- (1) Prove that the set of finite subsets of \mathbb{N} is countable.
- (2) Let S be an infinite set such that $|S| > |\mathbb{N}|$. Let $T \subset S$ be countable.
 - (a) Prove that $S \setminus T$ is infinite.
 - (b) Prove that $|S| = |S \setminus T|$. *Hint:* Construct $T' \subset S \setminus T$ such that T' is countable and use that $|T \cup T'| = |T|$ to construct an 1-1 and onto map from S to $S \setminus T$.
 - (c) Find the cardinality of the set of transcendental numbers.
- (3) Let S be the set of sequences q_1, q_2, q_3, \ldots where q_i is real for every i and such that for every sequence there exists $n \in \mathbb{N}$ such that $q_i = 0$ for all $i \geq n$.

Find the cardinality of S.

- (4) Explain how to construct $\frac{2+\sqrt{3}}{3}$ using ruler and compass. (5) Let P(x) be a cubic polynomial with rational coefficients. Suppose it has a complex root of the form a + bi where both a and b are rational.

Prove that P(x) has a rational root.

Hint: Observe that Q(x) = (x - a - bi)(x - a + bi) has rational coefficients. Divide P(x) by Q(x) and show that the remainder must be zero.

- (6) Show that if $\sin \alpha$ and $\sin \beta$ are constructible then $\sin(\alpha + \beta)$ is also constructible.
- (7) Let x_0 be a root of the polynomial $a_n x^n + \ldots a_1 x + 0$ where each a_i has the form $a_i = b_i + c_i \sqrt{2}$ where $b_i, c_i \in \mathbb{Q}$.

Prove that x_0 is a root of a polynomial with rational coefficients. *Hint:* Write $f(x_0) = 0$, move all the terms with $\sqrt{2}$ to the right and square the sides.