Practice Final 2

1. Using induction prove that

$$1^{2} + 3^{2} + \ldots + (2n+1)^{2} = \frac{(n+1)(2n+1)(2n+3)}{3}$$

- 2. Let a, b, c be natural numbers.
 - (a) Show that the equation ax + by = c has a solution if and only if (a, b)|c.
 - (b) Find all integer solutions of 6x + 15y = 9.
- 3. Find the last digit of the sum

$$2(1+3+3^2+3^3+\ldots+3^{309})$$

- 4. Let S be infinite and $A \subset S$ be finite. Prove that $|S| = |S \setminus A|$.
- 5. Let S = [0, 1] and T = [0, 2). Let $f: S \to T$ be given by f(x) = x and $g: T \to S$ be given by g(x) = x/2.
 - (a) Find S_S, S_T, S_∞ ;
 - (b) give an explicit formula for a 1-1 and onto map $h: S \to T$ coming from f and g using the proof of the Schroeder-Berenstein theorem.
- 6. Let n = 2p where p is an odd prime. Find the remainder when $\phi(n)!$ is divided by n. Here $\phi(n)$ is the Euler function of n.
- 7. Prove that $q_1\sqrt{3} + q_2\sqrt{5} \neq q'_1\sqrt{3} + q'_2\sqrt{5}$ for any rational q_1, q_2, q'_1, q'_2 unless $q_1 = q'_1, q_2 = q'_2$.
- 8. Let a be a root of $x^5 6x^3 + 2x^2 + 5x 1 = 0$. Construct a polynomial with integer coefficients which has a^2 as a root.

Hint: separate even and odd powers.

- 9. Find all complex roots of x⁶ + 7x³ 8 = 0.
 Reminder: Real numbers are also complex numbers.
- 10. Represent $\sin(5\theta)$ as a polynomial in $\sin(\theta)$.
- 11. Is $\frac{\sqrt[6]{5}-\sqrt{5}}{1+2\sqrt{7}}$ constructible? Justify your answer.