
(1) Let z0 be a root of xn = z. Show that all roots of xn − z = 0 have
the form z0 · ζk where ζ0, . . . ζn−1 are n-the roots of 1.

Solution

It’s easy to see (why?) that if z = 0 then the only complex solution
of xn = z is x = 0.

Let z 6= 0.
If ζn = 1 and zn0 = z then (z0 · ζ)n = zn0 ·zn0 = z. That means that

z0 · ζ solves xn = 1. Conversely, if zn1 = z then ( z1z0 )n =
zn1
zn0

= z
z = 1.

Hence = ζ = z1
z0

is a root of 1and z1 = ζ · z0.
(2) Prove that |Nk| = |N for any natural k.

Hint: Use induction.

Solution

First note that if |S1| = |S2| and |T1| = |T2| then |S1 × T1| =
|S2 × T2|.

We will prove the result by induction. The base k = 1 is obvious.
Induction step. Suppose the result if proved for k ≥ 1 and we

want to prove it for k+1. We have Nk+1 = Nk×N and by induction
assumption |Nk| = |N|. By the observation above that implies that
|Nk+1| = |Nk × N| = |N × N| = |N| where the last equality follows
from the theorem proved in class that |N| = |N× N|.

(3) For any set S define P (S) to be the set of all subsets of S. for
example, if S = {a, b} then P (S) = {∅, {a}, {b}, {a, b}}.

Let A be a finite set. Show that |P (A)| = 2|A|.
Hint: Let A = {x1, . . . , xn}. Represent a subset S of A by a

sequence of 0s and 1s of length n such that the i-th element in the
sequence is 1 if xi ∈ S and is 0 if xi /∈ S.

Solution 1

Per hint we can identify subsets of A with sequences of 1’s and 0’s
of length n. We just need to count the number of such sequences.
We have two choices for the first number, two choices for the second
number etc, so the number of such sequences is 2n.

Solution 2

We prove the result by induction in n. The result is obvious
for n = 1. Induction step. Suppose we proved it for sets of or-
der n ≥ 1 and need to prove it for sets of order n + 1. Let S =
{x1, . . . , xn, xn+1}. All subset of S that don’t contain xn+1 are ex-
actly the subsets of {x1, . . . , xn}. By the induction assumption there
are 2n such subsets. The subsets of S that do contain xn+1 have the
form A∪{xn+1} where A ⊂ {x1, . . . , xn} Therefore there are also 2n

such subsets. Altogether that gives that |P (S)| = 2n + 2n = 2n+1.
(4) Let S be an infinite set. Prove that |S| ≥ |N|.

Solution
1



2

We need to construct a 1 − 1 map f : N → S. We will construct
it by induction in n. First, since S is infinite it’s non-empty so
we can pick s1 ∈ S. Define f(1) = s1. Suppose f(1), . . . f(n) are
constructed and are all distinct. The set S\{f(1), . . . , f(n)} is non-
empty since S is infinite. Pick any sn+1 ∈ S\{f(1), . . . , f(n)} and
define f(n+1) = sn+1. By induction this gives a 1-1 map f : N→ S
which means that |N| ≤ |S|.


