- (1) Prove that if m > 4 is not prime then $(m-1)! \equiv 0 \pmod{m}$
- (2) Find all possible values of (n, n + 6) where n is a natural number.
- (3) (a) Let (a, m) = 1. Prove that there exists a natural number $b \le m$ such that $ab \equiv 1 \pmod{m}$.
 - (b) Let m = 15. For every natural $a \le 15$ satisfying (a, m) = 1 find a $b \le 15$ such that $ab \equiv 1 \pmod{15}$.
- (4) Find the Euler function ϕ of each of the following numbers 48, 51, 101.
- (5) Let p, q be distinct primes. Without using the general formula prove that $\phi(p^kq^l) = (p^k - p^{k-1})(q^l - q^{l-1}).$ (6) Find $10^{5^{101}} \pmod{21}$. (7) Find $6^{100} \pmod{14}$.

Hint: Note that $(6, 14) \neq 1$. Find $6^{100} \pmod{7}$ first. Then find an **even** number a < 14 such that $6^{100} \equiv a \pmod{7}$.

(8) Find $35^{25} \pmod{42}$.