
(2) Let S = (0, 1) and T = [0, 1). Let f : S → T be given by f(x) = x
and g : T → S be given by g(x) = x+1

2 .
(a) Find SS , ST , S∞, TS , TT , T∞
(b) give an explicit formula for a 1-1 and onto map h : S → T

coming from f and g using the proof of the Schroeder-Berenstein
theorem.

Solution

(a) We claim that S∞ = T∞ = ∅, ST = {1 − 1
2n | for n ≥ 1},

SS = (0, 1)\ST , TT = {1− 1
2n | for n ≥ 0} and TS = (0, 1)\TT .

First we observe that f(1 − 1
2n ) = 1 − 1

2n for any n ≥ 1 and

g(1 − 1
2n ) = 1 − 1

2n+1 for any n ≥ 0. So that g(0) = 1 − 1
2 =

1
2 , f(12) = 1

2 , g(12) = 1− 1
22

= 3
4 , f(34) = 3

4 , g(34) = 1− 1
23

= 7
8 etc.

Arguing by induction we see that the last ancestor of 1− 1
2n ∈ S

for any n ≥ 1 and of 1 − 1
2n ∈ S for any n ≥ 0 is y = 0 ∈ T

(observe that 0 is not in the image of f and so has no ancestors).
Therefore {1− 1

2n | for n ≥ 1} ⊂ ST and {1− 1
2n | for n ≥ 0} ⊂ TT .

Next we claim that for any n ≥ 0 the interval (1− 1
2n , 1−

1
2n+1 )

is contained in SS . We will prove this by induction in n.
When n = 0 the interval in question is (0, 12). Observe that

g([0, 1)) = [12 , 1). Hence if x ∈ (0, 12) then it has no ancestors

and therefore (0, 12) ⊂ SS by definition of SS .

Induction step. Suppose we already proved that (1− 1
2n , 1−

1
2n+1 )

is contained in SS for some n ≥ 0.
Let x ∈ (1 − 1

2n+1 , 1 − 1
2n+2 ). Then x = g(y) for y = 2x − 1

with y ∈ (1 − 1
2n , 1 −

1
2n+1 ) so that y ∈ T is the first ancestor

of x. Then y = f(y) so that y ∈ S is the second ancestor of x.
Clearly, the last ancestor of x is the same as the last ancestor
of y. But y ∈ SS by the induction assumption and therefore
x ∈ SS as well.
This completes the induction step and proves that all x not of
the form 1− 1

2n belong to SS .

Therefore, S∞ = T∞ = ∅, ST = {1 − 1
2n | for n ≥ 1}, SS =

(0, 1)\ST .
The same argument works for finding TT , TS and T∞.

(b) By the proof of the Schroeder-Berenstein theorem and part (a)
we define h : S → T by the formula

h(x) =

{
f(x) = x if x ∈ SS
g−1(x) = 2x− 1 if x ∈ ST

In other words,

h(x) =

{
x if x 6= 1− 1

2n

1− 1
2n−1 if x = 1− 1

2n

1



2

(3) Let T = {1, 2, 3}.
Let S be the set of all functions f : N→ T .
Prove that |S| = |R|.
Hint: Use problem 7 from homework 8.

Solution

Close a 1-1 map from {0, 1} to T . For example, take h : {0, 1} →
{1, 2, 3} given by h(0) = 1, h(1) = 2.

This map induces a map φ from {f : N → {0, 1}} to {g : N →
{1, 2, 3}} given by the formula φ(f) = h ◦ f . It’s easy to see that φ
is 1-1. Therefore |{f : N → {0, 1}}| ≤ |{g : N → {1, 2, 3}}|.

But {f : N → {0, 1}} can be identified with P (N) which by prob-
lem 7 from homework 8 has the same cardinality as R.

Therefore, |R| ≤ |{f : N→ T}|.
On the other hand, we claim that |{f : N→ T}| ≤ |R|.
To see this observe that a function f : N → T can be thought of

as a sequence f(1), f(2), f(3), f(4), . . . where each f(i) is 1,2 or 3.
For every such sequence consider the real number with the decimal

expression 0.f(1)f(2)f(3) . . . and define ψ : {f : N→ T} → R given
by ψ(f) = 0.f(1)f(2)f(3) . . .. This map is clearly 1-1 and therefore
|{f : N→ T}| ≤ |R|.

Finally, by the Schroeder-Berenstein theorem we conclude that
|{f : N→ T}| = |R|

(4) Let S be an infinite set such that |S| > |N|. Let T ⊂ S be countable.
(a) Prove that S\T is infinite.
(b) Prove that |S| = |S\T |.

Hint: Construct T ′ ⊂ S\T such that |T ′| = |N| and use that
|T ∪T ′| = |T ′| to construct an 1-1 and onto map from S to S\T .

(c) Find the cardinality of the set of transcendental numbers.

Solution

(a) Suppose A = S\T is finite. Then S = A ∪ T . Since |A| ≤ |N|
and |T | ≤ |N| this implies that |S| ≤ |N|. This is a contradiction
as we are given that |S| > |N|.

(b) Since S\T is infinite by part a), we can construct an infinite
countable subset T ′ ⊂ S\T . Let A = S\(T ∪ T ′).
Note that T ∩T ′ is countable since both T and T ′ are countable.
Thus, |T ′| = |N| = |T ∩ T ′|. Therefore we can construct a 1-1
and onto map f : T ∪ T ′ → T ′.
Finally, define F : S = T ∪ T ′ ∪ A → S\T = T ′ ∪ A by the
formula

F (s) =

{
f(s) if x ∈ T ∪ T ′

s if s ∈ A

By construction, F is 1-1 and onto.
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(c) Let S = R and T be the set of all algebraic numbers. Then
T is countable and |S| = |R| > |N|. The set of transcendental
numbers is S\T . Applying b) we conclude that |S\T | = |S| =
|R|.

(5) Let S be the set of sequences q1, q2, q3, . . . where qi is real for every i
and such that for every sequence there exists n ∈ N such that qi = 0
for all i ≥ n.

Prove that |S| = |R|.
Solution

Let Sn be the set of sequences of the form q1, . . . , qn, 0, 0, . . .. Then
S = ∪∞n=1Sn. Let fn : Sn → Rn be given by f(q1, . . . , qn, 0, 0, . . .) =
(q1, . . . , qn). Clearly, fn is a bijection and hence, |Sn| = |Rn| = |R|
for any n.

Now the result will follow from the following general
Claim. Suppose T = ∪∞n=1Tn and |Tn| = |R| for any n.
Then |T | = |R|.
The proof of the claim is the same as the proof of the theorem from

class that the union of countably many countable sets is countable.
Clearly |T | ≥ |T1| = |R|. Next we change Tn to T̃n = Tn\∪n−1i=1 Ti.

Then T = ∪∞n=1T̃n and T̃i ∩ T̃j = ∅ for i 6= j.
Let fn : Tn → |R| be 1-1. Define f : T → R × R by the formula

f(t) = (fn(t), n) for t ∈ T̃n. Since T̃i ∩ T̃j = ∅ for i 6= j the map f is
well defined and by construction it is 1-1. Hence |T | ≤ |R×R| = |R|.
By the Schroeder-Berenstein theorem we conclude that |T | = |R|.


