
Solutions to Practice Final 2

1. Using induction prove that

12 + 32 + . . .+ (2n+ 1)2 =
(n+ 1)(2n+ 1)(2n+ 3)

3

Solution

First we verify the base of induction. When n = 0 LHS= 12 = 1 and RHS= 1·1·3
3

= 1.

Induction step. Assume the formula is true for n ≥ 0 and we need to verify it for n+1.
Then we have

12 + 32 + . . .+ (2n+ 1)2 + (2n+ 3)2 =
(n+ 1)(2n+ 1)(2n+ 3)

3
+ (2n+ 3)2 =

(n+ 1)(2n+ 1)(2n+ 3) + 3(2n+ 3)2

3
=

(2n+ 3)(2n2 + 3n+ 1 + 3(2n+ 3))

3

=
(2n+ 3)(2n2 + 9n+ 10)

3
=

(2n+ 3)(2n+ 5)(n+ 2)

3
This completes the induction step and proves the formula for all n ≥ 0.

2. Let a, b, c be natural numbers.

(a) Show that the equation ax+ by = c has a solution if and only if (a, b)|c.
(b) Find all integer solutions of 6x+ 15y = 9.

Solution

(a) Suppose ax + by = c for some integer x and y. If d|a and d|b then obviously,
d|ax+ by = c. In particular, if (a, b)|c.
Conversely, suppose (a, b)|c so that c = d · (a, b). Then ax + by = (a, b) has
an integer solution by a result from class. Multiplying both sides by d we get
a(xd) + b(yd) = (a, b) · d = c.

(b) First, divide both sides by 3. we get 2x+ 5y = 3. We have (2, 5) = 1 and we can
find integer solution of 2x + 5y = 1 using either Euclidean algorithm or just by
trying a few small numbers we get

2 · (−2)+5 ·1 = 1. Multiplying by 3 we get 2 · (−6)+5 · (3) = 3 so x0 = −6, y0 = 3
is a solution of 2x+ 5y = 3.

It’s easy to see that x = −6− 5k, y = 3 + 2k is a solution of 2x+ 5y = 3 for any
k. We claim that any integer solution of 2x+ 5y = 3 has this form.

Suppose 2x + 5y = 3. we also have 2 · (−6) + 5 · (3) = 3. Subtracting these
equations we get 2(−6− x) + 5(3− y) = 0 or 2(−6− x) = 5(y − 3). This implies
that 2|(y−3) so that y−3 = 2k or y = 3 + 2k. This gives 2(−6−x) = 5(y−3) =
6k,−6− x = 3k, x = −6− 3k.

Thus the general solution is x = −6− 5k, y = 3 + 2k where k is any integer.
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3. Find the last digit of the sum

2(1 + 3 + 32 + 33 + . . .+ 3309)

Solution

First, we compute

2(1 + 3 + 32 + 33 + . . .+ 3309) = 2 · 3310 − 1

3− 1
= 3310 − 1.

We have φ(10) = φ(2 · 5) = 1 · 4 = 4. By Euler’s theorem this implies that 34 ≡ 1(
mod 10). Of course, this can also be seen directly as 34 = 81.

Therefore 34k ≡ 1( mod 10). We have 310 = 308 + 2 and 4|308. Therefore 3310 ≡ 32(
mod 10). This means that the last digit of 3310 is 9 and hence the last digit of 3310− 1
is 8.

4. Let S be infinite and A ⊂ S be finite. Prove that |S| = |S\A|.

Solution

Let A = {s1, . . . , sn}. Since S is infinite the set S\A is non empty. Pick any
sn+1 ∈ S\A = S\{s1, . . . , sn}. Next, since S\{s1, . . . , sn+1} 6= ∅ we can choose sn+2 ∈
S\{s1, . . . , sn+1}. Proceeding by induction we con construct sm+1 ∈ S\{s1, . . . , sm}
for any m ≥ n.

Now define f : S → S\A by the formula f(si) = si+n for any i and f(x) = x if
x ∈ S\{s1, s2, . . .}. By construction, f is 1-1 and onto.

5. Let S = [0, 1] and T = [0, 2). Let f : S → T be given by f(x) = x and g : T → S be
given by g(x) = x/2.

(a) Find SS, ST , S∞;

(b) give an explicit formula for a 1-1 and onto map h : S → T coming from f and g
using the proof of the Schroeder-Berenstein theorem.

Solution

(a) Note that 1 /∈ g(T ) and therefore 1 ∈ SS. Next, we see that 1/2 ∈ SS also.
Indeed, 1/2 = g(1) and 1 = f(1). So 1 is the last ancestor of 1/2 and hence
1/2 ∈ SS. proceeding by induction we see that 1

2n
∈ SS for any n ≥ 0.

Next observe that (1/2, 1) ⊂ ST . Indeed, if 1/2 < x < 1 then x = g(2x) and
1 < 2x < 2 so that 2x /∈ f(S).
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Proceeding by induction we claim that ( 1
2n+1 ,

1
2n

) ∈ ST for any n ≥ 0. We just
verified the base of induction.

Induction step. Suppose we know the statement of n ≥ 0 and we need to prove
it for n + 1. Let 1

2n+2 < x < 1
2n+1 then x = g(2x) and 1

2n+1 < 2x < 1
2n

. Also,
2x = f(2x). By induction assumption, 2x ∈ ST and the last ancestor of x is the
last ancestor of 2x so x ∈ ST also.

This concludes the induction step.

It’s obvious that 0 ∈ S∞. Therefore S∞ = {0}, SS = {1, 1
2
, 1
4
, . . . , 1

2n
, . . .} and

ST = {x ∈ [0, 1] such that x 6= 0, 1, 1
2
, 1
4
, 1
8
, . . .}.

(b) By the proof os the Shroeder Berenstein Theorem the following map h : S → T
is 1-1 and onto.

h(x) =

{
x if x = 0, 1, 1

2
, 1
4
, 1
8
, . . .

2x ifx 6= 0, 1, 1
2
, 1
4
, 1
8
, . . .

6. Let n = 2p where p is an odd prime. Find the remainder when φ(n)! is divided by n.
Here φ(n) is the Euler function of n.

Solution

We have φ(n) = φ(2p) = (2−1)(p−1) = p−1. By Wilson’s theorem φ(n)! = (p−1)! ≡
−1( mod p) ≡ p − 1( mod p). This measn that p|(p − 1)! − (p − 1). Since p is odd
p− 1 is even and therefore 2|(p− 1)!− (p− 1) also. Since (2, p) = 1 this implies that
2p|(p− 1)!− (p− 1) or, equivalently (p− 1)! ≡ p− 1( mod 2p).

Answer: p− 1.

7. Prove that q1
√

3+q2
√

5 6= q′1
√

3+q′2
√

5 for any rational q1, q2, q
′
1, q
′
2 unless q1 = q′1, q2 =

q′2.

Solution

Suppose q1
√

3 + q2
√

5 = q′1
√

3 + q′2
√

5. Then (q1 − q′1)
√

3 + (q2 − q′2)
√

5 = 0. Let
a = q1 − q′1, b = q2 − q′2 are rational and a

√
3 + b

√
2 = 0. We want to show that

a = b = 0. If a 6= 0 this gives
√

3
2

= − b
a

which is rational. This is a contradiction since√
3
2

is irrational. Hence a = 0. Since a
√

3 + b
√

2 = 0 this implies b
√

2 = 0, b = 0.

8. Let a be a root of x5 − 6x3 + 2x2 + 5x − 1 = 0. Construct a polynomial with integer
coefficients which has a2 as a root.

Hint: separate even and odd powers.
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Solution

We can rewrite the equation as x5 − 6x3 + 5x = 1 − 2x2, x(x4 − 6x2 + 5) = 1 − 2x2.
Squaring both sides we get x2(x4 − 6x2 + 5)2 = (1 − 2x2)2. Clearly, y = x2 satisfies
y(y2 − 6y + 5)2 = (1− 2y)2.

9. Find all complex roots of x6 + 7x3 − 8 = 0.

Reminder: Real numbers are also complex numbers.

Solution

Let z = x3. Then z satisfies z2 + 7z − 8 = 0 Solving this quadratic equation we get
z = 1, z = −8. Thus we need to solve x3 = 1 and x3 = −8. Solving x3 = 1 gives
x = 1, x = cos(2π/3) + i sin(2π/3) = −1+i

√
3

2
, x = cos(4π/3) + i sin(4π/3) = −1−i

√
3

2

Next we write −8 as 23(cos π+ i sin π). Thus solving x3 = −8 we get x = 2(cos(π/3) +
i sin(π/3)) = 1 + i

√
3, x = 2(cos(π/3 + 2π/3) + i sin(π/3 + 2π/3)) = 2(cos π+ i sin π) =

−2, x = 2(cos(π/3 + 4π/3) + i sin(π/3 + 4π/3)) = 2(cos(5π/3) + i sin(5π/3)) = 1− i
√

3

10. Represent sin(5θ) as a polynomial in sin(θ).

Solution

We have cos(5θ) + i sin(5θ) = (cos θ + i sin θ)5 = (cos θ + i sin θ)2(cos θ + i sin θ)3 We
compute separately (cos θ + i sin θ)2 = (cos2 θ − sin2 θ + 2i sin θ cos θ) and (cos θ +
i sin θ)3 = (cos θ + i sin θ)2(cos θ + i sin θ) = (cos2 θ − sin2 θ + 2i sin θ cos θ)(cos θ +
i sin θ) = (cos2 θ − sin2 θ) cos θ − 2 sin2 θ cos θ + i(cos2 θ − sin2 θ) sin θ + 2i sin θ cos2 θ =
cos3 θ − 3 sin2 θ cos θ + i(3 sin θ cos2 θ − sin3 θ).

Combining these together we get cos(5θ) + i sin(5θ) = (cos θ + i sin θ)5 = (cos θ +
i sin θ)2(cos θ+i sin θ)3 = (cos2 θ−sin2 θ+2i sin θ cos θ)(cos3 θ−3 sin2 θ cos θ+i(3 sin θ cos2 θ−
sin3 θ)) = (cos2 θ − sin2 θ)(cos3 θ − 3 sin2 θ cos θ) − 2 sin θ cos θ(3 sin θ cos2 θ − sin3 θ) +
i(cos2 θ − sin2 θ)(3 sin θ cos2 θ − sin3 θ) + 2i sin θ cos θ(cos3 θ − 3 sin2 θ cos θ).

Therefore, sin(5θ) = (cos2 θ−sin2 θ)(3 sin θ cos2 θ−sin3 θ)+2 sin θ cos θ(cos3 θ−3 sin2 θ cos θ) =
(1−2 sin2 θ)(3 sin θ(1−sin2 θ)−sin3 θ)+2 sin θ cos4 θ−6 sin3 θ cos2 θ = (1−2 sin2 θ)(3 sin θ(1−
sin2 θ)− sin3 θ) + 2 sin θ(1− sin2 θ)2 − 6 sin3 θ(1− sin2 θ).

11. Is
6√5−
√
5

1+2
√
7

constructible? Justify your answer.

Solution
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6√5−
√
5

1+2
√
7

is not constructible. We argue by contradiction. Assume
6√5−
√
5

1+2
√
7

is constructible.

Since
√

5 and
√

7 are constructible this implies that 6
√

5 is constructible and hence
( 6
√

5)2 = 3
√

5 is also constructible. 3
√

5 is a root of x3− 5 = 0 which is a cubic equation
with integer coefficients. By a theorem from class if it has a constructible root it must
have a rational root as well. Let m

n
be a rational root where (m,n) = 1. Then m|5

and n|1 which means that m
n

= ±1,±5. Plugging these numbers into x3 − 5 = 0 we
see that none of them are roots.

This is a contradiction and therefore
6√5−
√
5

1+2
√
7

is not constructible.
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