(2) Let S =(0,1) and T'=[0,1). Let f: S — T be given by f(z) =

_ x4+l

and g: T — S be given by g(z) = %=.

(a)
(b)

Find S57 ST, SOO) T37 TTa TOO

give an explicit formula for a 1-1 and onto map h: S — T
coming from f and g using the proof of the Schroeder-Berenstein
theorem.

Solution
We claim that Soe = Tog = 0,57 = {1 — 5&| for n > 1},
Sg = (0, D\Sr, Tr = {1 — 5| for n > O} and Ts = (0, 1)\T7r.
First we observe that f(l—45) =1— 3 for any n > 1 and

g(1 — 55) = 1 — 5+ for any n > 0. So that g(0) = 1— 1 =

b I3)= o) =13 = 17D = Lo() = 1- 4 = Tete

Arguing by induction we see that the last ancestor of 1 — 57 € S

for any n > 1 and of 1 — 2" ESforanyn>Olsy—O€T

(observe that 0 is not in the image of f and so has no ancestors).

Therefore {1— 5| forn > 1} C Sy and {1—3| for n > 0} C Tr.

Next we claim that for any n > 0 the interval (1 — 5,1 — 2,}“)

is contained in Sg. We will prove this by induction in n.

When n = 0 the interval in question is (0,1). Observe that
9([0,1)) = [3,1). Hence if z € (0, 3) then it has no ancestors

and therefore (0, ) C Sg by deﬁmtlon of Sg.

Induction step. Suppose we already proved that (1— 2n ,1— Qn%)

is contained in Sg for some n > 0.

Let z € (1—2,1%,1—2”%). Then x = g(y) for y = 2z — 1

with y € (1 — 55,1 — Qn%) so that y € T is the first ancestor

of . Then y = f(y) so that y € S is the second ancestor of x.

Clearly, the last ancestor of x is the same as the last ancestor

of y. But y € Sg by the induction assumption and therefore

x € Sg as well.

This completes the induction step and proves that all z not of

the form 1 — 2% belong to Sg.

Therefore, Soo = Too = 0,57 = {1 — 2%] for n > 1}, Sg =

(0, 1)\ Sr.

The same argument works for finding 77, T and Ti.

By the proof of the Schroeder-Berenstein theorem and part (a)

we define h: S — T by the formula

) flx)=wifreSs
Ma) = {gl(x) =2rx—1ifx e Sp

In other words,

h(x):{azifx;él 2L

1— 5 11f3:—1—2—n

1



(3) Let T = {1,2,3}.
Let S be the set of all functions f: N — T
Prove that |S| = |R|.
Hint: Use problem 7 from homework 8.

Solution

Close a 1-1 map from {0,1} to T. For example, take h: {0,1} —
{1,2,3} given by h(0) =1,h(1) = 2.

This map induces a map ¢ from {f: N — {0,1}} to {g: N —
{1,2,3}} given by the formula ¢(f) = ho f. It’s easy to see that ¢
is 1-1. Therefore |{f: N — {0,1}}| < [{g: N — {1,2,3}}|.

But {f: N — {0,1}} can be identified with P(N) which by prob-
lem 7 from homework 8 has the same cardinality as R.

Therefore, |R| < |{f: N— T}|.

On the other hand, we claim that |{f: N — T}| < |R].

To see this observe that a function f: N — T can be thought of
as a sequence f(1), f(2), f(3), f(4),... where each f(i) is 1,2 or 3.

For every such sequence consider the real number with the decimal
expression 0.f(1)f(2)f(3) ... and define ¢»: {f: N — T} — R given
by ¥(f) =0.f(1)f(2)f(3).... This map is clearly 1-1 and therefore
{f: N T} <R

Finally, by the Schroeder-Berenstein theorem we conclude that
{f: N> T} = R

(4) Let S be an infinite set such that |S| > |N|. Let ' C S be countable.
(a) Prove that S\T is infinite.
(b) Prove that |S| = [S\T.
Hint: Construct 7" C S\T such that |T’| = |N| and use that
|TUT’| = |T"| to construct an 1-1 and onto map from S to S\T.
(c) Find the cardinality of the set of transcendental numbers.

Solution

(a) Suppose A = S\T is finite. Then S = AUT. Since |A| < |N|
and |T'| < |N| this implies that |S| < |N|. This is a contradiction
as we are given that |S| > |NJ.

(b) Since S\T is infinite by part a), we can construct an infinite
countable subset 7" C S\T. Let A = S\(T UT").

Note that T'"NT" is countable since both T" and T" are countable.
Thus, |T'| = |N| = |[T'NT’|. Therefore we can construct a 1-1
and onto map f: TUT — T".

Finally, define F: S = TUT'UA — S\T = T' U A by the

formula

F(s) = f(s)ifzeTUT
o= sifse A

By construction, F'is 1-1 and onto.
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(c) Let S = R and T be the set of all algebraic numbers. Then
T is countable and |S| = |R| > |N|. The set of transcendental
numbers is S\7. Applying b) we conclude that |S\T| = |S| =
IR|.
(5) Let S be the set of sequences ¢, g2, g3, . . . where g; is real for every 4
and such that for every sequence there exists n € N such that ¢; =0
for all 7+ > n.
Prove that |S| = |R|.
Solution

Let S;, be the set of sequences of the form ¢1,...,¢,,0,0,.... Then
S =00, S,. Let fr,: S, = R™ be given by f(q1,...,¢n,0,0,...) =
(q1,-.-,qn). Clearly, f, is a bijection and hence, |S,| = |R"| = |R|
for any n.

Now the result will follow from the following general

Claim. Suppose T = U2 T, and |T,,| = |R| for any n.

Then |T'| = |R].

The proof of the claim is the same as the proof of the theorem from
class that the union of countably many countable sets is countable.

Clearly |T| > |T1| = |R|. Next we change T, to T;, = T,\ Ul T;.
Then T = U;‘Lozl’f’n and T} ﬁf’j = () for 1 # j.

Let fn: T, — |R| be 1-1. Define f: T'— R x R by the formula
F(t) = (fult),n) for t € Tp,. Since T; N T; = () for i # j the map f is
well defined and by construction it is 1-1. Hence |T| < [RxR| = |R].
By the Schroeder-Berenstein theorem we conclude that |T'| = |R].



