029)1/3 = 3

√
29

1000
is not constructible by the same argument as in (b).

(e) 22.5◦ = 90◦

4
. Since we can bisect an angle with ruler and compass, the angle

45◦ = 90◦

2
is constructible and 22.5◦ = 45◦

2
is also constructible. Intersect-

ing the angle with the unit circle we can construct the point with coordinates
(cos 22.5◦, sin 22.5◦). Therefore tan 22.5◦ = sin 22.5◦

cos 22.5◦
is also constructible.

9. Find all complex solutions of the equation z6 + z3 + 1 = 0.

Solution

Let x = z3. Then x satisfies x2 + x + 1 = 0 so x = −1±
√
−3

2
= −1±

√
3i

2
. We have two

possibilities

1) x = −1+
√
3i

2
= cos(2π/3) + i sin(2π/3). Solving z3 = x = cos(2π/3) + i sin(2π/3) we

get z = cos(2π/9 + 2πk
3

) + i sin(2π/9 + 2πk
3

) where k = 0, 1, 2. This gives 3 solutions

when k = 0 we get z1 = cos(2π/9) + i sin(2π/9)

when k = 1 we get z2 = cos(2π/9 + 2π
3

) + i sin(2π/9 + 2π
3

) = cos(8π
9

) + i sin(8π
9

)

when k = 2 we get z3 = cos(2π/9 + 4π
3

) + i sin(2π/9 + 4π
3

) = cos(14π
9

) + i sin(14π
9

)

2) x = −1−
√
3i

2
= cos(4π/3) + i sin(4π/3). Solving z3 = x = cos(4π/3) + i sin(4π/3) we

get z = cos(4π/9 + 2πk
3

) + i sin(4π/9 + 2πk
3

) where k = 0, 1, 2. As before, this gives
3 solutions

when k = 0 we get z4 = cos(4π/9) + i sin(4π/9)

when k = 1 we get z5 = cos(4π/9 + 2π
3

) + i sin(4π/9 + 2π
3

) = cos(10π
9

) + i sin(10π
9

)

when k = 2 we get z6 = cos(4π/9 + 4π
3

) + i sin(4π/9 + 4π
3

) = cos(16π
9

) + i sin(16π
9

)
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10. Let p = 3, q = 11 and e = 7. Let N = 3 · 11 = 33. The receiver broadcasts the
numbers N = 33, e = 7. The sender sends a secret message M to the receiver using
RSA encryption. What is sent is the number R = 6.

Decode to find the original message M .

Solution

We compute φ(N) = φ(33) = (3 − 1) · (11 − 1) = 20. We need to find a natural
number D such that De ≡ 1( mod φ(N)), i.e. such that 7D ≡ 1( mod 20). This can
be done Using Euclidean algorithm. We compute 20 = 2 · 7 + 6, 7 = 1 · 6 + 1 so that
1 = gcd(20, 7). Also, from 20 = 2 · 7 + 6 we can express 6 as 6 = 20− 2 · 7. Plugging
this into the second formula we get 1 = 7−6 = 7− (20−2 ·7) = 3 ·7−20 ·1. Therefore
we can take D = 3.

To decode the message we need to compute RD( mod N , i.e. 63( mod 33). We
compute 63 = 216 = 6 · 3 + 18 and hence M = 18.

Answer: M = 18.

11. Construct a polynomial with integer coefficients which has
√

2 +
√

5 as a root.

Solution

Let x =
√

2 +
√

5. Then it satisfies x −
√

2 =
√

5. Squaring both sides we get
(x−

√
2)2 = (

√
5)2 = 5, x2 − 2x

√
2 + 2 = 5, x2 − 3 = 2x

√
2. Again squaring both sides

we get (x2 − 3)2 = (2x
√

2)2 = 8x2, x4 − 6x2 + 9 = 8x2, x4 − 14x2 + 9 = 0.

Answer:
√

2 +
√

5 is a root of x4 − 14x2 + 9 = 0.
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